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Progenitor cells can be obtained by outgrowth from tissue explants during primary ex vivo tissue culture. We have isolated
and characterized cells outgrown from neonatal mouse pancreatic explants. A relatively uniform population of cells showing
a distinctive morphology emerged over time in culture. This population expressed monocyte/macrophage and hematopoietic
markers (CD11b+ and CD45+), and some stromal-related markers (CD44+ and CD29+), but not mesenchymal stem cell
(MSC)-defining markers (CD90− and CD105−) nor endothelial (CD31−) or stem cell-associated markers (CD133− and stem
cell antigen-1; Sca-1−). Cells could be maintained in culture as a plastic-adherent monolayer in culture medium (MesenCult
MSC) for more than 1 year. Cells spontaneously formed sphere clusters “pancreatospheres” which, however, were nonclonal.
When cultured in appropriate media, cells differentiated into multiple mesenchymal lineages (fat, cartilage, and bone). Positive
dithizone staining suggested that a subset of cells differentiated into insulin-producing cells. However, further studies are
needed to characterize the endocrine potential of these cells. These findings indicate that a myelomonocytoid population from
pancreatic explant outgrowths has mesenchymal differentiation potential. These results are in line with recent data onmonocyte-
derivedmesenchymal progenitors (MOMPs).

“M.-E. Roehrich passed away whilst this article was in press.”

1. Introduction

The pancreas is a complex organ consisting of three prin-
cipal cell types: endocrine islets, exocrine acini, and ducts.
Evidence of differentiation of new β-cells from pancreatic
nonislet cells suggests the existence of pancreatic nonen-
docrine stem/progenitor cells [1, 2]. New β-cells may also
result from replication of preexisting β-cells [3], or from
progenitor cells originating from the ductal epithelium [4–
6] or the exocrine tissue of the pancreas [7–9]. Pancreatic
progenitor cells express key transcription factors involved
in the embryological development of endocrine cells such
as pancreatic and duodenal homeobox factor 1 (Pdx1),

neurogenin 3 (Ngn3) and paired box 4 (Pax4), or embry-
onic markers such as Oct-4 and Nanog, or nestin [10].
Pancreatic progenitor cells have been prospectively isolated
by fluorescence-activated cell sorting (FACS) using specific
antibodies that recognize cell-surface epitopes expressed by
stem/progenitor cells in other tissues, such as CD133, CD117
(c-kit/stem cell factor receptor), ATP-binding cassette (ABC)
G2, and mesenchymal stem cell (MSC) markers [11–15].

An alternative method for the isolation of tissue-resident
progenitor cells is the explant outgrowth approach. This
method does not rely on positive cell selection. Within tissue
explants, progenitor cells are located in close proximity to
stem cell niches, which regulate stem and progenitor cell
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function [16]. These cells may become activated during
ex vivo primary tissue culture, migrate across chemotactic
gradients towards the surface of the tissue explant, are
shed by it, and form a monolayer. Primary tissue cultures
of the adult or embryonic pancreas have been described
extensively [17]. In contrast, data on pancreas explant
cell outgrowths are limited. Using the explant outgrowth
technique, Schneider et al. [18] isolated stellate cells from
pancreata of rats with cerulein pancreatitis. Bläuer et al.
[19] designed a new explant outgrowth system that allowed
for the isolation of pancreatic acinar cells at the gas-
liquid interphase. Carlotti et al. [20] reported that the cell
outgrowth from isolated human islets was comprised of
adherent fibroblastoid cells that expressed MSC and pericyte
markers, as well as nestin and vimentin, but not genes
for endocrine hormones. When cultured under appropriate
conditions, these cells differentiated into adipocytes and
osteoblasts lineages and expressed insulin, glucagons, and
somatostatin genes. Several other studies attempting to
generate β-cells from precursor cells from endocrine or
exocrine pancreatic explants documented the presence of
plastic-adherent mesenchymal cells in cell cultures [21–25].
While early studies suggested that epithelial-to-mesenchymal
transition by β-cells might be responsible for the occurrence
of these mesenchymal cells [21], this assumption was recently
refuted based on lineage tracing experiments [26–29].

