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ABSTRACT
The introduction of new Molecularly Targeted Agents (MTA) has changed the 

landscape in Early Drug Development (EDD) over the last two decades, leading to an 
improvement in clinical trial design. Previous Phase 1 (Ph1) studies with cytotoxics 
focused on safety objectives, only recruiting heavily pre-treated cancer patients, have 
been left behind. In this review, we will illustrate the slow although unstoppable 
change that has increasingly been observed in those populations candidate 
to participate in EDD trials with the advent of MTA. As more evidence regarding 
oncogene addiction becomes available, molecular-biomarker driven selection has been 
implemented among Molecularly-Selected Population (MSP) studies. New Window-
Of-Opportunity (WOO) and Phase 0 (Ph0) studies have been developed in order to 
assess whether a MTA produces the hypothetical proposed biological effect. The rising 
need of getting early pharmacokinetics and pharmacodynamics data has led to the 
conduction of Healthy Volunteer (HV) studies, in part favoured for the particular and 
different toxicity profile of these MTA. However, several challenges will need to be 
addressed in order to boost the implementation of these new clinical trial designs 
in the forthcoming years. Among the problems to overcome, we would highlight a 
better coordination effort between centers for ensuring adequate patient accrual 
among small patient populations and a deepening into the ethics implied in enrolling 
patients in studies with no therapeutic intent. However, these tribulations will be 
certainly compensated by the possibility of opening a new horizon of treatment for 
diseases with dismal prognosis.

INTRODUCTION

Over the past two decades, with the advent of new 
Molecularly Targeted Agents (MTA), cancer research has 
shifted from standard chemotherapies to the selective 
inhibition of signaling pathways. However, while some of 
these drugs have offered a significant breakthrough, new 
insights into the tumor biology and drug development 
are still required to further delineate rational therapeutic 
strategies [1]. Phase 1 (Ph1) trials with cytotoxics are 
mainly focused on safety. Traditionally, first-in-human 
(FIH) studies were designed with a 3+3 dose escalation 
based on acute toxicities. Considering risks and limited 
efficacy, only heavily pre-treated cancer patients with no 
standard effective therapies were considered candidates. 
This dose-toxicity model, though, has shown to be not so 
effective for testing MTA. 

The introduction of MTA has changed the landscape 
in Early Drug Development (EDD) and subsequently, the 
clinical trial design. Molecular biomarker-driven selection 
of patients has progressively been incorporated, as more 
evidence regarding oncogene addiction is available [2]. 
New dose escalation strategies are followed now, using 
dose recommendation methods that help in decision 
making by providing the probability of toxicities or by 
incorporating chronic toxicities [3, 4]. Also, there has been 
a better integration of human pharmacokinetics (PK) and 
pharmacodynamics (PD). In fact, several new trial designs 
can be now successfully implemented in the EDD process 
further to the classical 3+3 design, such as the accelerated 
titration design (ATD) and continual reassessment 
method (CRM) [4]. This new designs take advantage of 
incorporating supplementary endpoints that help to further 
characterize the MTA in terms of efficacy (mechanism of 
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action -MoA-/PD biomarkers) on top of the traditional 
toxicity endpoints, and also allow a fine-tune assessment 
of the safety profile by evaluating the late-onset toxicities 
and not only the acute ones. Finally, there is increasing 
evidence that some of these MTA present a class-specific 
toxicity, related to their “on-target” effect (e.g.: fibroblast 
growth factor receptor inhibitors and hyperphosphatemia)
[5]. As target inhibition can cause toxicity leading to 
treatment interruptions, the consideration of new optimal 
schedules while maintaining the target inhibition-related 
anti-tumor efficacy has become a critical key point [5].

Within this context, we are progressively witnessing 
an unprecedented shift towards a completely different 
population profile in EDD. To clarify in which selected 

biological context the drug works, some trials include 
now Molecularly Selected Patient (MSP) populations 
[2]. Despite the efforts, there are still scarce predictive 
biomarkers, meaning that a rising need to determine 
upfront whether a MTA produces the hypothetical 
biological effect exists. New Window-Of-Opportunity 
(WOO) studies [6] and Phase 0 studies (Ph0) [7, 8] have 
been developed in order to fill in the gap. MTA have 
revolutionized previous toxicity concepts, as may not 
have single direct dose-response relationship, with higher 
doses lacking of further benefit after a biological effective 
dose has been reached [9]. Longstanding mild toxicity 
is commonly seen instead of acute intense toxicities, 
with neither teratogenicity nor carcinogenic effects. 

Table 1: Some relevant approved MTA developed with and without a pre-specified Molecularly-Selected Population 
(MSP).

