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Activity-dependent isomerization of Kv4.2 by Pin1
regulates cognitive flexibility
Jia–Hua Hu1, Cole Malloy 1, G. Travis Tabor1,4, Jakob J. Gutzmann1, Ying Liu1, Daniel Abebe1,

Rose-Marie Karlsson2, Stewart Durell3, Heather A. Cameron 2 & Dax A. Hoffman1✉

Voltage-gated K+ channels function in macromolecular complexes with accessory subunits

to regulate brain function. Here, we describe a peptidyl-prolyl cis-trans isomerase NIMA-

interacting 1 (Pin1)-dependent mechanism that regulates the association of the A-type K+

channel subunit Kv4.2 with its auxiliary subunit dipeptidyl peptidase 6 (DPP6), and thereby

modulates neuronal excitability and cognitive flexibility. We show that activity-induced Kv4.2

phosphorylation triggers Pin1 binding to, and isomerization of, Kv4.2 at the pThr607-Pro

motif, leading to the dissociation of the Kv4.2-DPP6 complex. We generated a novel mouse

line harboring a knock-in Thr607 to Ala (Kv4.2TA) mutation that abolished dynamic Pin1

binding to Kv4.2. CA1 pyramidal neurons of the hippocampus from these mice exhibited

altered Kv4.2-DPP6 interaction, increased A-type K+ current, and reduced neuronal excit-

ability. Behaviorally, Kv4.2TA mice displayed normal initial learning but improved reversal

learning in both Morris water maze and lever press paradigms. These findings reveal a Pin1-

mediated mechanism regulating reversal learning and provide potential targets for the

treatment of neuropsychiatric disorders characterized by cognitive inflexibility.
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Rapidly activating and inactivating somatodendritic voltage-
gated K+ (Kv) A-type currents regulate action potential
(AP) repolarization and repetitive firing and prevent

backpropagation into the dendrites of hippocampal pyramidal
neurons1,2. Kv4.2, a member of the Shal-type family, is the pro-
minent A-type voltage-gated potassium channel expressed in
hippocampal CA1 pyramidal neuron dendrites1. Kv4.2’s role in
controlling of dendritic excitability impacts neuronal plasticity
and contributes to learning and memory3–5. Kv4.2 activity
remodels synaptic NMDA receptors by regulating the relative
synaptic NR2B/NR2A subunit composition ratio at hippocampal
synapses6. Ablation of Kv4.2 in mice abolishes the gradual
reduction in GluN2B/GluN2A subunit ratio during post-natal
development and results in a higher proportion of silent synapses
in adulthood7. Aberrant Kv4.2 activity is also implicated in
Autism Spectrum Disorder (ASD)8, temporal lobe epilepsy9–11,
and Fragile X syndrome12,13.

Considerable evidence suggests that Kv4.2 channels function in
macromolecular protein complexes with accessory subunits,
including the K+ channel interacting proteins (KChIP1–4) and
dipeptidyl peptidases 6 and 10 (DPP6 and DPP10)14. DPP6 is a
type II transmembrane protein that increases Kv4.2 membrane
expression and single channel conductance and accelerates the
inactivation and recovery from inactivation of Kv4 subunit-
containing channels15,16. In CA1 hippocampal pyramidal neu-
rons, Kv4.2-mediated currents increase in density from the soma
to distal dendrites1. However, this gradient is abolished in DPP6
KO mice17. In addition to its roles in modulating multiple aspects
of Kv4.2 function, DPP6 appears to regulate hippocampal
synaptic development independently of Kv4.2 (ref. 18). Recent
studies have identified DPP6 and DPP10 as genes associated with
autism19, amyotrophic lateral sclerosis20,21 and neurodegenera-
tion22. Thus, the regulation of the Kv4.2-DPP6 complex may not
only affect Kv4.2 channel activity but also influence Kv4.2-inde-
pendent functions of DPP6. However, little is known about how
the stability or composition of this complex is regulated.

In the present study, we report a Pin1-dependent mechanism
that regulates the composition of the Kv4.2-DPP6 complex,
neuronal excitability and cognitive flexibility. Pin1 is a prolyl
isomerase that selectively binds to and isomerizes phospho-Ser/
Thr-Pro (pSer/Thr-Pro) bonds23. pSer/Thr-Pro motifs in certain
proteins can exist in two sterically distinct cis and trans con-
formations and Pin1 specifically accelerates the cis/trans con-
version to regulate post-phosphorylation signaling23. Mis-
regulation of Pin1 plays an important role in a growing num-
ber of pathological conditions including Alzheimer disease (AD),
where it may protect against age-dependent neurodegenera-
tion24–27. We identified Pin1 as a Kv4.2 binding partner via a
TAP-MS pulldown assay. Subsequent biochemical studies
revealed that Pin1-Kv4.2 binding is direct and via the canonical
Pin1 binding motif. Stimuli including seizure induction and
exposure to enriched, novel environments increased Kv4.2
phosphorylation at the Pin1 binding site T607 by p38 MAPK in
the mouse cortex and hippocampus. Using biochemical and
electrophysiological techniques, we showed that Pin1 activity is
required for the dissociation of the Kv4.2-DPP6 complex and this
action alters neuronal excitability. To confirm these observations,
we generated a mouse line containing a Kv4.2 T607A (Kv4.2TA)
mutation that abolished the phosphorylation and subsequent
isomerization of an important C-terminal Pin1 motif. These
mutant mice phenocopied those treated with pharmacological
inhibitors of Pin1, which suggests a Pin1-dependent mechanism
of Kv4.2 regulation. Intriguingly, Kv4.2TA mice exhibited normal
initial learning but improved reversal learning in multiple beha-
vioral tasks, introducing Pin1 isomerase regulation of Kv4.2 as a
novel mechanism impacting cognitive flexibility.

Results
Pin1 binds to Kv4.2 at T607. Kv4.2 accessory subunits were
identified by yeast two-hybrid screens and immunopurification
over a decade ago28,29. Whether there are other Kv4.2 binding
proteins that modulate Kv4.2 function is unknown. Here we took
advantage of recently-developed Tandem Affinity Purification
(TAP) combined with mass spectrometry (MS) techniques to
identify Kv4.2 binding proteins in neurons and HEK-293T cells.
We purified complexes of lentivirally expressed TAP-tagged
Kv4.2 in cultured hippocampal neurons (Supplementary Fig. 1a).
MS analysis showed interaction with the well-established Kv4.2
accessory subunits DPP6/10 and KChIP1-4, verifying the validity
of our Kv4.2 TAP-MS screen (Supplementary Fig. 1b). This result
is similar to the proteomic analyses of Kv4.2 complex in mouse
brain using Kv4.2 antibody pulldown30. Using the same TAP
technique to purify exogenously-expressed TAP-tagged Kv4.2
from HEK-293T cells, we identified Pin1 as a Kv4.2 binding
partner (Supplementary Fig. 1c-f). As shown in the MS list, Kv4.2
has many intracellular binding partners when expressed in HEK-
293T cells. However, the majority of the binding partners are
protein synthesis and degradation machinery proteins (Supple-
mentary Fig. 1c, d). This binding was confirmed by the co-
immunoprecipitation (co-IP) of endogenous Pin1 with Kv4.2 in
mouse brain lysates (Fig. 1a, uncropped images of all western
blots are provided in the Supplementary Information file), and
immunostaining of cultured hippocampal neurons revealed that
Pin1 colocalized with Kv4.2 (Fig. 1b). Since Pin1 substrate
binding requires phosphorylation, we showed that Kv4.2 binding
to Pin1 is significantly reduced when it’s dephosphorylated by
Lambda protein phosphatase (Supplementary Fig. 2a). To
examine if Kv4.2 and Pin1 binding occurs via the canonical Pin1
binding interface, we employed the Pin1 WW domain mutant
(W34A) and the PPIase domain mutant (R68A, R69A). When co-
expressed with Kv4.2 in HEK-293T cells, both Pin1(W34A) and
Pin1(R68A, R69A) mutants exhibited significantly reduced
binding to Kv4.2 (Fig. 1c). Thus, the Kv4.2-Pin1 interaction
appears to be direct and involves conventional Pin1 binding
domains.

There are three S/T-P sites at the C-terminus of Kv4.2 that can
be phosphorylated by extracellular signal–regulated kinases
(ERKs)31. These phosphorylated S/T-P motifs might serve as
putative Pin1 binding sites. Pin1 preferentially targets to a pSer/
Thr-Pro motif that is surrounded by multiple upstream
hydrophobic residues such as isoleucine, valine, tyrosine and/or
phenylalanine, and a downstream arginine or lysine
residue23,32,33. There are three isoleucine prior to the two T-P
motifs and an arginine downstream (Fig. 1d), providing a better
Pin1 binding context. Sequence alignment revealed that these S/
T-P sites are conserved from zebrafish to human (Fig. 1d),
suggesting a conserved function of Kv4.2 across the species. To
identify the Pin1-binding site(s) in Kv4.2, we synthesized non-
phospho- and phospho-Kv4.2 peptides containing T602, T607 or
S616 and conjugated them with Affi-Gel 15 Sepharose beads.
Peptide pulldown assays revealed that Pin1 binds weakly to the
T602 phosphorylated peptide but strongly to the T607 phos-
phorylated peptide (Fig. 1e). Interestingly, Pin1 showed even
stronger binding to the peptide with dual phosphorylation of
T602 and T607 (Fig. 1e). Pin1 did not bind to the S616
phosphorylated peptide (Fig. 1e). Furthermore, co-IP studies in
HEK-293T cell lysates using Kv4.2 mutants with abolished
phosphorylation sites showed that T602A or S616A mutants did
not affect Kv4.2-Pin1 binding while T607A or T602A/T607A
mutants dramatically reduced the binding (Fig. 1f), which is
consistent with the peptide pulldown assay (Fig. 1e). These data
support the idea that Pin1 directly binds to Kv4.2 at T602 and
T607 sites, where the latter site is involved in a greater degree of
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binding. Previous studies have shown that the PPIase domain of
Pin1 is able to bind to the pS/T-P motif in addition to the WW
domain34,35. pS/T-P motifs that have an additional P residue in
the +1 position, pS/T-P-P, seem to be targeted by the WW
domain but not the PPIase domain of Pin1 (ref. 36). Therefore, a
substrate with multiple phosphate binding sites could allow for
the simultaneous binding of multiple Pin1 domains36,37. Kv4.2-
Pin1 binding modeled by an interplay of “manual” manipulation

with the UCSF Chimera software showed the first pT-P-P binding
to the Pin1 WW domain and the second pT-P binding to the
Pin1 PPIase domain (Fig. 1g–i).