MSCs are multipotent precursor cells for stromal cells,
which are capable of differentiating into multiple ectoder-
mal, mesodermal, and endodermal tissues [30]. As such,
they have been considered a source of cells for therapeutic
approaches for various conditions, including type-1 diabetes.
Experimental evidence suggests bone marrow (BM), or
adipose tissue-derived MSCs are capable of differentiating
into insulin-producing cells in vitro and contribute to the
restoration of normoglycemia in animal models of diabetes
in vivo [31, 32]. Human mesenchymal stromal cells that
differentiate and mature to hormone-expressing cells in vivo
have been referred to as islet-derived precursor cells (IPCs)
[33]. Recent evidence suggests MSCs may act as trophic
mediators to attenuate β-cell death and activate endogenous
regenerative mechanisms [34–41].

The present study aimed to characterize the mouse
pancreas explant cell outgrowth during ex vivo tissue
culture. Unlike Carlotti et al. [20] who studied islet out-
growths, we used whole pancreas explants. We reproducibly
obtained a population of cells that exhibited a relatively
uniform morphology and a stable cell-surface marker pro-
file. The latter was characterized by expression of mono-
cyte/macrophage and hematopoietic markers (CD11b and
CD45), pericyte/perivascular markers (neuron-glial antigen
2 [NG2] proteoglycan and, to a lesser extent, CD146)
[42], and certain MSC and/or endothelial progenitor cell
(EPC) markers (CD29 and CD44), but not MSC-defining
(CD90 and CD105) and endothelial (CD31) markers. The
isolated myelomonocytoid population was propagated for
up to 5 passages and was maintained in culture as a
monolayer for more than 1 year with no major mor-
phologic or immunophenotypic changes. Plastic-adherent
cells spontaneously formed spherical clusters that detached

from plastic, which is considered a feature of stemness
[43]. They were capable of differentiating along multiple
mesenchymal lineages (fat, cartilage, and bone) although
this was not demonstrated with single-cell cloning. These
findings indicate that pancreas explant cell outgrowths can
give rise to a myelomonocytoid population endowed with
mesenchymal differentiation potential. These findings are
inline with recent data on monocyte-derived mesenchymal
progenitors (MOMPs) [44].

2. Materials and Methods

2.1. Cell Isolation and Culture. Pancreatic explants were
obtained from neonatal (1-2 days of age) male C57Bl/6
mice (from Charles River Laboratories, France) or C57BL/6-
Tg(CAG-EGFP)1Osb/J transgenic mice expressing enhanced
green fluorescent protein (EGFP) from an immediate-early
CMV promoter (gift of T. Pedrazzini, CHUV, Lausanne). Tis-
sue explants were rinsed abundantly with heparinized saline
and then cut into small pieces that were placed in Corning
Costar 6-well culture plates (Sigma) with no extracellular
matrix (EMC) protein coating. Explants were cultured in
MesenCult (MesenCult MSC Basal Medium [Mouse] supple-
mented with serum-containing MesenCult MSC Stimulatory
Supplements [Mouse], both from Stem Cell Technologies).
After 2 weeks, tissue explants were removed from the culture
plates, while the cell outgrowth was left in place. When
adherent cells formed a nearly confluent monolayer, they
were detached from plastic with PBS-EDTA, collected, and
seeded onto new plates. In separate experiments (n = 2),
cells were cultured in Dulbecco-modified Eagle medium
supplemented with 10% fetal calf serum (DMEM-10%
FCS), with or without granulocyte-macrophage colony-
stimulating factor (GM-CSF). In a separate experiment, cells
were cultured using a MethoCult (Stem Cell Technologies)-
based 3D system.

2.2. Flow Cytometric Analyses. For flow cytometric analyses
(n = 6), cells were gently detached from plastic with
PBS-EDTA, filtered through a 70-μm filter, centrifuged, and
resuspended in reagent A Leucoperm B4FO9B (AbD Serotec)
for 15 min at RT. Then, PBS was added, and cells were cen-
trifuged, resuspended in reagent B, incubated with primary
antibody (see Supplementary Table 1 available online at doi:
10.1155/2012/429868) for 30 min at RT, and washed with
PBS. When needed, cells were resuspended in reagent B and
incubated with mouse anti-rat Alexa 488 (1 : 25 dilution) for
30 min at RT. Flow cytometric analyses were performed using
a FACSCalibur system (BD Bioscience) and the CellQuest
software. Gates used to resolve antigen-expressing cells were
set using appropriate isotype-specific control antibodies.

