
Integrating Overlapping Structures and Background
Information of Words Significantly Improves Biological
Sequence Comparison
Qi Dai1*, Lihua Li2, Xiaoqing Liu3, Yuhua Yao1, Fukun Zhao1, Michael Zhang4

1 College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People’s Republic of China, 2 Institute for Biomedical Engineering and Instrumentation, Hangzhou

Dianzi University, Hangzhou, People’s Republic of China, 3 School of Science, Hangzhou Dianzi University, Hangzhou, People’s Republic of China, 4 Cold Spring Harbor

Laboratory, Cold Spring Harbor, New York

Abstract

Word-based models have achieved promising results in sequence comparison. However, as the important statistical
properties of words in biological sequence, how to use the overlapping structures and background information of the
words to improve sequence comparison is still a problem. This paper proposed a new statistical method that integrates the
overlapping structures and the background information of the words in biological sequences. To assess the effectiveness of
this integration for sequence comparison, two sets of evaluation experiments were taken to test the proposed model. The
first one, performed via receiver operating curve analysis, is the application of proposed method in discrimination between
functionally related regulatory sequences and unrelated sequences, intron and exon. The second experiment is to evaluate
the performance of the proposed method with f-measure for clustering Hepatitis E virus genotypes. It was demonstrated
that the proposed method integrating the overlapping structures and the background information of words significantly
improves biological sequence comparison and outperforms the existing models.
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Introduction

With the development of high-throughput sequencing technol-

ogy, the rate of addition of new sequences to the databases

increases continuously. However, such a collection of sequences

does not by itself increase the scientist’s understanding of the

biology of organisms. Comparing a new sequence with the

sequences of known functions is an effective way of assigning

function to the new genes/proteins and understanding the biology

of that organism from which the new sequence comes.

Owing to the importance of sequence comparison, numerous

researches have been taken in past and obtained some effective tools

for similarity search [1–8], evolutionary study [9–19], and

classification [20–23]. The methods developed for sequence

comparison can be categorized into two classes. One is align-

ment-based methods, in which a matrix of numbers that represents

all possible alignments between two sequences is obtained with

dynamic programming, and the highest set of sequential scores in

the matrix defines an optimal alignment. Waterman (1995) and

Durbin et al. (1998) provided comprehensive reviews about this

method [24,25]. But the search for optimal solutions using

alignment-based method has problems in: (i) computational load

with regard to large databases [2]; (ii) choice of the scoring schemes

[26]. Therefore, the emergence of research into the second class,

alignment-free method, is apparent and necessary to overcome

critical limitations of alignment-based methods [2,3,5,6,12,13].

Up to now, many efficient alignment-free methods have been

proposed, but they are still in the early development compared

with alignment-based measure [2,5,6,26–36]. One of the most

widely used alignment-free approaches is word-based model that

meets the need for rapid sequence comparison. In this model, each

sequence is first mapped into an m-dimensional vector according

to its k-word frequencies, and sequence similarity can then be

measured by distance measures, such as Euclidean distance [27],

Mahalanobis distance [28], Kullback-Leibler discrepancy [29,30]

and Cosine distance [31]. When the k-words occurring in

biological sequence are estimative probabilities rather than the

frequencies, they are more readily optimized by more complex

models, such as Markov model [2,33–35], mixed model [5,6] and

Bernoulli model [36]. These complex models could be considered

to be the modification of traditional word-based models, in which

several critical problems still exist in their development as

described below.

First, little attention has been paid to the overlapping structures

of the words in biological sequences [2,5,27–29,31,33,34]. Over-

lapping occurrences of a word w are the occurrences of the word w
that overlaps the previous occurrence of the word w. For instance,

in the sequence ACGAATAATAAATAAGGCAATAAC, there

are four occurrences of AATAA (starting at positions 4, 7, 11 and

19). But the occurrence of AATAA starting at the position 4 is

different from the one starting at the position 19, because the form

is composed of three overlapping occurrences of AATAA whereas
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the second one is composed of a unique occurrence. Because the

overlapping structure of the words usually form conservative

patterns in biological sequences that are strongly associated with

genes [37,38], the overlapping structures of the words should be

taken into account when comparing two biological sequences.