The Shal-type family contains three members: Kv4.1, Kv4.2,
and Kv4.3. They are all expressed in the hippocampus but with
different expression patterns38. We examined the possibility of
Pin1 binding to other Shal-type family members. Human
sequence alignment revealed that these S/T-P sites are conserved
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among the members (Supplementary Fig. 2b). The Pin1 binding
context is also conserved except Kv4.1 lacking an arginine after
the two T-P sites (Supplementary Fig. 2b). Co-IP showed that
Pin1 binds to all the Kv4 members but not a non-Shal-type family
member, Kv3.4, that does not contain the S/T-P motif at its C-
terminal (Supplementary Fig. 2c). Pin1 binds to Kv4.2 and Kv4.3
better than Kv4.1 (Supplementary Fig. 2c), which is consistent
with the lack of arginine in Kv4.1 (Supplementary Fig. 2b). Thus,
Pin1 likely regulates all Kv4 members.

Pin1 elicits structural rearrangements in Kv4.2. To verify
whether the prolyl-isomerase activity of Pin1 induces con-
formational changes in Kv4.2, we performed a partial proteolysis
assay on purified Kv4.2. This assay relies on the observation that
Pin1-dependent structural changes impair proteolysis by sub-
tilisin serine endopeptidase that is sensitive to substrate struc-
ture39–41. Myc-Kv4.2 was purified from HEK-293T cells that were
transfected with myc-Kv4.2 construct and subjected to subtilisin
digestion. Myc-Kv4.2 was dose-dependently degraded by sub-
tilisin (Fig. 1j). It was mainly degraded into a 47kD fragment and
a 33kD fragment (Fig. 1j). Incubation with GST-Pin1 prior to
subtilisin significantly blocked the 47kD fragment degradation
compared to GST control and GST-Pin1C113S, an isomerase
dead mutant (Fig. 1k). Furthermore, the blockage effect of GST-
Pin1 was abolished by Lambda protein phosphatase treatment
before GST-Pin1 incubation (Fig. 1k). These data indicate that
Pin1 is recruited by Kv4.2 in a phosphorylation-dependent
manner and it promotes structural rearrangements.

Kv4.2 T607 phosphorylation and Pin1 binding is dynamic. In
order to further study the role of Kv4.2 phosphorylation at T602
and T607, we characterized phospho-T602 and phospho-T607-
specific antibodies using site-specific mutations of Kv4.2 (Sup-
plementary Fig. 3a, b) and Lambda protein phosphatase treat-
ment (Supplementary Fig. 3c). Phosphorylation of Kv4.2 at T602
and T607 sites were detected in mouse brain lysates by western
blot (Fig. 2a–c). To investigate the dynamic regulation of Kv4.2
phosphorylation, we exposed mice to a novel, enriched environ-
ment (EE) which has previously been shown to downregulate
dendritic Kv4.2 function42. EE exposure induced T607 phos-
phorylation but not T602 phosphorylation in the mouse hippo-
campus (Fig. 2a). EE exposure induced similar changes in the
cortex (Supplementary Fig. 4a).

Temporal lobe epilepsy has also been shown to decrease Kv4.2
availability9,11. Here we found seizure induced by kainic
acid (KA) increased T607 phosphorylation but not T602
phosphorylation in the mouse hippocampus (Fig. 2b). Seizure

induced by pentylenetetrazole (PTZ) showed increased T607
phosphorylation and T602 phosphorylation in the mouse
hippocampus (Fig. 2c). It also increases Kv4.2 T607 phosphor-
ylation but not T602 phosphorylation in the mouse cortex
(Supplementary Fig. 4b). These data suggest that Kv4.2 T607
phosphorylation is dynamically regulated in the mouse brain. As
Pin1 only binds to phosphorylated substrates, we hypothesized
that the induction of Kv4.2 T607 phosphorylation would increase
Pin1-Kv4.2 association. Accordingly, GST-Pin1 pulldown experi-
ments revealed that PTZ-induced seizures significantly enhanced
Kv4.2 pulldown by Pin1 (Fig. 2d).

We next investigated the prevalence of phosphorylated T602
and T607 in the mouse brain. Total, phospho-T602, and
phospho-T607 Kv4.2 was immunoprecipitated by saturating
specific antibodies and quantified by western blot. We found
10.20 ± 0.62% of Kv4.2 was phospho-T602 and 5.10 ± 0.71% was
phospho-T607 in the mouse forebrain (Fig. 2e). Phospho-T607
increased to 10.78 ± 1.30% while T602 was un-altered (11.18 ±
0.41%) with seizure induction by PTZ (Fig. 2e). We also detected
phospho-T607 Kv4.2 when brain samples were immunoprecipi-
tated with phospho-T602 antibody (Fig. 2f). Furthermore,
increased T602 phosphorylation was detected when immunopre-
cipitation was performed with the phospho-T607 antibody after
PTZ administration (Fig. 2g). These data suggest that Kv4.2 is
dually phosphorylated at sites T602 and T607 in the mouse brain
and that their phosphorylation is regulated by neuronal activity.

P38 phosphorylates Kv4.2 at T607. Kv4.2 T607 has previously
been reported to be phosphorylated by ERK in vitro31. We
verified this finding with co-expression assays in HEK-293T
cells. Kv4.2 phosphorylation at T602 and T607 was increased
when Kv4.2 was co-expressed with Erk1 or MEKDD (a con-
stitutively active MEK mutant) (Supplementary Fig. 5a).
However, these increases were small, which led us to consider
other proline-directed kinases that could phosphorylate these
two sites. We examined the individual effects of CDK5/p35,
GSK3β and p38α on Kv4.2 phosphorylation. Among these
proline-directed kinases, p38α had the most robust effect on
Kv4.2 phosphorylation (Fig. 3a). Moreover, a p38α point
mutant with abolished kinase activity largely blocked Kv4.2
phosphorylation when both constructs were expressed in HEK-
293T cells (Fig. 3a). Exogenous p38α co-immunoprecipitated
with Kv4.2 in HEK-293T cell lysates (Fig. 3b) which supports
the notion that Kv4.2 is a substrate of p38α. Furthermore, EE
exposure phospho-activated p38 in mouse hippocampus and
cortex as reported by western blot using a phospho-p38 anti-
body (Fig. 3c, Supplementary Fig. 5b). Seizure induced by KA

Fig. 1 Pin1 binds to Kv4.2 at pT607 and elicits structural rearrangements in Kv4.2. a Pin1 co-immunoprecipitated with Kv4.2 in mouse brain lysates.
Forebrain lysates from WT and Kv4.2 KO were immunoprecipitated with mouse (ms) or rabbit (rb) anti-Kv4.2 antibodies. Both total lysates and
immunoprecipitates were blotted with anti-Kv4.2 or Pin1 antibodies. Data from three independent experiments. b Cultured hippocampal neurons (DIV 10)
were immunostained with anti-Pin1 along with anti-Kv4.2. Pin1 co-localized with Kv4.2, indicated with arrows. Scale bars: 20 μm top panels, 5 μm bottom.
Data from four coverslips in two independent experiments. c, Pin1 mutants reduced Pin1-Kv4.2 binding. Myc-Kv4.2 was co-transfected alongside HA-Pin1
with or without WW (W34A) or PPIase domain (R68, R69A) point mutants into HEK-293T cells. Kv4.2 was immunoprecipitated from detergent lysates
with anti-Myc antibody. Samples were analyzed by western blotting with anti-HA and anti-Myc antibodies. n= 3 each group. d Alignment of Kv4.2 C-
terminal sequences from various species. The putative Pin1 binding site is conserved. Bold residues show preferred Pin1 binding context. e Pin1 selectively
binds to the phosoho-T607-containing Kv4.2 peptide. Synthetic Kv4.2-peptides were conjugated to Affi-Gel 15 Sepharose beads and incubated with lysate
from HA-Pin1 transfected HEK-293T cells. n= 4 each group. f Kv4.2 T607A mutation significantly reduced Pin1 binding. HA-Pin1 and Myc-Kv4.2 mutants
were co-transfected into HEK-293T cells. Pin1 co-immunoprecipitation with Kv4.2 was assayed. Kv4.2 T607 is required for Pin1 binding. n= 3 each group.
g Molecular modeling of Kv4.2 phospho-peptide binding to Pin1. h Highlight of Kv4.2 pT602 peptide binding to the Pin1 WW domain. i Highlight of Kv4.2
pT607 peptide binding to the Pin1 PPIase domain. j Dose-dependent proteolysis of Kv4.2 by subtilisin. Asterisk, non-specific bands; arrowhead, 47kD band;
arrow, 33kD band. Data repeated in two independent experiments. k Pin1 blocked Kv4.2 subtilisin digestion while Pin1C113S (an isomerase dead mutant)
did not. Pin1 block was lost when Kv4.2 was dephosphorylated by Lambda protein phosphatase (PP). Quantification of the 47kD degradation fragment. n=
4 each group. Data was repeated in four independent experiments. Data are presented as mean ± SEM, *p < 0.05, ***p < 0.001, Paired t-tests.
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or PTZ also activated p38 in the hippocampus (Fig. 3d, e).
These data are consistent with the effects of EE, KA, and PTZ
on the induction of Kv4.2 T607 phosphorylation (Fig. 2a–c).
Interestingly, the p38 inhibitor SB203580 blocked the induction
of Kv4.2 phosphorylation by PTZ-induced seizure in the mouse