2.3. Immunocytochemistry. Immunocytochemistry was per-
formed as previously described [45]. Briefly, cells were seeded
on Lab-Tek Chamber-Slides (Nunc) and fixed with 1%
paraformaldehyde (PFA). For immunostaining of NG2 pro-
teoglycan, a polyclonal rabbit anti-NG2 antibody (Chemi-
con/Millipore) followed by a goat-anti-rabbit secondary Ab
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Figure 1: (a) Phase photomicrograph of a pancreatic explant with outgrowing cells in the primary ex vivo tissue culture. (b) High
magnification view of an expanded pancreas-derived cell showing a characteristic Gingko biloba leaf-like shape (insert). (c and d) Expanded
pancreas-derived cells showing refringent nuclei and thin cytoplasmic processes. (e) Expanded pancreas-derived cells showing a “stellate”
pattern of cytoplasmic processes (arrows) with knobs on their extremities.

labeled with Alexa 488 (Invitrogen; 1 : 400 dilution) was
used. Nuclei were stained with DAPI.

2.4. Sphere Formation and Clonogenicity. Free-floating
spherical clusters formed spontaneously from monolayers
of plastic-adherent cells plated on Corning Costar 6-well
plates (n = 2 experiments). To assess whether spherical
cell clusters were clonally derived, mixtures of pancreatic
cell outgrowths from C57BL/6 wildtype (WT) and from
C57BL/6-Tg(CAG-EGFP) 1Osb/J transgenic mice were
cultured at varying cell ratios. Spheres were analyzed for
green fluorescent areas under the fluorescence microscope
after 3 weeks (n = 1 experiment).

2.5. Differentiation Assays and Cell Staining. To induce adi-
pogenic, osteogenic, and chondrogenic differentiation, pan-
creatic outgrowth-derived cells were cultured for 3 months in
MesenCult and then changed to NH AdipoDiff, OsteoDiff,

and ChondroDiff Media (all from Miltenyi), respectively,
for 17 days. Adipogenic differentiation was detected by
incubating cells with 1% PFA for 10 min, followed by Oil
red-O solution for 15 min, and three PBS washes. Osteogenic
differentiation was detected by incubating cells with 1% PFA
for 10 min, followed by 2% Alizarin red for 5 min, and three
PBS washes. Chondrogenic differentiation was detected by
staining cells with Alcian-blue. For detection of pancreatic β-
cells, cells cultured in MesenCult supplemented with 1.27 μM
dexamethasone for 18 days were incubated with 1% PFA for
10 min, and stained with the zinc-chelating agent, dithizone
(Merck) [46–49], for 15 min according to the manufacturer’s
instructions.

3. Results

3.1. Cell Morphology and Culture. Using the explant out-
growth approach, cells shed by cultured pancreatic explants
from neonatal mice were observed on day 3-4, initially as a
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Figure 2: Flow cytometric analyses of the cell-surface marker profile of pancreas outgrowth-derived cells. (a) Representative analysis
of cell-surface marker expression of cells cultured 2 months in MesenCult. Blue, green, and orange colors indicate APC, FITC, and PE
fluorochromes, respectively. Selected markers (CD45, CD105, CD106, and CD133) were determined with two different fluorochromes. (b)
Mean percentages (±SD) of cells expressing the indicated cell-surface markers (n = 6 analyses; 3–5 samples for each marker, excepted for a
subset of markers [NG2, CD29, CD146, CD34, CD38, MHC-II, CD40, and Flk-1] for which a single measure is available).

heterogeneous population of plastic-adherent cells showing
both spindle-shaped and round morphologies (Figure 1(a)).
After 4–6 weeks, cells acquired a relatively uniform mor-
phology characterized by one or multiple thin cytoplasmic

processes carrying a knob on their extremities (this distinc-
tive cell morphology resembled a gingko biloba leaf; Figures
1(b) and 1(d)). Cells with multiple thin processes exhibited
a stellate shape, whereby processes from neighboring cells
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Figure 3: NG2 expression by pancreas outgrowth-derived cells. (a) NG2 immunostaining using an Alexa 488-labeled secondary antibody
(green); nuclear staining with DAPI (blue). (b) Control (secondary antibody only).

appeared to establish inter-cellular contacts (Figure 1(e)).
Cells grew slowly and were propagated for up to 5 passages.
They could be maintained in culture for more than 1 year.