Second, background information of the words has not been

fully utilized in existing biological sequence comparison

[27–29,31,33,34,36]. Mutations take place randomly at molecular

level, and natural selections shape the direction of evolution. In

order to highlight the contribution of selective evolution, random

background from the simple counting result was proposed to build

a composition vector (CV) and has been used with minor

modification for phylogenetic studies of prokaryotes and viruses

[33,34]. Recently, Lu et al. found some statistical problems

associated with composition vector (CV) and proposed an

improved composition vector (ICV) method based on a known

word distribution [36]. However, due to the fact that the word

distribution is usually unknown in most cases, and each biological

sequence has its own word distribution, the ICV method is of

limited use.

This paper proposed an efficient statistical method for sequence

comparison. It takes into consideration the overlapping occur-

rences of the words and has the ability to adjust the background

information of the words in biological sequences. The contents can

be summarized as follows:

1. An efficient word-based statistical measure based on the

statistical model proposed by Schbath [39] was proposed,

which utilizes the Markov model to estimate the variance of

word frequencies and decomposes the similarity score into a

sum of similarities of the normalized word frequencies.

2. Extensive experiments were taken to evaluate the performance

of proposed model in discrimination between (a) functionally

related regulatory sequences and unrelated sequences, intron

and exon, and (b) different HEV genotypes. A comparison of

proposed method with existing alignment-based and align-

ment-free models was also taken to assess its superiority.

Methods

Word-based Statistical Models (WSM)
Background information of words. A biological sequence

can be described as a succession of symbols, and a k-word is a

series of k consecutive letters in the sequence. For a sequence

s~s1s2 � � � sn, the count of a k-word wk~wk,1wk,2 � � �wk,k,

denoted by c(wk), is the number of occurrence of the word wk

in the sequence s. The position of an occurrence of the word wk is

defined by the position of its first letter wk,1. We define a random

indicator Yi(wk) of an occurrence of wk at position i,
1ƒiƒn{kz1, in s by

Yi(wk)~
1 if (si,siz1, � � � ,sizk{1)~(wk,1,wk,2, � � � ,wk,k),

0 otherwise:

�

The occurrence frequency of the word wk in the sequence s can be

calculated with the random indicators of occurrence

f (wk)~
c(wk)

n{kz1
~

Pn{kz1

i~1

Yi(wk)

n{kz1
: ð1Þ

DNA and protein sequences have been realized to be a mixture

of local regions that consist of compositional characteristics and

pseudo-periodic sequence patterns. To utilize the background

information of these local regions, we choose Markov model as a

background model. It takes into consideration this ‘periodical’

behavior of the bio-signal by making use of transition probability

matrix p and initial state distribution p.

Because Yi(wk) is a random Bernoulli variable, the probability

P(Yi(wk)~1) under the Markov model with order 1 (M1) can be

calculated by

P(Yi(wk)~1jM1)~p(wk,1)P
k

j~2
p(wk,j{1,wk,j): ð2Þ

For convenience, let m(wk) denote the probability of the word wk

to appear at a given position in the sequence, and expectation of

the Yi(wk) under the Markov model (M1) is E½Yi(wk)jM1�)~
m(wk). With the expectation E½Yi(wk)jM1�, we can get the

expectation of the word frequency f (wk) under the Markov model

(M1)

E½f (wk)jM1�~ E½c(wk)jM1�
n{kz1

~m(wk): ð3Þ

Overlapping structures of words. Occurrences of the same

word may overlap, and these overlapped words usually form a

conservative pattern that is strongly associated with conservative

motif [38]. So it is valuable that the overlapping structures of the

words are taken into consideration when comparing two biological

sequences. Here, we measure the ability of a word to overlap itself

with a overlapping indicator, em(wk) , defined as follows:

em(wk)~
1 if (wk,k{mz1, � � � ,wk,k)~(wk,1, � � � ,wk,m),

0 otherwise

�

where 1ƒmƒk. With the em(wk), we can calculate the probability

of observing two overlapping occurrences with k{d
(1ƒdƒk{1) letters in common and two non-overlapping

occurrences of the word wk separated by d{k letters (d§k)

under the Markov model (M1) as follows:

P Yi wkð Þ~1,Yizd wkð Þ~1jM1
� �

~

m wkð Þek{d wkð ÞP
k

j~k{dz1p wj{1,wj

� �
if 1ƒdƒk,

m wkð Þ½ �2
p wk,1

� � p wk,k,wk,1ð Þ½ �d{kz1
if d§k:

8>><
>>:

ð4Þ

Since the variables Yi(wk) and Yizd (wk) are not independent

under the Markov model [39–41], their effects can be described by

their covariance

Cov½Yi wkð Þ,Yizd wkð ÞjM1�~

m(wk)ek{d (wk)P
k

j~k{dz1p(wk,j{1,wk,j){m(wk)2 if 1ƒdƒk,

m(wk)2(
½p(wk,k ,wk,1)�d{kz1

p(wk,1)
{1) if d§k:

8><
>:

ð5Þ

With the above formulas, we can calculate the variance of the k-

word frequency f (wk) under the Markov model (M1)

Integrating Overlapping Structures and Background
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V1½f (wk)jM1�~((n{kz1)m(wk)(1{m(wk))z

2
Xk{1

d~1

(n{d{kz1)m(wk)(ek{d (wk)P
k

j~k{dz1

p(wk,j{1,wk,j){m(wk))z2m(wk)2
Xn{2kz1

t~1

(n{2k{tz2)(
½p(wk,k,wk,1)�t

p(wk,1)
{1))=(n{kz1)2:

ð6Þ

What we have presented above is the 1-order Markov model,

generalizations to high order can be deduced similarly.

Word statistical model. By incorporating the overlapping

structures and the background information of the words in the

existing statistical model, a novel word-based statistical model is

proposed and denoted in a compact form

WSM~ff (wk),E½f (wk)jM�,Var½f (wk)jM�g: ð7Þ

in which the sequence information obtained through the statistical

properties of the words was integrated with the overlapping

structures and the background information of the words.

There are several distinctive features of this model. First, it

emphasizes the structures of the words and indicates differences

in terms of their contribution to the conservative patterns.

Second, the influence of two overlapping occurrences of the

word wk with k{d (1ƒdƒk{1) letters in common and

two non-overlapping occurrences of the word wk separated by

d{k letters (d§k) is considered. Finally, Markov model is

chosen as the background model instead of Bernoulli model

because each biological sequence should have its own word

distribution.

Parameter estimation
Since the model parameters are priori unknown, they have to be

estimated based on the observed sequences. The accuracy of this

estimation is an important issue to be considered, and the existing

perturbation theory for Markov chains and hidden Markov

models can allow us to assess the uncertainty in the Markov chain

behavior given the uncertainty [42,43]. In this paper, rather than

assuming a known word distribution like [36], we estimate the

model parameters with the maximum likelihood method [25] and

replaces E½f (wk)jM� by the following estimator

ÊE½f (wk)jMr�~
P

k{r

j~1 c(wk,j � � �wk,jzr)

(n{kz1)P
k{m

j~2 c(wk,j � � �wk,jzr{1)
: ð8Þ

As for the variance, there are several approaches to derive the

asymptotic variance. According to the methods proposed by

Schbath [39], we have

V̂Var½f (wk)jMk{2�~( c(wk,1 � � �wk,k{1)c(wk,2 � � �wk,k)

c(wk,2 � � �wk,k{1)3

(c(wk,2 � � �wk,k{1){c(wk,1wk,2 � � �wk,k{1))

|(c(wk,2 � � �wk,k{1){c(wk,2wk,3 � � �wk,k)))=(n{kz1)2,k§3:

ð9Þ

However, in an application where kƒ2, we derive the asymptotic

variance under Markov model M0 (Bernoulli model)

V̂Var½f (wk)jM0�~((n{kz1)m̂m(wk)(1{m̂m(wk))z2m̂m(wk)

(
Xk{1

d~1

ek{d (wk) P
k

j~k{dz1
p̂p(wk,j){(k{1)m̂m(wk)))=(n{kz1)2,

ð10Þ

where m̂m(wk) is the estimator of m(wk), p̂p(wk,j) is the estimator of

p(wk,j).

Statistical similarity measure
With the assumption of the uniform distribution (U), Lu [36]

calculated the word expectation and variance, and defined the

normalization function ICV as:

f (wk){ÊE½f (wk)jU�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂Var½f (wk)jU�

q ð11Þ

where ÊE½f (wk)jU� and V̂Var½f (wk)jU� are the expectation and

variance of the word frequency f (wk). The normalization function

ICV is necessary but not sufficient, because much effort of this

method is to find better ways to utilize evolution information. In

addition, the function ICV relies heavily on the word distribution.