hippocampus (Fig. 3f), while PTZ-induced Kv4.2 phosphor-
ylation is only partly reduced by the MEK inhibitor SL327
(Fig. 3g). These findings suggest that p38 is the primary kinase
responsible for the dynamic phosphorylation of Kv4.2 at the
T607 site in mouse hippocampus.
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Fig. 2 Enriched novel environment exposure and seizure induce Kv4.2 phosphorylation at a Pin1 binding site. a Enriched novel environment (EE, 1 h)
induces phosphorylation of Kv4.2 at Thr607 but not Thr602 in mouse hippocampus. n= 5 in each group. T-test, *p < 0.05. b Kainic acid-induced seizure
(25mg/kg, i.p., 15 min) induces phosphorylation of Kv4.2 at Thr607 but not Thr602 in mouse hippocampus. n= 4 in each group. T-test, ***p < 0.001.
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mice subjected to saline or PTZ administration. n= 5 in each group. T-test, **p < 0.01. e Mouse brain lysates from WT mice w or w/o PTZ administration
(50mg/kg, i.p., 15 min) were incubated with excess anti-Kv4.2, anti-Kv4.2-pT602 or anti-Kv4.2-pT607 antibodies. Immunoprecipitation (IP) samples were
blotted with Kv4.2 antibody. In WT mouse brains, pT607 Kv4.2 is almost half as abundant as pT602. However, PTZ administration increased the amount
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anti-Kv4.2-pT602 or normal IgG antibodies. Immunoprecipitation (IP) samples were blotted with anti-Kv4.2 pT607 antibody. pT602 and pT607 dual
phosphorylation was observed in mouse brain. Data was repeated in two independent experiments. g Mouse brain lysates from WT mice w or w/o PTZ
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PTZ-induced seizure increases the dual phosphorylation of T602 and T607 in mouse brain. Data was repeated in two independent experiments. Data are
presented as mean ± SEM.
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P38-Pin1-Kv4.2 pathway regulates Kv4.2-DPP6 complex for-
mation. Both the biophysical properties and surface expression of
Kv4.2 are regulated by its auxiliary subunit DPP6 (refs. 29,43). We
wondered if the Kv4.2-DPP6 complex is regulated by Kv4.2 phos-
phorylation and Pin1 activity. As PTZ-induced seizure enhanced
Kv4.2 phosphorylation at T607 by p38 (Figs. 2, 3), we sought to
determine if this seizure model also alters Kv4.2-DPP6 binding.
From co-IP, we found that PTZ-induced seizure reduced Kv4.2-
DPP6 binding in the mouse brain (Fig. 4a, b). This Kv4.2-DPP6
complex dissociation was blocked by the p38 inhibitor SB203580,
but not the MEK inhibitor SL327 (Fig. 4a), suggesting that p38 is

required for the dissociation of the Kv4.2-DPP6 complex. Fur-
thermore, the PTZ-induced Kv4.2-DPP6 complex dissociation was
blocked by the Pin1 inhibitor Juglone (Fig. 4b). In cultured mouse
neurons, synaptic stimulation with α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA, 50 µM) for 15min resulted in
decreased Kv4.2-DPP6 binding, which was opposed by the
expression of PinC113S, an isomerase dead mutant (Fig. 4c). These
data suggest that Pin1 activity is required for the dissociation of the
Kv4.2-DPP6 complex in response to neuronal activity.

To further study Pin1’s role in regulating Kv4.2 channel
complexes, we created a Kv4.2 T607A mutant knock-in mouse
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(Kv4.2TA) where Thr607 was mutated to Ala using CRISPR-Cas9
techniques to prevent its phosphorylation and subsequent Pin1
binding (Supplementary Fig. 6a). The mice were identified by
PCR followed by sequencing (Supplementary Fig. 6b). Kv4.2TA
mice were born with expected Mendelian ratios, with no
differences in mortality rate or weight of heterozygous or
homozygous Kv4.2TA mice compared to WT littermates. There
were no significant differences in the total protein expression of
Kv4.2 in the hippocampus between WT and Kv4.2TA mice
(Supplementary Fig. 6c). Kv4.2TA mice were also verified to have
abolished Kv4.2 T607 phosphorylation by western blot (Supple-
mentary Fig. 6c). Furthermore, the structure of the hippocampus
appears normal by Nissl staining (data not shown). Additionally,

the general distribution of Kv4.2 in apical dendrites appears to be
unaltered in the hippocampus of Kv4.2TA mice relative to WT as
detected by immuno-labelling (Supplementary Fig. 6d). To
determine if Pin1 binding to Kv4.2 was impaired, we measured
Kv4.2 pulldown by GST-Pin1 in Kv4.2TA and WT mouse
forebrains with or without PTZ administration. Kv4.2 pulldown
was reduced in Kv4.2TA mice compared to that of WT
littermates (Fig. 4d) in basal conditions. Interestingly, PTZ-
induced seizure did not increase Pin1 binding to Kv4.2 in
Kv4.2TA mice as it did in WT littermates (Fig. 4d). We also
performed the Kv4.2 and Pin1 Co-IP experiment under the same
condition, and the result is consistent with the GST-Pin1
pulldown (Fig. 4e). These data indicate that Pin1-Kv4.2 binding
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is dynamically regulated in WT mice but abolished in Kv4.2TA
mice. We next examined if the regulation of Kv4.2-DPP6 binding
is altered in Kv4.2TA mice. Total DPP6 expression is normal in
Kv4.2TA mice (Fig. 4f). However, Kv4.2-DPP6 dissociation by
PTZ-induced seizure was abolished in Kv4.2TA mice (Fig. 4f).
This data supports the notion that both Kv4.2 phosphorylation at
T607 and Pin1 activity regulate Kv4.2-DPP6 complex formation.

Pin1 activity and phosphorylation of Kv4.2 at T607 regulate
neuronal excitability. Substantial evidence supports a role for
Kv4.2-containing A-type K+ channels and their associated aux-
iliary subunits in the regulation of the intrinsic excitability of CA1
pyramidal neurons. Along with other voltage-gated ion channels
localized to the somatodendritic compartment of pyramidal cells,
Kv4.2 contributes to the firing mode of the cell by regulating
back-propagating action potential amplitude and the after-
hyperpolarization of individual spikes in a train1,44,45. Thus,
Pin1 regulation of the Kv4.2 channel complex could impact the
excitability of hippocampal pyramidal neurons. To test whether
Pin1 isomerization of Kv4.2 affects excitability, whole-cell
somatic current-clamp recordings were performed in CA1 pyr-
amidal neurons in adult mouse acute slices. We first asked if Pin1
regulates membrane excitability in WT mice. We utilized a Pin1
inhibitor, PiB, that has been shown to block the catalytic activity
of Pin1 (ref. 46). Recordings were performed in the presence PiB
(4 µM) following pre-incubation of slices with PiB included in the
recovery solution. PiB significantly reduced the AP firing fre-
quency of CA1 pyramidal cells compared to vehicle (0.1%
DMSO) at each current step (Fig. 5a, b). Notably, PiB application
resulted in a characteristic irregularity of spiking during current
injections with prolonged intermittent pauses (Fig. 5a, b). To
assess whether the PiB-induced reduction in excitability is
mediated through a Kv4-dependent mechanism, we co-applied
the Kv4-specific blocker, AmmTX3 (250 nM)47 along with PiB in
the extracellular bath. Indeed, bath application of AmmTX3
reversed the suppressive effects of PiB alone (Fig. 5a, b), indi-
cating that the effect of PiB on neuronal excitability is mediated
by Kv4 channels. Additional electrical properties, including the
resting membrane potential (RMP), membrane capacitance, and
the shape of individual APs were unchanged between vehicle, PiB,
and AmmTX3 treatments although PiB application did slightly
reduce input resistance and increase rheobase (Table 1).