3.2. Cell-Surface Marker Profile. Cells cultured for 2 months
in MesenCult were analyzed by flow cytometry. They
expressed lineage (Lin) differentiation antigens, the com-
mon leukocyte antigen CD45, the monocytic marker
CD11b, the hematopoietic marker c-kit (CD117), the peri-
cyte/mesoangioblast markers NG2 proteoglycan, and CD146
[24], CD44 (a receptor for hyaluronic acid considered a MSC
and EPC marker), and CD29 (integrin β1/fibronectin recep-
tor; Figure 2). NG2 expression was demonstrated immuno-
cytochemically (Figure 3). Stem cell antigen-1 (Sca-1), CD34
(an hematopoietic and EPC marker), CD133 (a stem cell
marker), CD31 (an endothelial marker), CD90 (THY1 T-
cell antigen; a MSC marker), and CD105 (endoglin; a MSC
marker) were expressed by small cell subsets. CD38, CD40,
Flk-1, and major histocompatibility complex (MHC) class II
molecules were not expressed. In cells cultured in MesenCult
for 2 months and then changed to DMEM-10% FCS for
3 weeks, CD45+, CD11b+, or c-kit+ subsets were reduced
by approximately half compared with cells maintained in
MesenCult (Figure 4). Cell culturing in DMEM-10% FCS
supplemented with GM-CSF did not alter CD45, CD11b, and
c-kit expression (data not shown).

3.3. Nonclonal Sphere Formation. The isolated population
formed spherical clusters that detached from plastic and
floated free in the medium. Spheres collected and plated
onto new plates disaggregated and gave rise to a monolayer
of sphere-derived cells, which were able to form a second
generation of spheres. This procedure could be repeated for
3 cycles, at least. We tested the clonality of first-generation
spheres by culturing mixtures of cells derived from GFP
transgenic and WT mice. While spheres formed by GFP
cells were entirely green fluorescent, and those formed by
WT cells were non-fluorescent, those formed by mixtures of
GFP and WT cells included both green fluorescent and non-
fluorescent areas (Figure 5), indicating nonclonality.

3.4. 3D-Cell Culture System in MethoCult. Cells placed in
a 3D-culture MethoCult system formed long, dendritic-like
filaments after 4 to 8 days in culture (Figure 6).

3.5. Cell Differentiation Potential. Under appropriate condi-
tions, pancreas outgrowth-derived cells differentiated along
osteogenic, chondrogenic, and adipogenic lineages, as evi-
denced by Alizarin-red (Figure 7(a)), Alcian-blue (Figure
7(b)), and oil red-O staining (Figures 7(c) and 7(d)),
respectively. Dithizone staining was positive for a subset of
cells cultured in 1.27 μM dexamethasone/MesenCult for 18
days (Figures 7(e) and 7(f)).

4. Discussion

The main finding of the present study is that cells obtained
by outgrowth from murine pancreas explants in MesenCult
give rise to a population of myelomonocytoid cells endowed
with mesenchymal differentiation potential. These cells
also stain positive with dithizone, a zinc-chelating agent
commonly used to detect insulin-producing cells [46–49].
The endocrine differentiation potential of these cells is being
addressed in an ongoing study. In the present study, we focus
on their phenotype and MSC-like characteristics.