When the expectation based on background model is strongly

associated with the k-word frequencies, this function can carry

more information, otherwise it will increase the noise accompanied

by words with exceptional background frequencies.

For the probability distributions P and Q of a discrete random

variable, the relative entropy (also called Kullback-Leibler

divergence) of Q from P is defined as

DKL(PjjQ)~
X

i

P(i)log
P(i)

Q(i)
~

{
X

i

P(i)logQ(i)z
X

i

P(i)logP(i)~H(P,Q){H(P),

ð12Þ

where H(P,Q) is the cross entropy of P and Q, and H(P) is the

entropy of P. The relative entropy is the most important concept

in both statistical biology and information theory. It has been

deployed as non-distance similarity measures, such as kld [29,30]

and SimMM [2], to compare biological sequences.

A statistical measure between two proposed statistical models

was proposed here based on the cross entropy H(P,Q) and

Euclidean distance. It is denoted by WSMm:k:r as follows:

WSMm:k:r(WSMr
X ,WSMr

Y )

~
X

wk[Sk

(
f X (wk)

V̂Var½f X (wk)jMr
X �

log(
f Y (wk)

V̂Var½f Y (wk)jMr
Y �

)

{
f Y (wk)

V̂Var½f Y (wk)jMr
Y �

log(
f X (wk)

V̂Var½f X (wk)jMr
X �

))2,

ð13Þ

where WSMr
X and WSMr

Y are two statistical models with Markov

order r for two biological sequences X and Y , and the set Sk

consists of all possible sequences of length k with symbol from the

alphabet A. In the context of DNA sequences, A is {A,C,G,T}. It

is noticed that the similarity measure WSMm:k:r satisfies the

identity and triangle, but it does not satisfies inequality conditions.

So it is only a dissimilarity measure. Another point of interest

about this similarity measure is its normalization function that can

reduce the noise by ignoring the word expectation in its definition.

Integrating Overlapping Structures and Background
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Receiver operating curve and F-measure
Receiver Operating Curve analysis. Receiver operating curve (ROC)

analysis has been widely used in signal detection and classification

[44]. It is usually employed in binary classification of continuous

data categorized as positive (1) or negative (0) cases. The

classification accuracy can be measured by sensitivity and

specificity, which are defined as

sensitivity~
True Positives

Positives
~

TP

TPzFN
,

specificity~
True Negatives

Negatives
~

TN

TNzFP
,

1{specificity~
FP

TNzFP
:

ð14Þ

ROC curve is a graphical plot of sensitivity versus (1-specificity)

for different threshold values. The area under a ROC curve

(AUC) is an important value used to quantify the quality of a

classification because it is a threshold independent performance

measure and is closely related to the Wilcoxon signed-rank test

[45]. A comprehensive discussion on AUC measure can be found

in [46].

F-measure. F-measure is a measure of a test’s accuracy and often

used in the field of information retrieval for measuring search,

document classification, and query classification performance [47].

Both the precision p and the recall r of the test are used to

compute it. Here p is the number of correct results divided by the

number of all returned results while r is the number of correct

results divided by the number of results that should have been

returned. The traditional F-measure is the harmonic mean of

precision and recall:

F~
2pr

pzr
: ð15Þ

The F-measure can be interpreted as a weighted average of the

precision and recall. It ranges from 0 for highest dissimilarity to 1

for identical classifications.

Results

Evaluation on functionally related regulatory sequences
Regulatory sequence comparison plays an important role in the

abinitio discovery of cis{regulatory modules (CRMs) with a

common function. If a set of co-regulated genes in a single species

is given, we wish to find, in their upstream and downstream

regions (henceforth called the ‘control regions’), the CRMs that

mediate the common aspect of their expression profiles. The

control regions may be tens of Kilobase long for each gene

(especially for metazoan genomes), while the CRMs to be

discovered are often only hundreds of base pair long. One must

therefore search in the control regions for subsequences (the

candidate CRMs) that share some functional similarity [5,6].