We next assessed whether the Pin1-Kv4-dependent reduction
in excitability through pharmacological manipulation was
replicated by mutation of the Pin1 binding site T607 within
Kv4.2. To test this, we performed whole-cell current-clamp
recordings in hippocampal slices from WT and Kv4.2TA mice in

regular ACSF. We found that the input/output curves of firing
frequency displayed a rightward shift in Kv4.2TA cells relative to
WT (Fig. 5c, d). At peak current injection (+200 pA), the average
firing frequency in Kv4.2TA pyramidal cells was nearly half of
that in WT cells (Fig. 5c, d). As with pharmacological blockade of
Pin1 in WT, we noted an irregular AP spiking pattern in
Kv4.2TA cells (Fig. 5c, d). We also found that the peak fast after
hyperpolarization (fAHP) was significantly increased in Kv4.2TA
(Table 1), which coincided with an overall, significant increase in
the inter-spike interval (Table 1). Additional properties including
RMP, membrane capacitance and AP shape were unchanged
between the two mouse lines (Table 1). These data suggest a role
for Kv4.2 phosphorylation at T607 in the regulation of neuronal
excitability. Furthermore, we found that PiB exposure to Kv4.2TA
slices did not significantly affect excitability in hippocampal
pyramidal neurons (Fig. 5e, f), contrary to its effect in WT cells
(Fig. 5a, b) and also note that reduced excitability of Kv4.2TA
neurons was consistent in each experimental condition (Fig. 5).
Therefore, pharmacological blockade of Pin1 did not augment
any reduction in excitability induced by genetic manipulation of
the Pin1 binding site, suggesting an important role for this
specific Pin1-Kv4.2 interaction in its regulation of neuronal
excitability.

The basal level of Kv4.2-DPP6 protein complex seems
unaltered in Kv4.2TA mice compared to WT littermates in
biochemistry experiments (Fig. 4f) whereas we found reduced
neuronal excitability in Kv4.2TA mice (Fig. 5c, d). We
hypothesized that the slicing and recovery process in recording
experiments activates p38 and triggers Pin1-dependent changes.
To examine this, we measured p38 phosphorylation in sliced
brain in comparison with un-sliced brain. The results showed that
slicing and recovery did not alter the expression of p38 protein
(Ctl: 100 ± 6.23%; slicing: 93.30 ± 2.80%, p= 0.4262) and ERK
(Ctl: 100 ± 3.85%; slicing: 100.36 ± 3.31%, p= 0.9492), but largely
activates p38 (over 10 fold) and increases Kv4.2 phosphorylation
at T607 (Fig. 5g). These data suggest that the slicing and recovery
process before recording activated the p38-Pin1-Kv4.2 pathway,
leading to the excitability changes in the Kv4.2TA mice.

Pin1 activity and phosphorylation of Kv4.2 at T607 regulate A-
current. The reduced excitability observed in Kv4.2TA neurons and
in response to pharmacological blockade of Pin1 in WT is sug-
gestive of enhanced IA in these cells. Studies of DPP6’s effect on
Kv4.2 have revealed that DPP6 increases macro IA amplitude and
accelerates recovery from inactivation17,48. Since the Kv4.2-DPP6
complex is mis-regulated in Kv4.2TA mice (Fig. 4f), we anticipated
disruption of Pin1-Kv4.2 interaction would alter IA. To test this, we

Fig. 4 P38-Pin1 pathway regulates composition of the Kv4.2-DPP6 complex. a P38 inhibitor SB203580 blocked PTZ-induced Kv4.2-DPP6 dissociation
while MEK inhibitor SL327 did not. Mouse forebrain lysates with or w/o SB203580 (20mg/kg, i.p., 20 min) or SL327 (30mg/kg, i.p., 20min) or PTZ
administration (60mg/kg, i.p., 20 min) were immunoprecipitated with anti-Kv4.2 antibody. PTZ-injected mice showed decreased Kv4.2-DPP6 binding,
blocked by preinjection of SB203580 but not SL327. n= 5 for each group. b Pin1 inhibitor juglone blocked PTZ-induced Kv4.2-DPP6 dissociation. Forebrain
lysates with or w/o juglone (15 mg/kg, i.p., 15 min) or PTZ administration (60mg/kg, i.p., 20 min) were immunoprecipitated with an anti-Kv4.2 antibody.
PTZ-injected mice showed decreased Kv4.2-DPP6 binding while juglone-preinjected mice exhibited normal Kv4.2-DPP6 binding. n= 4 for ctl, 5 for PTZ
and Juglone/PTZ. c Pin1C113S mutant blocked AMPA-induced Kv4.2-DPP6. Cultured cortical neurons infected with GFP or Pin1C113S lentivirus were
treated with 50uM AMPA for 15 min and processed for immunoprecipitation with anti-Kv4.2 antibody. AMPA treatment reduced Kv4.2-DPP6 binding in
GFP but not in Pin1C113S infected neurons. n= 6 for each group. d Seizure-induced Pin1-Kv4.2 association is abolished in Kv4.2TA mice. GST or GST-Pin1-
linked beads were incubated with brain lysates from WT and Kv4.2TA mice with or without PTZ administration (60mg/kg, i.p., 15 min). n= 4 WT/Ctl,
WT/PTZ and Kv4.2TA/Ctl, n= 3 for Kv4.2TA/PTZ. e Seizure-induced Pin1-Kv4.2 association is abolished in Kv4.2TA mice. Forebrain lysates from WT
and Kv4.2TA mice were immunoprecipitated with rabbit anti-Kv4.2 antibody, with or without PTZ administration (60mg/kg, i.p., 15 min). Pin1-Kv4.2
association is induced by PTZ in WT but abolished in Kv4.2TA mice. n= 4 each group. f PTZ-induced Kv4.2-DPP6 dissociation is abolished in Kv4.2TA
mice. Forebrain lysates from WT and Kv4.2TA mice with or w/o PTZ administration (60mg/kg, i.p., 20min) were immunoprecipitated with anti-Kv4.2
antibody. PTZ treatment decreased Kv4.2-DPP6 binding in WT but not in Kv4.2TA mice. n= 3 for each group. Data are presented as mean ± SEM. Paired
T-test, **p < 0.01, **p < 0.01 vs ctl, ##p < 0.01 Kv4.2TA vs WT, ***p < 0.001.
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performed voltage-clamp recordings from outside-out patches
pulled from CA1 pyramidal somata. As in analysis of firing prop-
erties, we first measured IA in WT slices exposed to Pin1 blocker,
PiB (4 µM). We found that PiB exposure significantly increased IA
density relative to vehicle (.1% DMSO) (Fig. 6a, b). Additionally, as
we identified p38 and MEK-mediated phosphorylation at the Pin1
binding site on Kv4.2, we tested their effect in facilitating Pin1
regulation of IA. We identified that pharmacological blockade of
p38 (SB230580) also significantly increased IA density relative to
vehicle while MEK inhibition (PD98059) displayed no significant
effect (Fig. 6a, b). Further, consistent with the observed effects on
firing suggestive of enhanced IA in Kv4.2TA mice, isolation of IA

revealed a significant increase in current density in patches pulled
from Kv4.2TA cells relative to WT (Fig. 6d, e). Additionally, while
changes in macro current inactivation, rise time and voltage-
dependence of activation and inactivation were indistinguishable
between the lines (Fig. 6c, Supplementary Tab. 1), a leftward shift in
the normalized recovery from inactivation curve was identified in
Kv4.2TA cells (Fig. 6h, i). Single exponentials fitted to the nor-
malized recovery curves yielded a statistically significant reduction
in the time constant of IA recovery in Kv4.2TA cells, suggesting
these channels recover more quickly from inactivation relative to
WT (Fig. 6i). Importantly, pharmacological blockade of Pin1 had
no effect on IA in Kv4.2TA mice (Supplementary Fig. 7). Taken
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together, we show that block of p38 kinase and Pin1 results in
enhanced IA density in the soma of CA1 pyramidal cells. The
T607A mutation occludes the effects of pharmacolocal Pin1 bock-
ade on neuronal excitability and IA, supporting the notion that
Kv4.2 phosphorylation at T607 and Pin1 isomerization of the Kv4.2
pT607-P bond regulate the intrinsic excitability of CA1 pyramidal
neurons through the modulation of both Kv4.2 channel availability
and recovery from inactivation kinetics. Furthermore, these data
provide evidence that blocking Pin1-Kv4.2 interaction may increase
the proportion of Kv4.2 channels in complex with DPP6.

Kv4.2TA mice demonstrate enhanced cognitive flexibility.
Kv4.2 KO mice have shown impairment in learning and
memory3. In light of the physiological deficit and the accom-
panying biochemical changes, we sought to determine whether
the disruption of Kv4.2 phosphorylation and Pin1 binding
might alter any cognitive functions. In an open field test,
Kv4.2TA mice showed normal locomotion, not significantly
different from WT littermates (Supplementary Fig. 8a, b). In
addition, Kv4.2TA mice displayed similar center vs perimeter
time as WT littermates (Supplementary Fig. 8a, b), suggesting

