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Abstract

Motivation: Gene expression-based multiclass prediction, such as tumor subtyping, is a non-trivial bioinformatic
problem. Most classifier methods operate by comparing expression levels relative to other samples. Methods that
base predictions on the expression pattern within a sample have been proposed as an alternative. As these methods
are invariant to the cohort composition and can be applied to a sample in isolation, they can collectively be termed
single sample predictors (SSP). Such predictors could potentially be used for preprocessing-free classification of
new samples and be built to function across different expression platforms where proper batch and dataset
normalization is challenging. Here, we evaluate the behavior of several multiclass SSPs based on binary gene-pair
rules (k-Top Scoring Pairs, Absolute Intrinsic Molecular Subtyping and a new Random Forest approach) and com-
pare them to centroids built with centered or raw expression values, with the criteria that an optimal predictor
should have high accuracy, overcome differences in tumor purity, be robust across expression platforms and pro-
vide an informative prediction output score.

Results: We found that gene-pair-based SSPs showed excellent performance on many expression-based classifica-
tion tasks. The three methods differed in prediction score output, handling of tied scores and behavior in low purity
samples. The k-Top Scoring Pairs and Random Forest approach both achieved high classification accuracy while
providing an informative prediction score. Although gene-pair-based SSPs have been touted as being cross-
platform compatible (through training on mixed platform data), out-of-the-box compatibility with a new dataset
remains a potential issue that warrants cohort-to-cohort verification.

Availability and implementation: Our R package ‘multiclassPairs’ (https:/cran.r-project.org/package=
multiclassPairs) (https://doi.org/10.1093/bioinformatics/btab088) is freely available and enables easy training, predic-
tion, and visualization using the gene-pair rule-based Random Forest SSP method and provides additional multi-
class functionalities to the switchBox k-Top-Scoring Pairs package.

Contact: pontus.eriksson@med.lu.se

Supplementary information: Supplementary data are available at Bioinformatics online.

prediction method must be constructed that accurately calls the class

1 Introduction
of new samples. Centroid-based classification methods that use an

Tumors originating from the same tissue can have highly disparate
molecular characteristics. This molecular heterogeneity has moti-
vated efforts to stratify cancer into molecular categories based on
differences in mRNA expression, protein expression, methylation
patterns, gene mutations or copy number alterations. Gene
expression-based stratifications provide a way to systematize bio-
logical and clinical research, and has the potential to improve prog-
nostication and therapy prediction. To utilize such stratifications, a
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idealized profile (centroid) of selected genes whose expression differ
between subtypes are commonly used. A new sample is classified by
determining which centroid it most closely resembles, as measured
by correlation or other similarity measure. Centroid variations such
as Prediction Analysis of Microarrays (PAM) (Tibshirani ez al.,
2002) and Classification to Nearest Centroids (ClaNC) (Dabney,
2005) advance this concept by utilizing shrunken centroids or class-
specific genes, respectively. A drawback of centroid methods is that
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they conventionally rely on log-transformed expression data row-
centered across samples (relative fold change values) which can be
impacted by the cohort composition (e.g., proportion of tumor
stages or subtypes). Before such a classifier can be used, a new data-
set needs to be processed and normalized to ensure that it conforms
to the expected data distribution. Rule-based classifiers have been
proposed as an alternative approach where non-cohort-normalized
expression data (such as array signal intensities or gene-length nor-
malized RNA-sequencing counts) is converted into binary gene-pair
rules. The concept is that characteristic gene ratios can be used to
identify different subtypes. A gene-pair decision rule can be
described as ‘if Gene A > Gene B is TRUE this indicates Class X,
else non-Class X’. Although information carried by continuous ex-
pression values is lost when the data is featurized, these binary rules
are not dependent on between-sample normalization making the
classifier applicable to samples in isolation i.e., a single sample pre-
dictor (SSP). The featurizing also enables data from different plat-
forms and preprocessing pipelines to be used during training to find
class specific gene ratios captured across methods in order to create
a more broadly applicable classifier, as demonstrated in earlier
works (Cirenajwis et al., 2020; Paquet and Hallett, 2015). Geman et
al. first described a two-class predictor using a single gene-pair rule,
referred to as a Top Scoring Pair (TSP) (Geman et al., 2004), which
was expanded into the k-Top Scoring Pairs (k-TSP) method where
multiple rules vote on the class labels (Tan et al., 2005). Gene-pair-
based methods can be extended to multiclass prediction problems
using multiple binary classifiers or by combining informative gene-
pair rules with methods compatible with multiclass prediction.
Some proposed methods include votes from 1-versus-rest or 1-ver-
sus-1 k-TSP classifiers, hierarchical application of k-TSP classifiers
(Tan et al., 2005), TSP decision trees (Popovici et al., 2011) or using
preselected rules in a Naive Bayes (NB) classifier (AIMS) (Paquet
and Hallett, 2015). Here, we evaluate two k-TSP classifier R imple-
mentations (AIMS and switchBox) and develop a new approach uti-
lizing Random Forest (RF).