The proposed WSM model is tested to evaluate if functionally

related sequence pairs are scored better than unrelated pairs of

sequences randomly chosen from the genome. In order to facilitate

comparison, we choose following seven data sets published by

Kantorovitz MR et al. [6]: FLY BLASTODERM (82 CRMs with

expression in the blastoderm-stage embryo of the fruitfly,

Drosophila melanogaster); FLY PNS [23 CRMs (average length

998 bp) driving expression in the peripheral nervous system in the

fruitfly]; FLY TRACHEAL [9 CRMs (average length 1220 bp)

involved in regulation of the tracheal system in the fruitfly];

FLYEYE [17 CRMs (average length 894 bp) expressing in the

Drosophila eye ]; HUMAN MUSCLE [28 human CRMs (average

length 450) regulating muscle specific gene expression]; HUMAN

LIVER [9 CRMs (average length 201) driving expression specific

to the human liver]; HUMAN HBB [17 CRMs (average length

453) regulating the HBB complex]. They are well studied by

[5,6,48].

Experimental program is designed according to following

settings: (1) A set of CRMs, known to regulate expression in the

same tissue, is taken as the ‘positive’ set for each sequence in this

set is the really cis{regulatory module, and a set of equally many

randomly chosen noncoding sequences, with lengths matching the

CRMs, is taken as the ‘negative’ set for each sequence in this set is

the randomly chosen noncoding sequence not the really

cis{regulatory module. It would be interesting if we choose

negative sequences from nearby regions of the known CRMs

(positives), which will presumably have similar word distributions.

Here, we chose seven noncoding data sets published by

Kantorovitz MR et al. [6] to facilitate comparison with their

results. (2) Each pair of sequences in the positive set is compared,

and so is each pair in the negative set. (3) The evaluation

procedure is based on a binary classification of each sequence pair,

where 1 corresponds to the pairs from positive set, 0 corresponds

to the pairs from negative set. Let n be the number of sequences in

the positive set, all the pairs both from the positive and negative

sets constitute a vector of length 2
2

n

� �
. In addition, we can get a

vector of length 2
2

n

� �
consisting of 1 and 0 as class labels. A

perfect measure would completely separate the negative from the

positive set. Of course, this does not happen in practice, and the

classes are interspersed. The ROC curves permit to assess the level

of accuracy of this separation without choosing any distance

threshold for the separation point. In particular, the AUC will give

us a unique number of the relative accuracy of each measure.

For comparison purpose, widely-used alignment tools were

tested. These alignment tools include Needleman-Wunsch (global

alignment) and Smith-Waterman (local alignment) raw scores,

with no correction for statistical significance, using linear gap

penalties or affine gap penalties, with a gap penalty of 2. We also

implemented four word-based measures: Euclidean distance (eu:k)

[27], Cosine distance (cos:k) [31], Pearson’s correlation coefficient

(pcc:k) [32] and Kullback-Leibler discrepancy (kld:k) [29]. The

performance of the proposed model was also compared with

Markov models (SimMM [2], composition vector (CV :k:r
[33,34]), D:k:r [35]) and mixed models (D2:k:r [49], D2z:k:r
[6], S1:k:r [5] and S2:k:r [5]). In addition to the alignment and

statistical models, the improved composition vector (ICV :k) [36]

was also tested. All statistical models based on the k-word

distribution run with k from 2 to 8. The CV :k:r, D:k:r, D2:k:r,

D2z:k:r, S1:k:r, S2:k:r and WSMm:k:r run with Markov order r
from 0 to 6 and the word length k from 2 to 7. For each method,

separate tests were performed with all combinations of parameter

values, and the best combination was chosen to represent that

score in the performance.

The AUCs for different methods are presented in Figure 1 and

Table S1 in supplementary material. The first observation is that

high accuracy of prediction can be achieved by the proposed

measure WSMm. In the BLASTODERM experiment, the

proposed measure WSMm performs better than other align-

ment-based or alignment-free methods, with the area under ROC

curve 0.9036. The next best method is the composition vector CV .

In the PNS experiment, the measure WSMm is better than all

Integrating Overlapping Structures and Background
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other measures, its area under ROC curve is 0.9456. In the

TRACHEAL experiment, S2 outperforms other measures, and its

AUC is 0.975. It is followed by the measure WSMm. In the EYE

experiment, the area under ROC curve of the measure WSMm is

0.9216 , significantly better than that of other statistical methods.

The next best measures is the measure S2. In the MUSCLE

experiment, the measure WSMm significantly outperforms other

methods, and its area under ROC curve is 0.9892. It is followed by

the D2z. In LIVER experiments, the measure WSMm performs

significantly better than other measures, with the area under ROC

curve 0.9992. The next best measure is the measure S2. In HBB

experiments, the measure WSMm achieves the best performance,

followed by the S2. From the seven experiments, we can see that the

proposed measure WSMm performs significantly better than other

measures among six experiments, with AUC from 0.8935 to 0.9992.