that their anxiety level was normal, too. We then employed the
Morris water maze task to test hippocampal-dependent spatial
memory. Both WT and Kv4.2TA mice showed similar perfor-
mance in the training sessions (no main effect of genotype or
genotype × session interaction, Fig. 7a) as well as in a probe
trial (Fig. 7b, c). We then tested reversal learning by moving the
hidden platform to the opposite quadrant of the pool. Kv4.2TA
mice learned the new target location faster than WT littermates
(effect of genotype: F1,27= 11.92, p= 0.0018 session: F3,81=
33.58, p= 1E-6; genotype × session: F3,81= 3.71, p= 0.015;
Fig. 7d). In addition, they spent more time in the new target
quadrant and less time in old target quadrant during the
reversal probe trial (Fig. 7e, f). This difference suggests that,
although Kv4.2 T607 phosphorylation deletion did not affect
the acquisition of spatial memory itself, it led to enhanced
behavioral flexibility when the location of the platform was
changed during the reversal learning. To investigate whether
other forms of behavioral flexibility were also affected, we
performed an operant reversal test49. In this task, Kv4.2TA
mice showed normal acquisition of lever pressing behavior and
no significant difference in reaching the learning criteria on a
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fixed ratio (FR1) schedule (Fig. 7g). In the following 5 random
ratio (RR2) sessions, Kv4.2TA mice and WT littermates
received similar numbers of rewards. However, when the
reward lever was switched, Kv4.2TA mice exhibited faster
reversal learning than WT littermates (Fig. 7h, i), as in the
water maze (Fig. 7d). Kv4.2TA mice decreased inactive lever
pressing and increased active lever pressing more rapidly than
WT controls (effect of genotype: F1,19= 5.017, p= 0.037; ses-
sion: F4,76= 4.110, p= 0.0045; Fig. 7h). Kv4.2TA mice reached
the high level of active lever press while WT littermates barely
started the reversal learning on the first day (Fig. 7h). On the
second day of reversal learning, Kv4.2TA mice retained the
high active lever pressing activity while WT littermates started
reversal learning and caught up Kv4.2TA mice (effect of gen-
otype x session: F4,76= 4.514, p= 0.0025; Fig. 7i). These data
show that disruption of Kv4.2 phosphorylation at T607 site and
Pin1 binding/isomerization contributes to an enhanced rate of
reversal learning suggesting improved cognitive flexibility.

Discussion
The present study describes a Pin1 isomerase-dependent mechan-
ism that regulates the composition of the Kv4.2-DPP6 complex,
neuronal excitability, and cognitive flexibility (Fig. 8). This
mechanism occurs in a subset of neurons that are activated by
neuronal activity or other stimulations. Pin1 was identified as a
Kv4.2 binding partner by a TAP-MS assay in HEK-293T cells. As
Pin1 is a cell proliferation regulator, examination of its substrates
thus far has mainly focused on cell cycle proteins that play a pivotal
role in cancer50. Increasingly, studies have shown that Pin1 iso-
merizes proteins in the brain such as APP25, Tau51, mGluR5
(ref. 52), PSD-95 (ref. 41), and CRMP2A53. We provide here the first
report of a voltage-gated channel, Kv4.2, that is directly modified by
Pin1. The effects of this modification were found to be important
for neuronal and cognitive function. Pin1 is a peptidyl-prolyl cis-
trans isomerase that catalyzes the isomerization of peptidyl-prolyl
peptide bonds. Pin1 differs from other isomerases as it is, so far,
the only known prolyl isomerase that specifically catalyzes
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isomerization of certain Ser/Thr-Pro bonds upon their phosphor-
ylation54. Isomerization of Ser/Thr-Pro motifs is especially impor-
tant because kinases and phosphatases specifically recognize the cis
or trans conformation of the prolyl peptide bond of their sub-
strates55 and phosphorylation further slows down the isomerization
rate of proline56. Pin1 enhances the cis/trans conformational
changes by reducing the free energy barrier, resulting in a markedly
increased conversion rate up to 100- to 1000-fold57. The fast switch
provides the correct conformation and precise timing for further
activation and could be critical for modulating channel function in
response to transient neuronal activity. Loss of phosphorylation
essentially locks the channel into one confirmation. As described
here, we show Pin1 acts as a molecular switch that mediates the
activity-dependent regulation of a channel complex, thereby
affecting neuronal excitability.

By using the TAP technique to purify exogenously-expressed
TAP-tagged Kv4.2 from HEK-293T cells, many intracellular pro-
teins were identified in addition to Pin1 (Supplementary Fig. 1c,
d). The majority of the binding partners are protein synthesis and
degradation machinery proteins, such as ribosomal proteins,
eukaryotic initiation factors, proteasome subunits and ubiquitin-
specific proteases (Supplementary Fig. 1c, d). This is reasonable
since the exogenously expressed protein underwent active trans-
lation and degradation. Kv4.2-Pin1 binding is direct and requires
critical amino acids that can bind to other substrates in the Pin1
WW (W34) and PPIase (R68, R69) domains. The Pin1 binding
motif in Kv4.2 involves two adjacent pT-P motifs (TPPVTTP)
which is similar to that of mGluR5 (TPPSPF)52. They even share
the same pattern of phospho-regulation, i.e., the first T-P phos-
phorylation is not altered by stimulation while the second S/T-P
phosphorylation is dynamic52. Interestingly, the first phosphor-
ylation site of both proteins contains the T-P-P motif that is a
better fit for binding the Pin1 WW domain while the second S/T-
P motif binds to the catalytic domain36. This could be a common
mechanism of how Pin1 regulates of dually phosphorylated

proteins. In mGluR5, there is a second Pin1 binding motif in its
C-terminal. The Kv4.2 mutant experiment (Fig. 2c) showed there
is about 40% Pin1 binding left when the T602 and T607 sites were
mutated, suggesting there may exist another Pin1 binding site.
However, dynamic Pin1 binding to Kv4.2 is dependent on
T607 site (Fig. 5d, e).

Although ERK can phosphorylate the three proline-directed
sites (T602, T607, and S616) in vitro31, we found that p38 is a
better proline-directed kinase for the T607 site of Kv4.2. Extensive
and intensive studies highlighted the role of p38 in the stress
responses, such as osmotic shock, UV irradiation, and inflam-
matory cytokines58. We have found exposure to an enriched novel
environment and seizure induction by PTZ or KA activate p38
and increase Kv4.2 phosphorylation at T607 in mice (Figs. 2, 3).
Importantly, we also found that p38-Pin1-Kv4.2 pathway regulates
Kv4.2-DPP6 complex (Fig. 4) and neuronal excitability (Fig. 5).
The mechanism how Pin1-elicited Kv4.2 conformation change
leads to Kv4.2-DPP6 disassociation is interesting and needs to be
elucidated in follow up studies. The p38 MAPK pathway is pos-
sible target for the treatment a number of neurodegenerative
diseases, such as AD59. Thus, this Kv4.2 phosphorylation-Pin1
mechanism could be applied to treat pathological conditions and
neurodegeneration diseases22.

As Kv4.2 containing channels are the primary carriers of the
subthreshold, transient A-current, their impact on membrane
excitability in rodent hippocampal pyramidal cells is well-
documented2,60. We confirmed the significant contribution of
T607 phosphorylation in mediating this influence as reduced
excitability was observed in CA1 pyramidal cells of Kv4.2TA mice.
This was further bolstered by our finding that the Pin1 blocker, PiB,
decreased neuronal excitability in WT but not Kv4.2TA neurons,
implying a floor effect in the mutant cells where the engagement of
Pin1 and Kv4.2 is already maximally inhibited. Further, we show
this reduction in excitability can be traced to alterations in IA.
Pharmacological and genetic disruption of the p38-Pin1-Kv4.2
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Fig. 8 Working model of Pin1-dependent Kv4.2-DPP6 complex remodeling that underlies neuronal excitability and cognitive inflexibility. a In WT mice,
stimulations such as seizure and exposure to a novel environment trigger the phosphorylation of Kv4.2 at T607, which allows Pin1 binding to pT602 and
pT607 which subsequently isomerizes the pT607-P bond. This process changes the conformation of Kv4.2, which dissociates the Kv4.2-DPP6 complex
and increases neuronal excitability and cognitive inflexibility. b In Kv4.2 TA mice, the 607 site is no longer phosphorylatable so that Pin1’s effect on Kv4.2 is
abolished. The Kv4.2-DPP6 complex is stable, neuronal excitability is reduced, and cognitive flexibility is improved.
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cascade resulted in enhanced IA density in CA1 pyramidal somata.
It is well established that modulation of Kv4.2 surface expression
and/or kinetics/voltage-dependent properties, through the alteration
of auxiliary subunits, impacts intrinsic excitability43. Although we
identified a remarkable similarity in the firing properties of neurons
from WT mice treated with Pin1 inhibitors and Kv4.2TA mice
without pharmacological intervention, we did not observe sig-
nificant alterations in subthreshold excitability in these mice relative
to WT. This indicates the possibility that additional ion channels
impacting sub-threshold membrane properties in CA1 pyramidal
cells, such as Kv4.1 and Kv4.3 (Supplementary Fig. 2b, c), may be
regulated by Pin1 as these interactions would also be impaired by
broad Pin1 inhibition.

Our biochemistry data showed that Kv4.2-DPP6 dissociation is
impaired in Kv4.2TA mice, indicating that the Kv4.2-DPP6
complex is more stable without phosphorylation at T607. In
heterologous expression systems, association of DPP6 in the tri-
partite Kv4.2-KChIP-DPP6 complex leads to increased current
density, faster recovery from inactivation, and more rapid
inactivation15,16. Our voltage-clamp recordings support this
notion as we identified increased IA density in Kv4.2TA mice
compared to WT littermates and a non-significant trend toward
faster macro current decay, which was also observed with p38
inhibition. Interestingly, the recovery from inactivation kinetics
in Kv4.2TA mice displayed a shift to faster recovery, consistent
with more channels in complex with DPP6, further supporting
our hypothesis. Moreover, that the Kv4-specific blocker
AmmTX3 (250 nM) occluded the effects of PiB on WT mice,
suggests that the PiB-induced reduction in excitability is mediated
by Kv4 channels that are associated with DPP6, since the high-
affinity blockade of Kv4 channels by AmmTX3 depends on the
presence of DPP6 (ref. 47). It is intriguing that constitutive
knockout of DPP6 does not result in significant alterations in
somatic IA (ref. 17); however, evidence is suggestive of homeo-
static compensation in the soma of DPP6 KO mice, which pre-
serves relative excitability17. It is likely this compensation is
absent in Kv4.2TA mice given our findings that firing properties
are also significantly altered.