We apply these methods to bladder cancer subtype prediction
and compare them to a currently utilized single sample centroid ap-
proach (Kamoun et al., 20205 Lindskrog et al., 2021). The creation
of a robust subtype prediction model for bladder cancer is challeng-
ing both due to the molecular heterogeneity of the disease, but also
by technical circumstances resulting in major batch effects between
datasets. Large gene expression cohorts (>200 samples) remain
scarce and are generally not population based. Most datasets are
constructed based on tumor stage, representing either non-muscle
invasive or muscle invasive disease, with varying subtype distribu-
tions due to sample inclusion criteria. There is also variation in tis-
sue sources e.g., fresh frozen or FFPE, as well as mRNA
quantification methods, and sample purity can vary broadly both
due to intratumor immune and stroma levels or adjacent normal tis-
sue in the biopsy. These factors, taken together, are challenging to
overcome with standard batch correction methods and can strongly
impact prediction results of a conventional centroid-based classifier.
This has hindered robust validation efforts and confident adoption
of any one tumor classification scheme proposed for the disease,
which motivated us to evaluate alternative classifier methods that
could overcome these problems.

2 Materials and methods

2.1 Bladder cancer datasets

We utilized two bladder cancer dataset, an in-house Affymetrix
microarray dataset of 301 tumors (Lund2017) (GSE83586) (Sjodahl
et al., 2017) and the TCGA-BLCA bladder cancer RNA-sequencing
dataset of 397 tumors (TCGA) (https://gdc.cancer.gov) (Robertson
etal.,2017). Both datasets are similar in stage composition, contain-
ing advanced and muscle invasive tumors. When classifiers were
trained on the Lund2017 dataset the TCGA was used as validation,
and vice versa, to evaluate a ‘single training dataset’ scenario. To
evaluate training on mixed data, the cohorts were combined, and
five cross-validation data splits were sampled, using 80% of samples

for training and 20% for testing (Lund2017/TCGA_cv1-5). A 5-
group subtype split based on the Lund2017 taxonomy was used as
reference labels (Supplementary Fig. S1), obtained from previous
studies of these cohorts (Marzouka et al., 2018; Sjodahl et al.,
2017). Tumors are classified as either Urothelial-like (Uro),
Genomically  Unstable (GU), Basal/Squamous-like (Ba/Sq),
Mesenchymal-like (Mes-like) or Small cell/Neuroendocrine-like (Sc/
NE). The Urothelial-like subtype can be further stratified into UroA,
UroB and UroC which share many transcriptional programs but dif-
fer in growth patterns and mutational makeup (Marzouka et al.,
2018; Sjodahl ef al., 2017). The Lund2017 cohort stratification was
generated through hierarchical clustering to determine the major
transcriptional classes, followed by curation through immunostain-
ing where highly infiltrated samples are resolved into their respective
tumor cell phenotype class. Without curation, highly infiltrated
tumors tend to form a separate cluster when unsupervised gene ex-
pression clustering is used (Aran ef al., 2015; Rhee et al., 2018;
Sjodahl et al., 2017). The TCGA-BLCA labels were assigned using a
centroid classifier based on the granular stratification of the
Lund2017 cohort, with separate centroids for high and low infiltra-
tion categories for each subtype (Marzouka et al., 2018).

2.2 Additional datasets

A total of 1084 samples from 18 bladder cancer datasets was used
to further examine cross-platform performance (Kamoun er al.,
2020). A cohort of 3814 breast cancer samples from the Swedish
Cancerome Analysis Network—Breast (SCANB) was used to evalu-
ate PAMSO0 subtype prediction in a population-based RNA-sequenc-
ing dataset in log2(FPKM +0.1) format (GSE81538 + GSE96058)
(Brueffer et al., 2018). A meta-cohort of 19 lung cancer datasets was
used to test histology and subtype prediction in a heterogeneous co-
hort generated on diverse platforms (Supplementary Table S1). This
dataset has previously been used to evaluate single sample prediction
methods (Cirenajwis et al., 2020) and was provided by the authors.
The PAN-CANCER TCGA dataset was used to test tumor-type pre-
diction, representing a classification problem with a high number of
distinct classes (Liu ef al., 2018). The dataset of 10 088 samples rep-
resenting 33 tumor types was obtained through the Recount2 R
package in TPM format (Collado-Torres et al., 2017).

2.3 Centroid classifiers

2.3.1 Single sample centroid classifier

Centroids built on log-transformed raw expression data have recent-
ly been utilized as SSPs for bladder cancer subtyping (Kamoun et al.,
2020; Lindskrog et al., 2021), and similar approaches have been
explored for other cancers (Hu et al., 2006; Sorlie ez al., 2003). We
built and applied the single sample centroids (SS-centroids) follow-
ing the method reported for bladder cancer, selecting differentially
expressed genes on a per-subtype basis using moderated t-test (P-
value < 0.05) and a ‘Subtype vs Rest” AUC above 0.6, followed by
ranking on mean fold change. Log2(TPM + 1) data was used for the
TCGA dataset and log2(RMA probe values, median merged to gene
symbols) was used for the Lund2017 dataset. The mean raw expres-
sion of the selected genes for each subtype was used as centroids.
Pearson correlation was used as distance metric (1-Pearson’s r) to
determine the nearest centroid for each sample. We evaluated cent-
roids of increasing sizes by gradually including more genes per class
based on the Subtype versus Rest gene ranking. The smallest cen-
troid used the top 10 upregulated and 10 downregulated genes per
class, while the largest used 125 up- and downregulated genes per
class, resulting in centroids ranging from 67 to 774 genes. Training
accuracy is reported by a direct reapplication of the centroids to the
training data.