Human exons and introns classification
Numerous statistical algorithms have been proposed for exons

and introns classification [50–53]. A basic assumption of these

algorithms is that every exon in a genome should has some distinct

sequence features or properties that can distinguish it from the

surrounding regions, such as introns or intergenic regions.

Competitive results have been obtained in the recognition of the

exons and introns of prokaryotes gene, but the discrimination of

the exons and introns in human is still a difficult problem because

of their limited average length.

The secondary test of the proposed model is to discriminate the

human exons and introns. These data sets were organized as follows:

1200 human exons and 1200 human introns are extracted from the

human exon and intron data (http://bit.uq.edu.au/altExtron/for

human exon and intron datasets), and they are randomly divided

into four sets separately. The set of the exons is taken as the ‘positive’

set, and the set of the introns, is taken as the ‘negative’ set.

We took the previous evaluation procedure in this experiment,

which make it easier to see effectiveness of various methods. The

only difference lies in the parameter selection. Here all the models

based on the k-word frequency run with the word length k from 2

to 6, and the CV :k:r, D:k:r, D2:k:r, D2z:k:r, S1:k:r, S2:k:r and

WSMm:k:r run with Markov order r from 0 to 5 and the word

length k from 2 to 6. The AUCs for different methods are

presented in Figure 2 and Table S2 in supplementary material.

In terms of the discriminative power, the proposed WSMm
achieves the best performance compared to the existing methods,

with AUC value ranging from 0.9704 to 0.9887 for the four

classification tasks. These are excellent values, given that a perfect

classification has an AUC score of 1, which indicates that the

WSM method is very effective to distinguish exons and introns in

humans in despite of their limited average length.

Clustering HEV genotype
Hepatitis E virus (HEV) is a major cause of enterically

transmitted acute hepatitis in developing countries. HEV was

classified recently as the sole member of the genus Hepevirus in

the family Hepeviridae. Its genome consists of a single-stranded,

positive-sense RNA of approximately 7.2 kb, with three partially

overlapping open reading frames (ORFs: ORF1, ORF2, and

ORF3). Although only one serotype has been identified to-date,

HEV displays considerable genetic diversity. Based on the

extensive full-length genomic variability noted among different

strains, HEV has been classified into four major genotypes [54].

Here, a total of 48 full-length HEV genome sequences are

retrieved from NCBI (http://www.ncbi.nlm.nih.gov/), which have

been clustered into four genotypes [55–58]. Detail information on

48 full-length HEV genome sequences can be found in Table S3 in

supplementary material.

This experiment aims at assessing how well the proposed model

performs on identifying HEV genotype. In relation to the

clustering literature [59], neighbor-joining [60] can be considered

as a hierarchical method. It is chosen to clustering HEV

genotypes, which is implemented in BioPerl [61]. As HEV

Figure 1. Comparison of AUCs of all models for detection of functionally related regulatory sequences. Comparison of AUCs of all
models for detection of functionally related regulatory sequences. NW-linear and NW-affine denote Needleman-Wunsch (global alignment) raw
scores, using linear gap penalties and affine gap penalties, respectively; SW-linear and SW-affine denote Smith-Waterman (local alignment) raw
scores, using linear gap penalties and affine gap penalties, respectively; Word-based models are eu, cos, pcc, kld; Markov models are SimM M, CV, D;
Mixed models are D2, D2z, S1 and S2; Bernoulli model is ICV.
doi:10.1371/journal.pone.0026779.g001
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genotypes is a 4-classification problem rather than one, F-measure

was used to capture overall performance on HEV genotypes. To

evaluate a clustering problem using the F-measure, we need to

select a gold standard [59]. Here, the traditional classification was

used as the gold standard [54].

In addition to the proposed method, four other typical methods

were used for comparison. The used alignment-based method is

Clustal W rather than Needleman-Wunsch (global alignment) or

Smith-Waterman (local alignment) raw scores, because the length

of genome of the HEV is approximately 7.2 kb that is difficult to

handle by dynamic algorithm. The measures D2:k:r and D2z:k:r
were not evaluated as they do not satisfy the identity condition. All

statistical models based on the k-word distribution run with k from

2 to 8. The CV :k:r, D:k:r, S1:k:r, S2:k:r and WSMm:k:r run

Markov order r from 0 to 7 and the word length k from 2 to 8.