Family of 
MTA MTA Target

Genetic alteration 
as inclusion criteria 

in Ph1
Early signs of 

efficacy in Ph1 Ref Metastatic 
tumor type

FDA 
approval 
study

Anti-HER2
lapatinib EGFR1

HER2
Yes, EGFR1/

HER2over
No CR

4 PR (BC HER2+ 
TTZresist)

[60] BC HER2+ Ph3 [61]

pertuzumab HER2 No No CR
2 PR (1 OC, 1 PC) [62] BC HER2+ Ph3 [63]

Multi-tyrosine 
kinase 
inhibitors

imatinib BCR-ABL
c-KIT

No. 
Study only in soft-
tissue sarcomas. 

All enrolled GIST 
c-KITover

No CR
16 PR (all GISTs) [64] GIST Ph3 [65-67]

EGFR
inhibitors

erlotinib EGFR No
1 CR (RCC)
1 PR (CRC)

6 SD
[68] AdeNSCLC 

EGFRmut Ph3 [69]

gefitinib EGFR No
No CR
No PR
7 SD 

[16] AdeNSCLC 
EGFRmut Ph3 [70]

PARP 
inhibitors olaparib PARP

No, expansion 
enriched with 

BRCAmut
20 CR/PR  (OC)

3 SD [71] OC 
BRCAmut Ph2 [72]

BRAF 
inhibitors

vemurafenib BRAF
No, expansion 

enriched with M 
BRAFmut

3 CR
34 PR (M) [73]

M V600E 
BRAFmut

Ph3 [74]

dabrafenib BRAF No, later on only 
BRAFmut tumors

No CR
20 PR (18 M, 1 
NSCLC, 1 CRC)

[17] Ph3 [75]

ALK 
inhibitors

crizotinib ALK
MET

No, expansion 
enriched with 

NSCLC ALKtransl

3 CR
84 PR (NSCLC 

ALKtransl)
[18]

AdeNSCLC 
ALKtransl

Ph2 [22]

ceritinib ALK
GF-1

Yes, ALKtransl 
tumors

1 CR NSCLC
67 PR (65 

NSCLC, 1 ALCL, 
1 myofibroblastic 

tumor)

[23] Ph1 [23]

Abbreviations: MTA (Molecularly Targeted Agents); HER2 (Human Epidermal growth factor Receptor 2); EGFR (Epidermal 
Growth Factor Receptor); ALK (Anaplastic Lymphoma Kinase); PARP (Poly [ADP-ribose] polymerase); BRCA (BReast 
CAncer gene); over (overexpression); ampl (amplification); mut (mutation); transl (translocation); BC (Breast Cancer); HR+ 
(Hormone Receptor positive); TTZresist (TrasTuZumab resistant); OC (Ovarian Cancer); PC (Pancreatic Carcinoma); GIST 
(GastroIntestinal Stromal Tumors); RCC (Renal Clear Cell carcinomas); CRC (ColoRectal Carcinomas); M (Melanomas); 
NSCLC (Non Small Cell Lung Cancer); Ade (Adenocarcinoma); ALCL (Anaplastic Large-Cell Lymphoma); CR (Complete 
Response); PR (Partial Response); SD (Stable Disease); Ph (Phase).
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Table 2: Some ongoing early clinical trials testing MTA in Molecularly-Selected Populations (MSP).
Family of MTA MTA Target Genetic alteration as 

inclusion criteria in Ph1 Early signs of efficacy in Ph1 Ref Ongoing 
studies

ClinicalTrials.gov 
identifier

FGFR inhibitors

AZD4547 FGFR1/2/3 Yes, since escalation, 
FGFR1/2ampl

No CR
2 PR (SqNSCLC FGFR1ampl, 
GC FGFR2ampl)
SD (BC, GOJ/GC SqNSCL, 
UC FGFRampl)

[76-78]

Ph1

Ph2 NSCLC

Ph2 GC/GOJ 

Ph2 BC 

NCT00979134

NCT01824901

NCT01457846

NCT01202591

BGJ398 FGFR1/2/3 Yes, since escalation, any 
FGFRalt

No CR
6 PR (4 UC FGFR3mut, 2 
SqNSCLC FGFR1ampl)
SD (BC FGFR1ampl, ABTC 
FGFR2transl)

[79]
Ph1

Ph2 ABTC

NCT01004224

NCT02160041

JNJ-42756493
(erdafitinib) FGFR1/2/3/4 Yes, since escalation, any 

FGFRalt

1 CR (UC FGFR2trunc)
1 PR (UC FGFR3transl)
SD (lung, CS, BC 
FGFR1ampl)

[80]
Ph1

Ph2 UC

NCT01703481

NCT02365597

MET inhibitors

INC280
(capmatinib) MET Yes, since escalation, 

METalt
No CR
No PR
SD (CRC, HCC, lung)