Monocyte-derived cells include macrophages, fibrocytes,
dendritic cells, osteoclasts, and adipocytes. Monocytes,
unlike macrophages and fibrocytes, do not express CD105
[50–52]. Because the isolated population lacks CD105
expression, it appears to have a monocytoid phenotype.
This population meets only part of the minimal criteria for
defining MSC established by the International Society for
Cellular Therapy [53]: plastic-adherence in standard culture
conditions and capacity to differentiate into osteoblasts,
adipocytes, and chondroblasts in vitro (in the present study,
multilineage differentiation potential was not demonstrated
with single-cell cloning). Regarding the cell-surface marker
profile, the minimal criteria for defining MSC, namely,
expression of CD105 and CD90 but not CD45, are not met.
However, other MSC/stromal markers (CD44 and CD29)
and pericyte/perivascular markers (NG2 and CD146) are
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Figure 4: Effects of the culture medium on cell morphology and antigen expression. (a–c) Cells cultured in MesenCult for 1 month display
highly refringent nuclei, gingko biloba leaf-like shapes, and CD45, CD11b, and CD117 expression. (d–f) Cells initially derived in MesenCult
and then changed to DMEM-FCS 10% show less refringent nuclei, rhomboid shapes, and decreased subsets of CD45+, CD11b+, or CD117+

cells.

expressed [42]. In this regard, it has been shown that human
MSCs in several organs originate from pericytes/perivascular
cells and express NG2 [54]. For comparison, previous
studies have shown that human islet outgrowths are positive

for multiple MSC and pericyte markers (CD105+, CD90+,
CD44+, CD29+, NG2+, and CD146+) but negative for CD45.

Pancreas-derived cells cultured in the 3D-MethoCult sys-
tem exhibit a dendritic or oligodendrocytic-like morphology
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Figure 5: Photomicrographs and UV photomicrographs of sphere clusters formed by pancreas outgrowth-derived cells from either WT or
GFP-transgenic mice, or by mixtures of the two. The latter show a patchy white/green pattern under the UV light, indicating that spheres are
nonclonal.

characterized by multiple branched filaments. Microglia have
a CD11b+CD45lo phenotype and can be distinguished from
primary macrophages on the basis of their CD45 expression
level [55]. Differentiation of mouse BM-derived stem cells
toward microglia-like cells has been reported [56].

The isolated myelomonocytoid population appears to
have an advantage in terms of survival or growth compared
with other cells present in the cellular outgrowth from
pancreatic explants. These cells may die off and be taken
over by the myelomonocytoid component that persists after
extended periods of time. The underlying mechanism is
unclear. Because MesenCult is a commercially available
medium that has been optimized for growth of MSC, the
emergence of a myelomonocytoid population over time
is somewhat surprising. In a previous study [15], we
used this medium to expand mouse cardiac-derived MSC,

which displayed a stable phenotype (Lin−, Sca-1+, CD90+,
CD105+, CD45−, and CD31−) for more than 25 passages.
This observation indicates that MesenCult can preserve the
phenotype of cultured MSC for extended periods of time, at
least under certain circumstances.

The mesenchymal differentiation potential of the myelo-
monocytoid population may appear at odds with the
established CD45− MSC phenotype [53]. However, Sordi
et al. [41] recently showed that mesenchymal cells emerg-
ing from human pancreatic culture did not result from
an epithelial to mesenchymal transition but represented
the expansion of a pool of resident MSC located in the
periacinar, perivascular, and periductal space. Using a GFP+

BM transplant model, they showed that mesenchymal cells
emerging from pancreatic endocrine or exocrine tissue cul-
ture originated mainly from the CD45+ BM compartment.
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Figure 6: Pancreas-derived cells (5 weeks after plating; passage 3) were seeded at very low density (103 cells/35 mm plate) in either MesenCult
(a) or MethoCult (b and c). Pictures were taken 4–8 days later. Thin dendritic-like cell extensions, or filaments, were seen in MethoCult (c),
but not in MesenCult (not shown).

Athough these cells expressed negligible levels of islet-specific
genes, they improved islet function and neovascularization
after transplantation with a minimal islet mass in a mouse
model. Kaiser et al. [57] showed that a small population
of BM MSC originated from the CD45+CD34+ fraction,
whereas the majority was obtained from the CD45−CD34−

fraction. MSC from either fraction could be differentiated
into adipocytes, osteocytes, and chondroblasts. Additional
studies confirmed that MSC can express CD45 under certain
conditions [58–60]. In some cases, CD45 expression was
dramatically downregulated during in vitro culture [57,
58]. As mentioned above, our data suggest that MesenCult
may preserve CD45 expression in cultured pancreas-derived
myelomonocytoid cells, whereas partial downregulation of
CD45 expression was observed in a standard culture medium
(DMEM-10% FCS).