2.3.2 Conventional nearest centroid classifier

We compared the raw data single sample centroids to centroids built on
centered log-transformed data. Batch-corrected median-centered log2-
transformed data was used for Lund2017 data, and centered VST-
transformed counts was used for TCGA data. The gene selection
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applied to centered data resulted in gene lists highly similar to those of
the single sample centroids. As we were primarily interested in predictor
behavior differences between raw data and centered data, we opted to
use the same centroid genes as selected for the respective single sample
centroids but calculating the values from the centered data. Pearson cor-
relation was again used as distance metric.

2.4 Rule-based classifiers

2.4.1 Aims — k-TSP using Naive Bayes

The code for Absolute Intrinsic Molecular Subtyping (AIMS) was
obtained from Github (https:/github.com/meoyo/trainAIMS)
(Paquet and Hallett, 2015). AIMS uses all input genes to produce a
list of each possible gene-pair rule combination. Scores for all gene-
pair rules are calculated in a one-versus-rest fashion for each class
(Geman et al., 2004). The optimal number of rules (k) per class is
determined by the peak average overall accuracy from a 20-fold
cross-validation training step, using the same number of rules for
each class. The final classifier selects k rules that are then used in a
multi-class NB model. To handle dataset imbalances, AIMS allow
the user to weight datasets during training, aiming to reduce the ef-
fect of unequal dataset sizes, and NB utilizes the percentage of each
class in its prior probabilities. Models were trained using the default
setting where the examined number of rules (k) ranged between 1
and 50, using 20-fold cross-validation and weights based on the in-
put training datasets.

2.4.2 switchBox — k-TSP using classifier votes

The k-TSP classifier R package switchBox (SB) was installed from
Bioconductor (https://www.bioconductor.org/) (Afsari et al., 2015).
SwitchBox builds binary k-TSP classifiers in three steps: gene selec-
tion, gene-pair rule scoring, and selection of the optimal number of
rules. With default settings, SB uses a one-versus-rest Wilcoxon test
to select the top 100 differentially expressed genes (top 50 up- and
downregulated) and determines the optimal number of gene-pair
rules (ranging between 2 and 10 by default) through variance opti-
mization (Afsari et al., 2014). Gene selection and variance optimiza-
tion, rather than cross-validation, results in training times of
minutes instead of hours (AIMS approach). When used for multi-
class prediction a one-versus-rest k-TSP classifier is built for each
class to independently generate a score between 0 and 1, where the
highest decides the class assignment. Several modifications to the de-
fault switchBox k-TSP implementation were evaluated, including
increasing the number of used genes and rules, allowing non-
differentially expressed ‘pivot genes’ to be paired with the selected
genes, using one-versus-one gene selection and rule scoring and per-
forming these steps in a platform-wise manner when multiple data-
sets were used for training (Supplementary Methods). Reported
training accuracies reflects the application of the ensembled classi-
fier to the training dataset.

2.4.3 Rule-based Random Forest

Random Forest (RF) uses an ensemble of decision trees built through
randomized feature selection and subsampling (bagging) (Breiman,
2001), which allows multiple different gene-pairs to be utilized
through independent decision trees. RF generates a feature import-
ance score during model training, providing a direct way to select
genes and gene-pair rules. In our R package multiclassPairs
(Marzouka and Eriksson, 2021), we implemented a complete pipe-
line for creating rule-based predictor utilizing the ‘ranger’” RF R
package (Wright and Ziegler, 2017). This builds the predictors in
three steps: (i) gene importance ranking and selection through RF,
(ii) rule importance ranking and selection through RF and (iii) filter-
ing and selection of rules to be utilized in a final probability-RF clas-
sifier predicting all classes. The gene importance ranking was
determined by training RF models on ranked raw data to predict all
classes at once, from which the highest scoring genes were selected.
This gene list was supplemented with top scoring genes from separ-
ate one-versus-rest RF models for each class. Genes that score high
in the ‘All classes’ model perform well on major splits of the data,

while genes identifying smaller classes may be less likely to be
among the very top ranking. We evaluated utilizing the top 10, 20,
50, 100 or 200 genes by importance score from each RF model.
Unique top genes were combined into binary gene-pair rules. The
training of ‘All classes’ and ‘one-vs-rest’ RF models was repeated
using rules as training data, giving a variable importance score for
each. To diversify the rules and avoid relying on rules with the same
informative partner gene, we ranked all rules by their importance
for each model separately and applied a filter to retain only the top
scoring instances where a given gene is used. The final predictors
were built by selecting the top 10, 20, 50, 100 or 200 filtered rules
from each classifier and training a final probability-RF model. For
gene and rule selection, we used 5000 trees, with ‘node-size’ set to 1,
‘mtry’ set to 10% of features, and ‘impurity’ as variable importance
measurement. Variable importance of genes and rules are saved at
each modeling step, allowing for examination of the selected fea-
tures. For the final classifier, ‘mtry’ was set to the square root of the
number of rules, using 5000 trees. During model training, ~37% of
samples are randomly left out during the construction of each com-
ponent decision tree. The ‘Out-of-Bag’ (OOB) training accuracy is
measured on the ~1850 trees where a given sample is excluded from
the training. In terms of training time, this approach was slower
than most k-TSP variations, but significantly faster than AIMS. To
evaluate whether all gene-pair rules selected for the final models
were important we utilized the R package Boruta, which compares
features against permutated versions of themselves and labels each
as confirmed, tentative or rejected (Kursa and Rudnicki, 2010). The
Random Forest algorithm does not tolerate absent variables. We
addressed this by retaining the binary training matrix as a part of
the predictor. When classifying a sample with genes missing, the
possible rules are generated and missing ones are imputed with a k-
nearest neighbor approach using the modal value from the five most
similar training samples (Supplementary Fig. S2).