Figure 3 reports the F-measure for all methods on the 48 HEV

genomes data set, and more details can be found in Table S4 in

supplementary material.

Figure 3 shows that the proposed WSMm:k:r performs better

than the other alignment-based or alignment-free methods, with

the F-measure 0.9791. This result is consistent with the above

results, and we attribute this to the combination of both the words’

overlapping structures and words’ background information.

Influence of the overlapping structures of the words
For a better understanding of the proposed method, an

evaluation of the word overlapping structures in biological

sequences was performed. A measure, WSMmf , which is similar

Figure 2. Comparison of AUCs of all models for classification of human exons and introns. Comparison of AUCs of all models for
classification of human exons and introns. NW-linear and NW-affine denote Needleman-Wunsch (global alignment) raw scores, using linear gap
penalties and affine gap penalties, respectively; SW-linear and SW-affine denote Smith-Waterman (local alignment) raw scores, using linear gap
penalties and affine gap penalties, respectively; Word-based models are eu, cos, pcc, kld; Markov models are SimM M, CV, D; Mixed models are D2, D2z,
S1 and S2; Bernoulli model is ICV.
doi:10.1371/journal.pone.0026779.g002

Figure 3. Comparison of F-measures of all models for classification of HEV genotypes. Comparison of F-measures of all models for
classification of HEV genotypes. NW-linear and NW-affine denote Needleman-Wunsch (global alignment) raw scores, using linear gap penalties and
affine gap penalties, respectively; SW-linear and SW-affine denote Smith-Waterman (local alignment) raw scores, using linear gap penalties and affine
gap penalties, respectively.
doi:10.1371/journal.pone.0026779.g003
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to WSMm but defined based on the k-word frequencies is defined

as follows:

WSMmf :k(X,Y)~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
wk[Sk

(f X (wk)logf Y (wk){f Y (wk)logf X (wk))2

s
,
ð16Þ

where f X (wk) and f Y (wk) are the frequencies of the k-words in

the biological sequences X and Y . The only difference between

the measures WSMm and WSMmf is that the overlapping word

is considered in the former. Therefore the improvement of the

measure WSMm can be solely attributed to the overlapping words

involved. The AUCs for the measures WSMm and WSMmf are

presented in Figure 4.

We observe that the measure WSMm significantly outperforms

the measure WSMmf among all the experiments. For functionally

related regulatory sequences, classification accuracies of the

proposed measure WSMm are as high as 0.8935*0.9992 in

comparison to 0.5308*0.8426 with the measure WSMmf . For

human exons and introns classification, the accuracies achieved by

the proposed measure WSMm is 0.9704*0.9887, while the

measure WSMmf only reaches 0.7871*0.8518. These results

strongly demonstrate that incorporation of the overlapping words

information consistently improves both efficiency and effectiveness

of the sequence comparison.

Influence of the estimated word variance
Another feature of the proposed measure WSMm is that the

word variance is estimated upon observed biological sequences

without assuming the bases occur randomly with equal chance. To

show the efficiency of the estimated word variances, we compared

the proposed measure WSMm with another statistical measure,

WSMme, defined as follows:

WSMme(X,Y)~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1

(
f X (wk)

Var½f X (wk)jE� log
f Y (wk)

Var½f Y (wk)jE�{
f Y (wk)

Var½f Y (wk)jE� log
f X (wk)

Var½f X
i jE�

)2

s
,
ð17Þ

where

Var½f (wk)jE�~

(
n{kz1

4k
(1{

1

4k
){

2

42k
(k{1)(n{

3

2
kz1)z

2

4k

Xk{1

t~1
(n{kz1{t)

Jt

4t
)

(n{kz1)2
,

and E denotes a known word distribution in which the four bases

A, C, T, and G occur randomly with equal chance [36], k is the

length of the words in biological sequences, and Jt is an indicator

function, equal to 1 if wk,1 � � �wk,k{t~wk,tz1 � � �wk,k and equal to

0 otherwise, for t~1,2, � � � ,k{1.

The WSMme assumes that the four bases A, C, T, and G occur

randomly with equal chance, while the proposed measure WSMm
estimates the word variances according to the observed biological

sequences. The comparison between the measures WSMm and

WSMme should suggest the influence of the estimated word

variance. The AUCs for the measures WSMm and WSMme are

listed in Figure 5.