Pancreas-derived myelomonocytoid cells form spherical
clusters, which is considered a feature of stemness [43].
However, these spheres are nonclonal. Similar findings have
been reported for neural stem cells, as colonies formed by
these cells can grow clonal or nonclonal [61].

The origin of the isolated myelomonocytoid population
remains unclear. It might originate from blood monocytes
trapped in the intravascular compartment of tissue explants,
as recently shown for CD45+ cells from cardiac explant
outgrowths [62]. It should be mentioned, however, that
we were not able to isolate myelomonocytoid cells from
murine BM-derived cells using the same culture conditions.
Alternatively, this population might originate from pancreas-
resident monocytes, monocyte-derived cells, or MSC. In this
regard, Freisinger et al. [63] showed that clonally isolated,

adipose-derived MSC cultured in appropriate differentiation
media gave rise to cells expressing monocyte/macrophage
and early hematopoietic markers.

Our findings are in general agreement with recent reports
on multipotent monocytes. Zhao et al. [64] isolated a
subset of adult pluripotent stem cells (CD14+, CD34+, and
CD45+) from human peripheral blood monocytes. These
cells in appearance resembled fibroblasts, expanded in the
presence of macrophage colony-stimulating factor (M-CSF),
and could be differentiated into mature macrophages and T
lymphocytes, as well as into epithelial, endothelial, neuronal,
and liver cells in the presence of appropriate growth factors.
Kuwana et al. [44] and Kuwana and Seta [65] described
human blood monocyte-derived multipotent cells (MOMCs;
CD14+, CD34+, CD45+, and type-I collagen+) that exhibited
a fibroblast-like morphology and contained progenitors with
the capacity to differentiate into bone, cartilage, fat, skeletal
muscle, cardiac muscle, neuron, and endothelium [65–67].
Romagnani et al. [68] described circulating clonogenic,
multipotent CD14+ CD34lo cells that proliferated in response
to stem cell growth factors. Ungefroren and Fändrich [69]
reported that the programmable cell of monocytic origin
(PCMO) is a potential adult stem/progenitor cell source
for the generation of islet cells. Hur et al. [48] recently
showed that human peripheral blood monocytes could be
differentiated into insulin-producing cells using the hemato-
sphere culture technique. Collectively, these data suggest that
blood monocytes and monocyte-derived cells, although not
considered classic adult stem cells, may represent versatile
progenitor cells capable of generating multiple types of cells.
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Figure 7: Multilineage differentiation of pancreas-derived cells. (a) Osteogenic differentiation (Alizarin-red staining). (b) Chondrogenic
differentiation (Alcian-blue staining). (c and d) Adipogenic differentiation (Oil red-O staining; low/high magnification views). (e and f)
Cells cultured for 2 months in MesenCult showed areas of positive staining with dithizone (red) as evidence of zinc-rich insulin-producing
cells (low/high magnification views).

Owing to their mesenchymal differentiation potential,
pancreas outgrowth-derived myelomonocytoid cells are of
potential interest to cell therapy applications even though
this aspect was not directly addressed by the present study.
Sordi et al. [41] reported beneficial effects of pancreatic MSC
in diabetic mice, as mentioned above. When cotransplanted
with a minimal islet mass, these cells improved neovascu-
larization and islet function. This effect was not due to
MSC differentiation into insulin-secreting cells, but to MSC-
mediated protective effects on transplanted islets. Moreover,
Johansson et al. [70] showed that MSC within composite
endothelial cell-MSC-pancreatic islets improved endothelial
cell proliferation and sprouting in vitro. It therefore could

be speculated that pancreas-derived myelomonocytoid cells
endowed with MSC potential might exert trophic effects
on pancreatic islets via paracrine mechanisms, as reported
for pancreatic MSC by Sordi et al. [41]. Further studies
are warranted to test this hypothesis and to define the
origin and the endocrine potential of the pancreas-derived
myelomonocytoid population.
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