3 Results

3.1 Subtype prediction in bladder cancer

We compared how conventional centroids, single-sample centroids,
Absolute Intrinsic Molecular Subtyping (AIMS), switchBox k-TSPs
and rule-based Random Forest performed on the 5-molecular sub-
type prediction task in bladder cancer.

3.1.1 Nearest centroid classifiers

Conventional centroids were trained on the Lund2017 and TCGA
datasets separately. The Lund2017 centroids had prediction accura-
cies ranging between 0.83 and 0.88 when applied to the TCGA data
(Fig. 1A), while those built on TCGA data had prediction accura-
cies between 0.73 and 0.76 in the Lund2017 data (Fig. 1B).
Misclassification events in both the training and test scenarios were
dominated by Urothelial-like tumors of the UroB subcategory pre-
dicted to be of the Ba/Sq subtype. While UroB tumors retain expres-
sion of urothelial differentiation and FGFR3 signaling, shows a
stratified growth-pattern and has genomic alterations resembling
UroA tumors, they have high expression of numerous keratinization
genes in common with the Ba/Sq subtype, resulting in a higher
Pearson correlation coefficient to the Ba/Sq centroid (Fig. 4). The
single sample (SS) centroid classifiers built using raw expression
data from the Lund2017 dataset had training accuracies between
0.83 and 0.87 and prediction accuracies ranging between 0.83 and
0.86 on the TCGA dataset (Fig. 1C). The TCGA SS-centroids had
training accuracies between 0.84 and 0.89 and prediction accuracies
between 0.74 and 0.80 on the Lund2017 dataset (Fig. 1D). The
overall accuracy of both the conventional and single sample cent-
roids remained relatively stable regardless of the number of utilized
genes (Fig. 1A-D). The average separation between the predicted
class and the second closest prediction remained constant for the
conventional centroid but continuously decreased as the single sam-
ple centroid size increased. As genes are added based on their ranked
fold change, they have a gradually diminished impact on the correl-
ation between samples and the centroids when data is centered.
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Fig. 1. Conventional and single sample centroid behavior. Overall centroid classifier accuracy (top panel) and average correlation difference between the predicted subtype and
second closest centroid (bottom panel), trained on centered data from (A) Lund2017 and (B) TCGA, and raw data from (C) Lund2017 and (D) TCGA. (E) Average sample to
centroid correlations for Uro, GU, Ba/Sq, Mes-like and Sc¢/NE tumors in the Lund2017 dataset using a conventional centroid of 424 genes and (F) a single sample centroid of

424 genes

(Fig. 1A, B and E). When uncentered raw data is used, the centroids
represent the average gene expression values for each subtype. The
correlation is therefore partly driven by the inherent expression
ranges of the classifier genes rather than the subtype-specific expres-
sion differences, resulting in positive correlations between most sam-
ples and the SS-centroids (Fig. 1F). This effect is exacerbated as
more genes are added and results in increasingly similar correlations
between a sample and any given centroid (Fig. 1C, D and F,
Supplementary Fig. S3).

3.1.2 Absolute Intrinsic Molecular Subtyping — AIMS

The AIMS method was applied with default settings (cv-folds =20,
k range = 2:50 rules per class). The peak average cross-validation ac-
curacy was reached at 22 rules per subtype for both the Lund2017
(0.84) and TCGA (0.87) models (Fig. 2A and B). The Lund2017
model had an accuracy of 0.93 when reapplied to the training data,
and a prediction accuracy of 0.73 on the TCGA dataset. The TCGA
model had a training accuracy of 0.93, but a low accuracy of 0.53
when applied to the Lund2017 data. The rule-based classifiers
trained on isolated datasets contained several rules which were sub-
type specific in the training data but performed poorly in the test
dataset. Rather than failing to indicate the expected subtype, these
were commonly TRUE or FALSE across almost the entire test data-
set, meaning that the informative expression ratio crossover did not
occur on the test platform (Supplementary Fig. S4). Gene pair rules
that function across platforms may be identified by training the clas-
sifier on mixed data. We built classifiers on five different 80/20
training/test splits of mixed Lund2017/TCGA data. The training ac-
curacy on mixed data was similar to the isolated datasets (Fig. 2C),
and the prediction accuracies on the test sets ranged between 0.80
and 0.91 (Supplementary Table S1). Since subtype proportions were
similar between the datasets, we calculated AUC values for each
rule as a crude measure of platform specificity, which showed that
mixed data models included fewer rules with clear platform specific
behavior than models trained on isolated datasets (Supplementary
Fig. S5). Rules identified on RNA-seq data more commonly perform
poorly on the microarray data than vice versa, likely due to the
more limited dynamic range of arrays. The benefit of mixing data
was seen also when the five training sets were reduced from 555 to
350 samples each, and when the training data proportions were
skewed to include 20/80 of samples from the respective platforms
(test accuracies of 0.80-0.93).