The basal level of Kv4.2-DPP6 protein complex is not altered
in Kv4.2TA mice compared to WT littermates in biochemistry
experiments (Fig. 4f). However, we saw reduced neuronal excit-
ability (Fig. 5c, d) and increased IA (Fig. 6d, e) in Kv4.2TA mice
compared to WT littermates. This difference likely results from
technical differences between biochemical and electro-
physiological experiments. To determine this, we measured p38
phosphorylation in sliced brain in comparison with un-sliced
brain. The result showed that slicing and recovery largely acti-
vates p38, and Kv4.2 phosphorylation at T607 is also increased
after slicing (Fig. 5g). These data suggested that slicing and
recovery process before recording has already activated p38-Pin1-
Kv4.2 pathway, and the data is consistent with our hypothesis.
Taken together, our data demonstrate that Pin1 regulates the
composition of the Kv4.2-DPP6 complex and neuronal excit-
ability. These changes may then impart additional, so-far unde-
termined, downstream effects in the neuron.

Cognitive flexibility is the ability to appropriately adjust one’s
behavior according to a changing environment. Greater cognitive
flexibility is associated with favorable outcomes throughout the
lifespan. Here we showed that reduced neuronal excitability
unexpectedly left initial learning and memory intact and
improved reversal learning in Kv4.2TA mice. Cognitive flexibility
has previously been associated with both NMDAR- and mGluR-
dependent long term depression61–64. Further research is
required to attribute a cellular function to the enhancement in
reversal learning observed in Kv4.2TA mice. Cognitive inflex-
ibility is observed in various psychiatric disorders such as autism

spectrum disorder (ASD)65, schizophrenia66, suicidal ideation67,
and anxiety and mood disorders68. Considering that both Kv4.2
and DPP6 are implicated in such psychiatric disorders8,22,69, the
stability of the Kv4.2-DPP6 complex might be a common factor
of pathophysiology. It will be interesting to examine if the T607A
mutation can rescue cognitive inflexibility in mouse models of
psychiatric or neurodegenerative disorders.

Taken together, our results reveal that disrupting the activity-
dependent isomerization of Kv4.2 by Pin1 stabilizes the Kv4.2-
DPP6 complex and improves cognitive flexibility. Stabilization of
the Kv4.2-DPP6 complex might represent a promising strategy for
enhancing adaptive cognitive behavior and correcting maladaptive
cognitive deficits in a number of neuropsychiatric conditions.

Methods
Expression constructs. The human Myc-DDK-Kv4.2 construct was purchased
from Origene (RC215266). All of the other expression constructs were made by
PCR. Internal deletions and point mutations were generated using either the
QuikChange Site–Directed Mutagenesis Kit (Stratagene) or the megaprimer
method. PCR products were cloned into expression vectors pGEX 4T2 (Pharmacia)
and pRK5 (Genentech), with Myc, flag or HA tags as we reported previously52. All
constructs were verified by sequencing.

Chemicals. All chemicals were purchased: KA (Sigma, K0250), PTZ (Sigma,
P6500), SB203580 (Tocris, 1202), PD 98059 (Tocris, 1213), SL327 (Tocris, 1969),
S-AMPA (Tocris, 0254), Juglone (Millipore, 420120), PiB (Sigma, B7688),
AmmTX3 (Alomone, 305). For injections, KA and PTZ were dissolved in saline;
SB203580, SL327 and Juglone were dissolved in DMSO and 10% Tween 80.

Antibodies. Mouse anti-Kv4.2 (NeuroMab, 75-016) was used at 1:2000 for western
blot, 1:200 for immunostaining, Rabbit anti-Kv4.2 (Sigma, P0233) was used at
1:2000 for western blot, rabbit anti-Kv4.2 (Sigma, HPA029068) was used at 1:200
for staining, pT602 (Santa Cruz, SC-16983-R) was used at 1:1000 for western blot,
pT607 (Santa Cruz, SC-22254-R) was used at 1:500 for western blot, Pin1 (Santa
Cruz, SC-46660) was used at 1:100 for staining, 1:1000 for western blot, Pin1
(Millipore, 07-091) was used at 1:3000 for western blot, p38 (Cell Signaling, 9212 s)
was used at 1:1000 for western blot, p-p38 (Cell Signaling, 4511 s) at 1:1000 for
western blot, DPP6 (Abcam, 41811) was used at 1:2000 for western blot, Myc
(Millipore, 05-419) was used at 1:10000 for western blot, HA(Santa Cruz, SC-805)
was used at 1:1000 for western blot, Actin (Sigma, A-1978) was used at 1:10000 for
western blot; Alexa Fluor 488 goat anti-mouse (Invitrogen, A-11029) was used at
1:500; Alexa Fluor 488 goat anti-rabbit (Invitrogen, A-11034) was used at 1:500;
Alexa Fluor 555 goat anti-mouse (Invitrogen, A-21424) was used at 1:500; Alexa
Fluor 555 goat anti-rabbit (Invitrogen, A-21429) was used at 1:500; Alexa Fluor 680
goat anti-mouse (Invitrogen, A-21057) was used at 1:10000; Alexa Fluor 680 goat
anti-rabbit (Invitrogen, A-21076) was used at 1:10000; IRDye 800CW goat anti-
mouse (Licor, 926-32210) was used at 1:10000, IRDye 800CW goat anti-rabbit
(Licor, 926-32211) was used at 1:10000.

Mouse models. Kv4.2TA mice were generated using CRISPR-Cas9 techniques.
Briefly, CRISPR sgRNA (CCTGTCGTCGCCTTCTGGGG) was made by in vitro
transcription using ThermoFisher’s sgRNA synthesis service. B6D2F1 mice (JAX
Stock No. 100006) were used as embryo donors for this study. For the injection
step, sgRNA (20 µg / ml), Cas9 mRNA (100 µg/ml, Trilink Biotechnologies) and
corresponding single strand oligos with mutations (100 µg/ml) were injected into
the cytoplasm of fertilized eggs, which then were cultured overnight in M16
medium. Those embryos that reached the two-cell stage of development were
implanted into the oviducts of pseudo-pregnant surrogate mothers (CD-1, Charles
River). Mice born to these foster mothers were genotyped by PCR amplification
followed by DNA sequencing to identify mice with correct mutations.

Mice were group housed in plastic mouse cages with free access to standard rodent
chow and water. The colony room was maintained at 22 ± 2 °C with a 12 hr: 12 h
light: dark cycle. Kv4.2TA mice were backcrossed at least three generations onto C57/
Bl6J mice. All animal procedures were performed in accordance with guidelines
approved by the National Institute of Child Health and Human Development Animal
Care and Use Committee and in accordance with NIH guidelines.

Cell culture and transfection. HEK-293T cells used in biochemistry experiments
were obtained from Dr. Paul Worley’s lab70. HEK-293T cells were cultured in
DMEM medium containing 10% FBS. Transfections were performed with X-
tremeGENE 9 according to the manufacturer’s specifications. Cells were harvested
about 40 h after transfection.

Neuronal culture. Mouse hippocampal neuron cultures from embryonic day 18
(E18) pups were prepared as reported previously71. In all, 1 × 106 neurons were
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added to each well of a six–well plate (Corning) with cover slips coated with
poly–L–lysine. Growth medium consisted of Neurobasal medium (Invitrogen)
supplemented with 5% FBS (Hyclone), 2% B27, 1% Glutamine (Invitrogen), 100 U/
mL penicillin, and 100 U / mL streptomycin (Invitrogen). Neurons were fed twice
per week with glia-conditioned growth medium. DIV14-17 neurons were used for
biochemistry experiments. Rat hippocampal neuron cultures from embryonic day
18 (E18) pups were prepared similarly as above. DIV14-17 neurons were used for
the immunostaining experiment.

Tandem affinity purification-mass spectrometry (TAP-MS) assay. Kv4.2 was
subcloned into the TAP tag vector that was obtained from Agilent (pCTAP,
#240102). TAP-tagged Kv4.2 was then subcloned into the lentivirus vector (Dr.
Paul Worley’s lab) to generate TAP-Kv4.2-IRES-GFP Lentivirus. TAP-Kv4.2-IRES-
GFP Lentivirus and IRES-GFP control Lentivirus were generated using a standard
protocol72. Rar hippocampal neuron cultures from embryonic day 18 (E18) pups
were prepared as described above. Neurons were infected by TAP-Kv4.2-IRES-GFP
Lentivirus or IRES-GFP control Lentivirus on the day of the culture and harvested
at DIV14. TAP-Kv4.2 was purified using the TAP purification kit from Agilent
(#240107) with some modifications. The samples were run on 10% SDS-PAGE gel
(Novex/Invitrogen). The gels that contains the protein samples were excised,
separated into high molecular and low molecular weight samples, and sent to the
Taplin Mass Spectrometry Facility at Harvard University for in-gel digestion using
trypsin and mass spectrometric analysis.