In all cases, the classification of the proposed measure WSMm
is more accurate than that of the measure WSMme. For example,

by using the estimated word variance, the proposed measure

WSMm detects the functionally related regulatory sequences with

accuracies of 0.8935*0.9992, while the measure WSMme only

detects 0.542*0.8426; in the case of discrimination of human

exons and introns, 0.9704*0.9887 for the measure WSMm
contrasts with 0.8241*0.8656 for the measure WSMme. These

results demonstrate that estimating variances from the observed

sequences could be more promising to improve the biological

Figure 4. Comparison of AUCs of the measures WSMm and WSMmf. From top down, comparison of AUCs of the measures WSMm and WSMmf
for predicting functionally related regulatory sequences and classifying human exons and introns.
doi:10.1371/journal.pone.0026779.g004
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sequence comparison because it helps the measure WSMm to

adjust the background information according to the word

distribution.

Discussion

This paper proposed an efficient statistical method for biological

sequence comparison, which integrates both the overlapping

structures and background information of the words in biological

sequences. It compares biological sequence by taking advantage of

the tendency of the k-word conservation. In the application, the

proposed method treats the word appearing at a given position as

a random variable, estimates the word variance according to the

observed sequence, and therefore maximizes the impact of the

overlapping structures and background information of the words

in sequence. A similar idea was proposed in our previous measures

S1 and S2, but as shown in our experiments, the proposed

measure WSMm performs significantly better which suggests that

the overlapping structures and background information of the

words should be included in word-based statistical methods to

improve biological sequence comparison.

The proposed method originates from the existing methods but

different from them in several key aspects. Blaisdell, Wu et al. and

Stuart et al. [27,29,31] developed popular sequence comparison

methods where similarity/dissimilarity score depends on the

measure under the frequency vector of the k-words in biological

sequence. However, they did not use the background information

of k-words for sequence comparison, and the probability of the k-

words under these models is estimated by the occurrences of the k-

words. Pham and Zuegg [2] also proposed ways to improve

biological sequence comparison, but their model is different from

ours in that the appearance of the k-words are modeled by a

Markov model, whose parameters are independent of the k-word

distribution in biological sequence. We developed a Markov plus

k-word distribution model [5], based on the idea of adding k-word

distribution in sequence to Markov model directly. The way of

treating sequence comparison is also different from the proposed

method: no information about the overlapping structure of a word

in biological sequence was considered in our previous mixed

model. Lu et al. [36] found some statistical problems associated

with composition vector (CV) [33,34] and proposed an improved

composition vector (ICV) method. Their study assumes that the

four bases A, C, T, and G occur randomly with equal chance and

derives the expected count of a k-word and the count variance in a

given sequence s based upon this simple assumption. In other

words, the word distribution is assumed to be known a priori. But,

in most cases the word distribution is usually unknown, and

therefore the application of ICV method is very limited in practice.

Most importantly, this research demonstrated that integration the

overlapping structure of a word with the estimated background

information of the words according to the observed sequences is

essential to improve biological sequence comparison. In addition,

among tree kinds of the experiments, the length of biological

sequence varies from 201 (HUMAN LIVER [9 CRMs (average

length 201) driving expression specific to the human liver]) to

7.2 kb (the genome of HEV consists of a single-stranded, positive-

sense RNA of approximately 7.2 kb). The proposed method

achieved the best performance among all the experiments, which

indicates that its performance is not influenced by the sequence

length. As for the computational efficiency, because the k-words in

biological sequence are considered in the definition of the

statistical measure WSM:k:r, its computational efficiency is the

same as that of existing methods based on the word-based models

[2,5,27–29,31,33,34,36].

One major limitation of the proposed method is that different k-

words are assumed to be independent under Bernoulli and

Markov model which is not always met in practice, and their

influence should be taken into consideration. One consequence of

our simplification is that the correlations between different k-

words are ignored and only the same k-word variances are

accounted for. A better model should reflect the data covariance

structure. Despite of this simplification, we found that the

Figure 5. Comparison of AUCs of the measures WSMm and WSMme. From top down, comparison of AUCs of the measures WSMm and
WSMme for predicting functionally related regulatory sequences and classifying human exons and introns.
doi:10.1371/journal.pone.0026779.g005
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proposed statistical measure essentially improves biological

sequence comparison.
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