3.1.3 k-TSP

We used switchBox (SB) to train one-versus-rest k-TSP classifiers for
each subtype. The five classifiers were used for multi-class prediction
by applying each classifier to a sample and calling the subtype as-
signment based on the highest individual classifier score. The opti-
mal number of rules was determined independently for each
classifier, meaning that a different number of rules may be selected

AIMS AIMS
Training: Lund2017 Training: TCGA
00 0

AlMs
Training: 80% CV_1
00 4

>
(]

1 1
o o &
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Fig. 2. Cross-validation accuracy and overall training accuracy during AIMS model
training. The training accuracy of 20-fold CV and direct application on the training
data evaluated using between 1 and 50 rules on (A) Lund2017, (B) TCGA and (C)
mixed data. The optimal number of rules is determined by the peak 20-fold CV
accuracy

for each class. With default settings, the Lund2017 k-TSP model
had a training accuracy of 0.94 and a prediction accuracy of 0.80 on
the TCGA dataset, while the TCGA model had a training accuracy
of 0.92 and a prediction accuracy of 0.76 on the Lund2017 data
(Supplementary Table S1). The models built on mixed training data
had prediction accuracies between 0.83 and 0.86 on the five 20%
test sets. When the prediction is based on votes from multiple inde-
pendent classifiers there may be tied scores, particularly if few rules
are used. In a two-class problem, this can be avoided using an odd
number of rules, but this does not work for multi-class prediction.
We evaluated the occurrence of tied scores by forcing the individual
subtype classifiers to use a fixed number of rules (ranging from 2 to
50). Tied scores were prevalent when less than 10 rules per class
were used, indicating that increasing the number of rules may be
warranted for multi-class prediction tasks (Supplementary Fig. S6).
Increasing the number of input genes to include the top 500 up- and
downregulated and the max number of allowed rules to 50 resulted
in modest improvements in prediction accuracies (0.81 for the
Lund2017 and 0.84 for the TCGA classifiers). With these settings,
switchBox consistently selected a higher number of rules for the final
model for most classes, regardless of training dataset
(Supplementary Table S1). The classifiers trained on mixed data
also reached slightly higher peak prediction accuracy when more
genes and rules were allowed, ranging between 0.82 and 0.88 on the
test sets. The inclusion and behavior of platform specific rules was
similar to that observed for the AIMS models (Supplementary Fig.
s5).

We evaluated modifications to the gene and rule selection meth-
ods implemented in switchBox, including one-versus-one gene filter-
ing, platform-wise gene filtering, platform-wise rule scoring and
one-versus-one rule scoring. For bladder cancer subtype prediction,
none of these modifications resulted in significant improvements
(Supplementary Methods). We examined the potential benefit of
expanding the pool of available rules by allowing selected differen-
tially expressed genes to form gene-pairs also with the remaining
genes in the training data. A non-informative gene may form a high-
ly informative rule by acting as a pivot point for the differentially
expressed ones. The classifiers using pivot genes had similar


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab763#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab763#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab763#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab763#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab763#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab763#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab763#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab763#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab763#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab763#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab763#supplementary-data

1026

P.Eriksson et al.

performance to those only using differentially expressed genes and
had similar levels of platform specific rules (Supplementary Table
S1, Supplementary Fig. S5).

3.1.4 Rule-based Random Forest

We evaluated seven models with different combinations of input
genes (g) and rules (r) per class (10g/10r, 20g/20r, 50g/50r, 100g/
100r, 200g/10r, 200g/50r and 200g/200r). The Lund2017 classifiers
had OOB accuracies between 0.88 and 0.95 and prediction accura-
cies between 0.80 and 0.85 applied on TCGA data (Fig. 3A). The
TCGA classifiers had OOB accuracies between 0.89 and 0.94, while
the accuracy on the Lund2017 dataset ranged between 0.75 and
0.84 (Fig. 3B). Models trained on mixed data had an average OOB
accuracy of 0.91 (0.87-0.94) and prediction accuracies between
0.83 and 0.92 on the five test splits (Fig. 3C, Supplementary Table
S1). Despite minor differences in prediction accuracy, prediction
scores were very consistent between smaller and larger models, with
prediction shifts occurring mainly in samples with low prediction
scores regardless of model size. In addition, no tied scores were
observed even when few genes and rules were utilized. As the RF
models use a preset number of rules, we examined if all were inform-
ative to the final model. We applied the Boruta algorithm which
compares the importance of each feature in the model with per-
muted versions of themselves. Nearly all rules were considered in-
formative in the smaller models, but in the larger models (100genes/
100rules and 200genes/200rules) approximately 30% and 50% of
rules were considered uninformative. These could be discarded with-
out any loss in performance (Supplementary Table S1), representing
a reduction of required genes by 15% and 30%, respectively. The
platform specificity of the RF rules was similar to that observed for
AIMS and k-TSP models (Supplementary Fig. S5).