Peptide pulldown. The following peptides were synthesized: Non-Phospho for
T602 and T607: KAIISIPTPPVTTPEGDDR; pT602: KAIISIP-pT-
PPVTTPEGDDR; pT607: KAIISIPTPPVT-pT-PEGDDR; pT602, pT607: KAIISIP-
pT-PPVT-pT-PEGDDR; Non-Phospho for S616: KEGDDRPESPEYSGG; pS616:
KEGDDRPE-pS-PEYSGG. The peptides were conjugated to Affi-Gel 15 (Bio-Rad)
according to the manufacturer’s instructions. Peptide-linked Affi-Gel was incu-
bated for 3 h at 4 °C with Pin1 protein that was expressed in HEK-293T cells, and
then washed clear for western blot analysis.

Co-immunoprecipitation and immunoprecipitation assays. Mouse brain tissues
or HEK-293T cells were used in co–immunoprecipitation assays as previous
reported in ref. 70. For Kv4.2-Pin1 co-IP experiment, co-IP buffer (1 X PBS, pH 7.4,
with 0.8% Triton X–100, phosSTOP and Complete™ EDTA–Free protease inhibi-
tors) were added (1:20 for brain tissues and 400 µl for a 6-well of HEK-293T cells),
and the samples were sonicated. After centrifugation, the supernatant was mixed
with 2–3 µg of Kv4.2 (NeuroMab, 75-016, or Sigma, P0233) or myc (Millipore, 05-
419) antibodies for 3–4 h at 4 °C. Next, 40 µl of protein G magnetic beads (Bio-Rad,
161-4023) was added for an additional 2 h or overnight. The protein beads were
washed three times with co-IP buffer. The protein samples were eluted with SDS
loading buffer and analyzed by gel electrophoresis and western blotting. For Kv4.2-
DPP6 co-IP experiment, co-IP buffer (1 X PBS, pH 7.4, with 1% Triton X–100,
0.2% Chaps, phosSTOP and Complete™ EDTA–Free protease inhibitors) were
added (1:20 for brain tissues), and the samples were sonicated. After centrifugation,
the supernatant was mixed with 3–4 µg of Kv4.2 antibody (NeuroMab, 75-016) for
3 h at 4 °C. Next, 50 µl of 1:1 protein G–Sepharose slurry (GE Healthcare, 17-0886-
02) was added for an additional 3 h. The protein beads were washed three times
with IP buffer. The protein samples were eluted with SDS loading buffer and
analyzed by gel electrophoresis and western blotting. For Kv4.2 phosphorylation
detection, brain tissues sonicated in co-IP buffer (1 X PBS, pH 7.4, with 1% Triton
X–100, phosSTOP and Complete™ EDTA–Free protease inhibitors). After cen-
trifugation, the supernatant was mixed with 3 µg of Kv4.2 (NeuroMab, 75-016)
antibody for 3 h at 4 °C. Next, 50 µl of 1:1 protein G–Sepharose slurry (GE
Healthcare, 17-0886-02) was added for an additional 3 h. The protein beads were
washed three times with IP buffer. The protein samples were eluted with SDS
loading buffer and analyzed by gel electrophoresis and western blotting.

Molecular modeling. Models of the bound phosphotyrosine-proline sequence
motifs were developed from published structures. These models were primarily
based on PDB: 2N10 (ref. 73) for the WW domain, and PDB: 2Q5A74 for the
Catalytic domain. Modeling was done by an interplay of “manual” manipulation
with UCSF Chimera75 and energy minimization (to prevent steric overlap and
optimize salt-bridges and hydrogen bonds) with CHARMM76. Images were gen-
erated with UCSF Chimera.

Subtilisin proteolysis. Myc-Kv4.2 (co-transfected with p38) was expressed in
HEK293T cells and purified with myc-magnetic beads (Thermo Scientific, #88842).
Kv4.2 Phosphorylation at T602 and T607 after purification was measured by satu-
rated phospho-specific and total Kv4.2 antibody pulldown combined with western
blot. About 2/3 of purified Myc-Kv4.2 was phosphorylated at T607 and was used for
proteolysis. Equal amount of Myc-Kv4.2 were then incubated with 100 ng of either
GST, GST-Pin1, and GST-Pin1C113S in a buffer containing 50mM HEPES, pH 7.5,
100mM NaCl, 1 mM MgCl2, supplemented with phosphatase inhibitors. After 30
min incubation at room temperature, reaction mixtures were cooled on ice, and
subtilisin (Sigma-Aldrich, P5380) was added for a further 1min on ice. The reaction

was stopped by the addition of boiling sample buffer, and the proteolytic fragments
were resolved by 4–12% SDS-PAGE and visualized by western blot analysis.

Western blot and quantification. Protein samples were mixed with 4x LDS
sample buffer (Invitrogen NP0007) and 10x sample reducing agent (Invitrogen
NP0007) to a final concentration of 1×. Samples were loaded on 4–12% Bis-Tris
gradient gel (Invitrogen 12-well, NP0322; 15-well, NP0323). The proteins were
transferred to Immobilon-FL PVDF membrane (EMD Millipore, IPFL00010). The
membrane was blocked with Odyssey blocking buffer (Li-COR, 927-40000) for 1 h
at room temperature, followed by incubation with primary antibody in PBS
overnight at 4 °C. The membrane was then washed with PBST (PBS, pH 7.4, and
0.1% Tween-20) three times and incubated with secondary antibody in PBS for
another hour. After three washes with PBS, the membrane was scanned using an
Odyssey imaging system (LI-COR) according to the manufacturer’s protocol.
Quantification of western blots was carried out using the gel analysis function in
ImageJ within the linear range of detection which is determined by using serial
dilutions of a representative sample.

Immunostaining. Cultured hippocampal neurons (DIV10) were fixed with 4%
PFA, and permeabilized with 0.2% Triton X-100 in PBS. Cells were then blocked
with 10% horse serum at RT for 1 h and then incubated with mouse anti-Pin1
antibody (Santa Cruz, SC-46660, 1:100) and rabbit Kv4.2 antibody (Sigma,
HPA029068, 1:200) at 4°C overnight. After washing, cells were incubated with anti-
mouse-555 and anti-rabbit-488 secondary antibodies at RT for 1 h. After washing,
cells were then mounted on slides with anti-fade mounting medium containing
4′,6-diamidino-2-phenylindole (DAPI, Invitrogen, P36962) and imaged using a
Zeiss 710 laser scanning confocal microscope equipped with a ×63 objective.

Acute hippocampal slice preparation. For all electrophysiological recordings,
adult male (5–7 weeks) mice were used. Mice were anesthetized in isoflurane and
decapitated. Brains were removed and washed with ice-cold sucrose cutting solu-
tion. The sucrose solution was made up of the following (in mM): 60 NaCl, 3 KCl,
28 NaHCO3, 1.25 NaH2PO4, 5 Glucose, 0.5 CaCl2, 7 MgCl2. Brain hemispheres
were dissected and mounted following a 45° cut of the dorsal cerebral hemisphere
(s). Modified transverse slices (300 μm) were made by a Leica VT1200S vibrating
microtome in ice-cold sucrose that was continuously bubbled with carbogen (95%
O2/5% CO2). Slices were recovered at 32 °C in sucrose solution for 30 min at which
time the solution temperature was slowly lowered to room temperature where it
remained for the remainder of the recording day.

Whole-cell current-clamp recordings. Following a 1-hour recovery in sucrose
cutting solution, hippocampal slices were transferred to a recording chamber sub-
merged in artificial cerebral spinal fluid (ACSF) with the temperature maintained at
33 °C (±1 °C). The ACSF contained the following (in mM): 125 NaCl, 2.5 KCl, 25
NaHCO3, 1.25 NaH2PO4, 25 Glucose, 2 CaCl2, 1 MgCl2(pH 7.4). The recording
chamber was continuously perfused with carbogen-bubbled ACSF at a rate of 2–3
mL/min. Somatic whole-cell patch-clamp recordings were performed on identified
somata of hippocampal CA1 pyramidal neurons. Pyramidal neurons were identified
using infrared Differential Interference Contrast (DIC) on an upright Leica Axioskop
2. Cells were patched with 3–6MΩ borosilicate glass pipettes pulled from a Narishige
vertical puller and filled with K+ Gluconate-based intracellular solution consisting of
the following (in mM): 20 KCl, 125 K-Gluconate, 1 EGTA, 4 NaCl, 4 Na2ATP, 0.3
NaGTP, 10 HEPES, 10 Phosphocreatine with pH adjusted with KOH and HCl to a
final value of 7.25–7.30 and an osmolarity of 290–300mOsm.

Firing properties were measured from whole-cell recordings in the conditions
described above unless otherwise noted (described in detail below). All data were
recorded with a Multiclamp 700b amplifier (Molecular Devices) and a Digidata
1440 A digitizer. Signals were low-pass filtered at 5 kHz and digitized at 10 kHz
using Clampex 10.7 software and were acquired in bridge balance mode to
compensate series resistance. Liquid junction potential was not corrected for.
Subthreshold membrane properties were measured after initial break-in in order to
avoid alteration in equilibrium potentials and dialysis as a result of solution
exchange. Whole-cell capacitance and series resistance were measured from
Multiclamp 700B commander. A voltage step of −10 mV was initiated, and the
decay tau of the whole-cell capacitive transient was used to calculate these
parameters. Resting membrane potential was measured after switching to I= 0.
Any recordings where series resistance exceeded 25MΩ or resting membrane
potential was greater (more depolarized) than −55 mV were discarded. Input
resistance was calculated as the slope of the I–V curve in response to current steps
from −50 to 50 pA in 50 pA steps (three steps in total). To evoke APs in patched
CA1 pyramidal neurons, square 1 s current pulses were elicited in 50 pA steps with
current injections ranging from −200 to +200 pA in 50 pA steps. In some cases, for
instance in the measurement of rheobase, smaller step sizes of 20 pA were used to
enhance the resolution of the average minimum current magnitude required to
elicit APs. Three sweeps at each magnitude were elicited and the average response
of the three sweeps was used for each cell. All measures of AP waveform were taken
from the first spike in a train in response to a 200 pA injection, and inter-spike
measurements, including inter-spike interval and after-hyperpolarization
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amplitude, were recorded between the first two spikes in a train elicited by a 200 pA
square current injection (see associated figures).