3.1.5 Biological evaluation of predictor output scores

Next, we examined the prediction output scores of the different clas-
sifiers (Fig. 4). While the accuracy of a classifier is a primary per-
formance metric, the ability to gain additional information from the
predictor should also be considered. For the models trained on iso-
lated datasets, we plotted the prediction scores from the training
data and the respective test dataset. The subtype calls were, with a
few exceptions, similar between the different predictor methods, but
with large differences in score behavior. The score (correlation to
centroids) for the conventional centroid classifier trained on
Lund2017 and TCGA data showed an expected behavior, with a
separation between samples with high correlation to the Uro and
GU centroids and those with a correlation to the Ba/Sq, Mes-like
and Sc/NE centroids, reflecting a biological split between subtypes
that retain degrees of urothelial differentiation and those that dis-
play divergent differentiation. An expected increased correlation to
the Ba/Sq centroid was observed for the UroB subcategory, as both
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Fig. 3. Random Forest model performance. Top row: Training and prediction accur-
acy across models trained on (A) Lund2017, (B) TCGA and (C) mixed Lund2017/
TCGA data Bottom row: Average score difference between the predicted and second
closest class
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Fig. 4. Predictor output scores on bladder cancer data. (A) Models trained on
Lund2017 data (training predictions left) and applied to the TCGA dataset (right).
(B) Models trained on TCGA data (training predictions right) and applied to the
Lund2017 dataset (left)

groups have high expression of basal keratins and basal markers.
Sample with higher stroma and immune content in the biopsy across
the dataset showed increased correlation to the Mes-like centroid.
Mes-like tumor cells express mesenchymal genes and downregulate
many epithelial genes. Expression profiles from high stroma content
biopsies can therefore resemble the Mes-like subtype when com-
pared against less infiltrated cases. Nearly all Ba/Sq and Mes-like
tumors have a high infiltration while this is only the case for some
Uro and GU tumors (Supplementary Fig. S7). The SS-centroid pre-
dictions were similar to the conventional centroid but with dimin-
ished differences in correlation between any subtype call, while
remaining similarly affected by tumor purity and differentiation
state. The AIMS method had the most distinct prediction scores,
approximating 1 for the called class and 0 for the remaining classes
in most samples, in both training and test data. High prediction
scores were however also seen for clear misclassification events,
such as predicting any stroma-rich biopsy as Mes-like when the
TCGA model was applied to the Lund2017 cohort. The non-inform-
ative score leaves uncertain or potentially incorrect predictions
harder to identify and interpret. The scores from the k-TSP and RF
classifiers were more distinct than the centroids, while more clearly
reflecting prediction confidence than the AIMS score. The degree of
infiltration did not strongly impact the predictions scores. Notably,
both the k-TSP and RF classifiers trained on Lund2017 data indi-
cated that only a smaller number of TCGA samples belonged to the
Mes-like class. These samples also had higher Out-of-Bag Mes-like
scores in the TCGA model. The Mes-like subtype is difficult to call
without proper immunostainings, and hence there is a higher risk of
incorrect reference labels in the TCGA dataset. The higher Mes-like
recall of the Lund2017 centroids could be interpreted as a drawback
of the model if this is achieved by predicting both tumors truly of
the Mesenchymal-like subtype as well as those with the highest level
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of stroma infiltration as Mes-like. Examination of the expression
patterns of epithelial and stromal genes across the Mes-like tumors
did lend support to the narrower calls made by the k-TSP and RF
predictors (Supplementary Fig. S8). The Lund2017 classifiers and
TCGA OOB scores also indicated a smaller fraction of TCGA
tumors to be of the S¢/NE subtype. The samples most consistently
classified as Sc/NE were those that showed the strongest upregula-
tion of neuroendocrine genes (e.g., TUBB2B, CHGA, ENO2, SYP),
and low expression of many epithelial genes. Notably, the OOB pre-
diction scores of an RF model trained on the full combined dataset
closely matched the OOB patterns of the individual dataset models,
indicating that the score reflects true biological differences
(Supplementary Fig. S9). Given that the prediction scores of k-TSP
and RF best reflected known nuances of the data in terms of bio-
logical properties and reference label uncertainties and were applic-
able also to the full 7-class Lund stratification (dividing Urothelial-
like tumors into subcategories UroA, UroB and UroC), and to classi-
fication according to consensus labels across 18 datasets
(Supplementary Methods), we evaluated these two methods further.