Outside-out somatic patch voltage-clamp recordings of A-current. A-current
was recorded in voltage-clamp mode from outside-out patches pulled from somata
of identified pyramidal cells in hippocampal slices. Outside-out patch pipettes (3–6
MΩ) were filled with K+ Gluconate-based intracellular solution consisting of the
following (in mM): 20 KCl, 125 K-Gluconate, 1 EGTA, 4 NaCl, 4 Na2ATP, 0.3
NaGTP, 10 HEPES, 10 Phosphocreatine. All recordings were performed at room
temperature (24–25 °C). Tetrodotoxin citrate (TTX) (500 nM), Gabazine (2 µM),
and CNQX (2 µM) were added to the extracellular bath (ACSF) in order to block
voltage-gated Na+ channels and ligand-gated channels. A-current density was
calculated using a standard subtraction protocol. In short, a pre-pulse step to −120
mV for 600 ms from a holding potential of -65 mV was initiated to relieve inac-
tivation of A-type K+ channels. Voltage was stepped to +40 mV for 500 ms to
measure total outward K+ current. A subsequent sweep consisted of a pre-pulse
step to −30 mV to inactivate the transient current followed by a step to +40 mV to
measure the non-inactivating current. Peak amplitude of the non-inactivating
current was subtracted from total outward K+ current amplitude offline to isolate
IA. Leakage and capacitive currents were digitally subtracted. Peak amplitude was
normalized to current density by dividing by patch capacitance, which was mea-
sured following formation of the outside-out patch configuration and was analyzed
with custom written code in MATLAB version R2018a (MathWorks). Inactivation
kinetics were measured by fitting a single exponential to each isolated IA current
trace and were analyzed with Graphpad Prism. Traces are averages of 10-30
sweeps. Recovery from inactivation was calculated using a double voltage-step
(−120 to +30 mV) protocol with increasing interstep intervals between steps.
Interstep intervals were (in ms): 5, 10, 15, 20, 25, 50, 100, 200, 500, and 1000.
Recovery from inactivation was calculated as the ratio of the peak amplitude of the
second current trace relative to the point where the initial A-current was fully
inactivated and was normalized to the peak amplitude of the initial A-current.
Single exponentials were fitted to the non-linear fitted curves of normalized
recovery from inactivation and the taus from each individual recovery curve were
averaged and compared. Voltage-dependent activation was recorded using a vol-
tage step protocol consisting of a 600 ms prestep to −120 mV, followed by a series
of 13 steps (10 mV each from −80 to 40 mV). Leakage and capacitive currents were
digitally subtracted. The same protocol but with a 600 ms prestep from -65 mV to
-30 mV was used to record non-inactivating currents, which were offline sub-
tracted from the overall K+ currents to obtain inactivating A-type K+ currents.
Currents were then converted into conductances, normalized to peak conductance
at 40 mV, plotted against the holding voltage and fitted with a Boltzman-function
to obtain V1/2-activation and kactivation. Voltage-dependent inactivation was recorded
using a voltage-step protocol consisting of a series of 14 presteps (each 600 ms and
10 mV, from −120 to 10 mV) followed by an activating voltage step to 20 mV.
Leakage and capacitive currents were digitally subtracted. Peak currents were
measured for each step and the I/V relationship was fitted with a Boltzmann
function to obtain V1/2-inactivation and kinactivation. All data were recorded with a
Multiclamp 700b amplifier (Molecular Devices) and a Digidata 1440A digitizer,
were digitized at 10 kHz and low-pass filtered at 2 kHz using a Bessel filter.

Behavioral assays
Open field task. Novelty-induced locomotor activity was assessed in a novel open-
field square arena (50 × 50 cm) constructed of white Plexiglas as previously
described77. Mice were acclimated to the testing room for at least ~10 min and then
placed in the arena and left to explore freely for 30 min. Sessions were performed
once a day for two successive days. The distance traveled and time spent in dif-
ferent areas of the maze were measured. Results were analyzed with “ANY-maze”
software (ANY-maze, Wood Dale, IL, USA). Data were compiled from two inde-
pendent experimental cohorts. Male mice used in the first and second cohorts were
~8.5–10 and ~15–16 weeks old, respectively.

Morris water maze. The Morris water maze task was performed to evaluate
hippocampus-dependent spatial navigation learning and memory78,79. The water
maze consisted of a 120 cm circular pool (depth 50 cm), filled ~40 cm deep with
20–22 °C water containing a 10 cm wide square platform. External high contrast
cues were placed on the interior of the pool above the water surface to aid with
spatial navigation. Trials were video recorded and scored by ANY-maze software
(ANY-maze, Wood Dale, IL, USA) for measures including latency to find the
hidden platform, total distance traveled, and swim speed. The latency to the
platform of the training trials was measured manually with a stopwatch.

General mouse handling was performed as follows: Mice were acclimated to the
testing room for at least ~1 h before testing. Each mouse was placed into the water
maze facing the wall in one of four possible quadrant positions, which was pseudo-
randomly varied by training session. Mice were given 60 s to find the platform and
a ~15 s platform rest interval. If a mouse was unable to find the platform in the
allocated time, it was gently guided to the platform and allowed to rest for ~15 s.
Mice were then patted dry with a cloth and put back into a warm cage for ~15 s
after each trail. For data analyses, a latency time of 60 s was ascribed to mice that
failed to reach the platform without guidance.

On Day 1 mice were trained in the visible platform version of the Morris water
maze task to assess general swimming and visual ability. The platform was ~1 cm
above the clear water surface with a red flag placed on the platform to increase its
visibility. Each mouse underwent two visible platform training sessions and the
location of the platform was varied between sessions. No significant difference in
escape latency was apparent between genotypes. The water was made opaque with
nontoxic white and red paint between Days 1 and 2. On Day 2 through Day 4
(sessions 1–6), mice were trained for the Hidden Platform protocol where the flag
was removed from the platform and additional water was added to the pool to
submerge the platform ~1 cm below the surface. Mice were given a total of 24
training trials (4 trials per session, two sessions per day for three successive days). On
Day 5, the platform was removed, and mice underwent a 60 s probe trial to
determine the amount of time spent exploring the target quadrant. On Day 6 and
Day 7, mice were trained for reversal learning (2 sessions per day for 4 total sessions)
where the Hidden Platform was moved to the opposite quadrant. On Day 8, the
platform was removed, and the mice underwent a 60 s probe trial to determine the
amount of time spent exploring the target quadrant. ~16–17-weeks-old male mice
were used. Data were compiled from two independent experimental cohorts.

Lever press. Operant reversal learning was performed as previously described in
ref. 49. Mice were food restricted to 85–90% of their free-feeding weight over
several days prior to testing and throughout the experiment. Mice were trained to
lever press on an FR1 schedule in daily sessions with an endpoint of 30 rewards or
30 min. When they collected all of the rewards in the allotted time for 3 consecutive
days, animals progressed to RR2 sessions lasting 25 min, during which they could
earn unlimited rewards. After 5 training days, levers were reversed such that the
reinforced lever became non-reinforced and vice versa. Mice were given daily 15-
minute reversal learning sessions for 5 days.

Statistical analysis. Biochemistry and behavior data were analyzed by Origin
2018b by two–tailed Student’s t test and two–way ANOVA, respectively. Electro-
physiology data were analyzed by GraphPad Prism 7 (7.0d). For all measures of IA
in outside-out somatic patches the experimenter was blinded to the genotype. For
measures of firing properties, the experimenter was aware of these conditions.
Sample sizes were not predetermined with any statistical methods but were chosen
based on numbers reported in similar publications in the field. All statistical tests
were two-tailed. Specifically, for electrophysiological analysis of IA and AP shape in
WT and Kv4.2TA mice and pharmacological analysis (PiB treatment) in Kv4.2TA,
unpaired t-test (with Welch’s correction) was used (passed normality testing). For
electrophysiological analysis of the pharmacological impact on IA in WT slices a
One-way ANOVA (ordinary), or One-Way ANOVA on Ranks (Kruskal–Wallis)
was used and were corrected for multiple comparisons with Dunnett’s test
(ordinary) or Dunn’s test (Ranks) respectively. The use of parametric or non-
parametric analysis was determined after testing for normal distribution in the data
using the D’Agostino & Pearson normality test for all electrophysiological data
(alpha Level= 0.05). Non-parametric statistics were used if the data failed nor-
mality testing. For all analysis of pharmacological treatment effects in WT, sig-
nificance was probed relative to control (vehicle). All analysis of firing frequency in
response to sequential current steps, a two-way ANOVA with Sidak’s post hoc test
was used. All the data are presented as mean ± SEM.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
PDB:2N10, PDB:2Q5A, and other data that support the findings of this study are
available from the corresponding authors in reasonable request. The source data
underlying all figures and tables are provided as a Source Data file.
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