3.2 Results on additional datasets

3.2.1 Breast cancer

We used 3814 RNA-sequenced samples from the Swedish
Cancerome Analysis Network-Breast project (Brueffer er al., 2018).
The k-TPS and RF models were trained to predict Luminal A,
Luminal B, HER2-enriched, Basal-like and Normal-like classes on
50% of the samples (7 =1907) using supplied centroid-derived ref-
erence labels. The k-TSP models had training accuracies between
0.81 and 0.88 and prediction accuracies between 0.78 and 0.85,
while RF models had between 0.88 and 0.92 OOB accuracy and
0.86—0.89 prediction accuracy (Supplementary Table S1). To exam-
ine the prediction results in more detail, we applied dimensionality
reduction on both the rules and genes used by the RF model using
PHATE (Moon et al., 2019). For the binary classifier rules, a matrix
of precomputed Hamming distance was used as input. Both genes
and rules gave similarly coherent representations of the dataset
structure (Fig. SA and B). Samples that received prediction labels
not conforming with the reference were either in close proximity to
the predicted subtype or in the transitional zone between subtypes.
Prediction differences between models were confined to such sam-
ples. Breast cancer represents an interesting classification challenge
as the transition between Luminal A (LumA) and Luminal B (LumB)
is gradual, reflecting a split based on proliferation which is a con-
tinuous variable. We noted that proliferation, as measured by the
mean log2 expression of 138 late cell-cycle genes, did not conform
fully with the reference split between LumA and LumB (Fig. 3).
Inconsistencies regarding proliferative markers between breast can-
cer datasets classified through different methods have been reported
(Prat and Parker, 2020), as has concordance issues between different
predictor models (Sontrop et al., 2016) and prediction shifts related
to cohort centering (Cascianelli et al., 2020; Paquet and Hallett,

A Training Samples

PHATE-Rules SCANB
Reference Labels

B Test Samples

PHATE-Rules SCANB
OOB Predictions

PHATE-Rules SCANB

Late Cell Cycle levels Reference Labels

PHATE-Rules SCANB

2015). More gradual class splits such as LumA/LumB likely war-
rants careful classifier tuning to achieve reliable cross-dataset per-
formance. Through the RF method, a proximity matrix can be
extracted based on the number of times different Out-of-Bag sam-
ples end up in the same terminal node during the classifier training
(Fig. 5C). This can give an indication of reference class cohesive-
ness, how broadly inclusive the decision trees are for different
classes, and which samples have uncertain or potentially incorrect
reference label. In the SCANB dataset, this indicated that a propor-
tion of LumA and B tumors showed lower cohesion with other sam-
ples, which largely corresponded with proliferation estimates that
deviated from that of their respective subtype (Fig. 5C).

3.2.2 Lung cancer

Next, we evaluated the k-TSP and RF approach in a lung cancer
meta-cohort previously utilized to examine SSPs across heteroge-
neous datasets (Cirenajwis ef al., 2020). A set of 1918 samples was
used to evaluate of tumor histology prediction (adenocarcinoma
(AC) versus squamous cell carcinoma (SqCC)). The models were
trained on 1150 samples from seven datasets and applied to a test
set of 768 samples from five datasets (Supplementary Table S1). For
this binary problem, the k-TSP method outperformed the RF
method, with each k-TSP variation selecting between 9 and 13 rules,
with a high degree of rule overlap between models and prediction
accuracies between 0.91 and 0.92. The RF accuracy varied between
0.69 and 0.92, with low accuracy in two models due to poor accur-
acy in a large dataset using the older HG U95Av2 Affymetrix plat-
form. Rule behavior in this dataset deviated from the other
platforms, which resulted in mixed prediction scores across all k-
TSP and RF models but extensive misclassification in two RF models
(Supplementary Fig. S10). When classifiers were trained on mixed
samples (50%) from all platforms, prediction accuracies on the
remaining samples ranged between 0.92 and 0.95 across models
(Supplementary Table S1). Subtype prediction among AC tumors
into either terminal respiratory unit (TRU) or non-TRU subtype was
performed on 2106 samples from 13 datasets, using 1429 training
samples (7 datasets) and 677 test samples (6 datasets). Accuracies
for the k-TSP models ranged from 0.71 to 0.73, and RF between
0.69 and 0.81, with the same HG U95Av2 Affymetrix dataset being
the primary source of misclassification events. Training on mixed
samples (50%) from all platforms, the k-TSP achieved 0.86-0.87 ac-
curacy on the remaining samples, while the RF accuracy ranged be-
tween 0.85 and 0.92 (Supplementary Table S1).

3.2.3 Pan-cancer

Finally, we applied the rule-based predictor methods on 10 088 sam-
ples from the TCGA Pan-Cancer dataset to predict the tumor type,
representing a problem with a high number of biologically distinct
classes. We used 5044 samples spanning 32 cancer types for training
(colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ)
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merged into a COADREAD class) and performed the prediction on
the remaining 5044 samples. The k-TSP methods achieved prediction
accuracies between 0.89 and 0.92, while the RF approach (using 25
genes and rules per class and 200 from the ‘All’ model) had an OOB
training accuracy of 0.97 and a prediction accuracy of 0.96
(Supplementary Fig. S11, Supplementary Table S1). We observed tied
scores for 17-574 cases depending on which k-TSP variation was
used, while no scores were tied with the RF method (Supplementary

Table S1).

4 Discussion

The aim of molecular subtyping is to resolve cancer into homogeneous
subgroups based on shared molecular features. Gene expression-based
stratification of cancer into subtypes have been explored in most forms
of cancer and have demonstrated both prognostic and predictive value.
Molecular subtypes are often defined within investigations of relatively
small cohorts of dozens to a few hundred tumor samples. To validate a
molecular stratification and expand on clinical and biological associa-
tions, a common approach is to develop a prediction model that can be
applied to new samples or publicly available datasets. Commonly used
classification methods utilized in research are often trained on, and
applied to, row-centered gene expression data (genes in rows and sam-
ples in columns), meaning that they rely on relative expression differen-
ces between samples. Prediction results from such classifiers can be
severely affected if the subtype distribution of a new cohort differs sig-
nificantly from that of the training cohort. If the data from the new co-
hort has been generated with the exact same method it is possible to
effectively normalize and integrate it for compliance with a prediction
model. However, as research cohorts from different studies can be gen-
erated on diverse platforms and may differ in many other clinical, bio-
logical or methodological aspects, such normalization strategies are
often challenging. A SSP is applied to a new sample in isolation without
relying on cohort row-centering, effectively bypassing the issue of rela-
tive expression differences. This approach is advantageous in e.g., clinic-
al tests or prospective molecular subtyping, where invariant predictions
of individual samples are needed. Similar to relative classifiers, this is
simplified if the platform remains identical. Given the large amount of
publicly available transcriptomic research data across diverse platforms,
a SSP with robust performance also across platforms would be highly
useful. The rule-based classifiers that were trained on isolated bladder
cancer datasets showed transferability between array and RNA-seq plat-
forms, performed well when trained on two bladder cancer datasets
and applied to 16 separate cohorts or vice versa, and performed well on
most dataset in lung cancer. In the lung cancer evaluation, we saw plat-
form issues with an older microarray dataset that was not represented
in the training cohort. The rule-based classification approach boils
down to the identification and utilization of subtype-informative gene-
pair ratios that are captured across gene expression profiling methodol-
ogies. Gene-length normalized RNA-sequencing data (e.g., TPM or
FPKM) can be expected to better reflect the quantitative ranking of
gene mRNAs compared with signal intensities from microarrays (Smid
et al., 2018). Correlations ranging roughly between 0.6 and 0.8 have
been reported between RNA-sequencing and microarray signal inten-
sities (Black ez al., 2014), which may vary further depending on plat-
form and data preprocessing approach (e.g., RMA, GCCN and SST). If
data from a new platform deviates greatly in dynamic range from that
of the training cohort, or does not at least partly reflect true mRNA
quantities, a number of rules may be affected to the detriment of the
prediction results. Therefore, as with any research classifier, compatibil-
ity with new data should be evaluated and verified, particularly if the
expression platform was not represented in the training data. Inclusion
of mixed cohorts during training improved the cross-platform behavior
of the selected rules, and this approach has been used in published rule-
based classifiers such as the AIMS breast cancer subtype predictor. This
could potentially be extended further using additional versions of the
training data, preprocessed using different RNA-seq quantification or
microarray summarizing methods to find stable rules. We found that
the rule-based SSPs performed excellent when trained and tested on 50/
50 data-splits of SCANB and Pan-Cancer TCGA data, indicating robust
performance when applied to uniformly generated data. Prediction

results in most tests were also stable even when relatively few genes
were used, suggesting that these methods may be applicable to panel-
based mRNA quantification methods like Nanostring nCounter. Many
tumor classification systems include sample categories partly defined by
their high degree of non-tumor cells. Such infiltrated categories can be
relatively uninformative regarding tumor cell features. Intrinsic tumor
cell properties certainly play a role in the composition of the tumor
mass, e.g., by being immune-attracting or having a propensity for inva-
sive growth, but low purity can also be caused by general inflammation
or tissue sampling. Bladder cancer tissue specimens may come from
papillary (exophytic), flat or inverted (endophytic) or invasive lesions,
contributing to the variability of biopsy cellularity even if tumor-rich
areas are microdissected for analysis. An analysis of purity across
TCGA cohorts indicated that bladder cancer had among the lowest
average purity scores and high variability between samples (Aran et al.,
2015). Tumor purity can affect transcriptomic data interpretation both
during subtype discovery and classification of new samples. As gene ex-
pression preprocessing often involves normalization steps where data
distributions are matched across samples, e.g., through quantile normal-
ization, expression originating strictly from tumor cells will appear
lower in low purity tumor biopsies. This affects both clustering and
many prediction models. Our previous studies of bladder cancer,
employing both gene expression and immunohistochemistry, revealed
that discrete tumor cell phenotypes determined by IHC often drift apart
during gene expression clustering due to differences in purity (Sjodahl
et al., 2017). The rule-based predictors relative invariance to purity sug-
gests that they could be useful in classification tasks where cellularity
poses a problem. As immunological and stromal properties of the tumor
can also be biologically and clinically important, a more comprehensive
approach could entail calling the molecular subtype of the tumor cells,
and separately assessing purity, immune and microenvironment fea-
tures. Rule-based SSPs have shown applicability also in these latter
tasks. For example, prediction of tumor immune properties has been
demonstrated across TCGA cohorts (Gibbs, 2020), and expression-level
estimations of various gene pathways have been demonstrated in breast
cancer (Paquet et al., 2017). Rule-based methods may prove valuable in
many research efforts, such as consolidating transcriptomic profiling
results from multiple studies, performing prospective tumor subtyping,
evaluating existing classifications, and building preprocessing-free gene-
panel-based predictors. The k-TSP and the new RF method most closely
matched the properties we sought in a multiclass single-sample classifier
and have been made available through our R package ‘multiclassPairs’
which allows for easy training and prediction as well as extensive par-
ameter tuning by the user.
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