[81]
Ph1

Ph2 NSCLC 

NCT01324479

NCT01911507

SAR125844 MET Yes, since escalation, 
METalt

No CR
1 PR (lung cMETampl)
SD (not specified)

[82]
Ph1

Ph2 NSCLC

NCT01391533

NCT02435121

EGFR inhibitors PF-00299804
(dacomitinib) Pan-HER Yes, since expansion, 

EGFRalt
No CR
4 PR (AdeNSCLC)
SD (AdeNSCLC, others)

[83]

Ph1

Ph2 OEC

Ph3 NSCLC

NCT00225121

NCT01608021

NCT01000025

Multi-tyrosine kinase 
inhibitors

E3810
(lucitanib)

VEGFR1/2/3
PDGFRa/b
FGFR1/2/3

Yes, since expansion, 
cohort FGFR1/11q ampl

3 CR (2 MTC, 1 RCC)
PR (NSCLC and BC 
FGFR1/11q ampl)
SD (NSCLC and BC 
FGFR1/11q ampl, others)

[84]

Ph1

Ph2 BC HR+

Ph2 NSCLC

NCT01283945

NCT02053636

NCT02109016

PIK3CA/
mTOR pathway 
inhibitors

BYL719
(alpelisib) PIK3CAa Yes, since escalation, 

PIK3CAalt
No CR 
15 PR (2 BC HR+ PIK3CAalt) [85]

Ph1

Ph2 BC HR+

NCT01219699

NCT02058381

BKM120
(buparlisib)

Pan-Class I 
PIK3CA

Yes, since expansion, 
cohort PIK3CA/PTENalt

No CR
4 PR (1 confirmed TBNC 
PI3KCAmut, 1 PGC, BC 
HR+,EH)

[86]
Ph1

Ph2 TBNC

NCT01068483

NCT01629615

MAPK pathway 
inhibitors

LGX818
(encorafenib) BRAF Yes, since escalation, 

BRAF V600mut
No CR
13 PR (M BRAF V600mut), 
12 SD (CRC BRAF V600mut)

[87, 88] Ph1 NCT01436656

MEK162
(binimetinib) MEK1/2 Yes, since expansion, 

KRAS and BRAFmut
No CR
1 PR (ABTC NRASmut), 
9 SD 

[89] Ph1 NCT00959127

PARP inhibitors

olaparib PARP No, expansion enriched 
BRCAmut

1 CR (BC)
21 PR (15 OC, 6 BC) [90]

Ph1 BC/OC 

Ph2 TBNC

Ph3 OC

NCT01445419

NCT02681562

NCT02446600

talazoparib PARP Yes, since expansion, 
BRCAmut

No CR
13 PR (11 OC/peritoneal, 2 BC 
BRCAmut)

[91]
Ph1

Ph2 BC

NCT01286987

NCT02034916

ROS/ALK inhibitors

X-396 ALK Yes, since escalation, 
ALKalt

No CR
5 PR (NSCLC ALKtransl)
5 SD (NSCLC ALKtransl)

[92] Ph1 NCT01625234

RXDX-101
(entrectinib)

Pan-TrKA/B/C
ROS1
ALK

Yes, since escalation, 
TrKA/B/C, ROS1 and 
ALKalt

No CR
4 PR (1 CRC TrKA+, 1 
NSCLC ROS1+ and NSCLC 
ALK+, 1 NB ALK+)
2 SD (NSCLC ALK+, PC 
ROS1+)

[93] Ph1 NCT02097810

Abbreviations: MTA (Molecularly Targeted Agents); HER 2 (Human Epidermal growth factor Receptor) 2; EGFR 
(Epidermal Growth Factor Receptor); ALK (Anaplastic Lymphoma Kinase); FGFR (Fibroblast Growth Factor Receptor); 
ampl (amplification); mut (mutation); trunc (truncation); transl (translocation); alt (alteration); HCC (HepatoCarcinoma); 
NSCLC (Non Small Cell Lung Cancer); Ade (Adenocarcinoma); Sq (Squamous); ALCL (Anaplastic Large-Cell Lymphoma); 
BC (Breast Cancer); HR+ (Hormone Receptor positive); CS (ChondroSarcoma); OEC (OEsophageal Carcinoma); GOJ 
(GastroesOphageal Junction carcinoma); GC (Gastric Cancer); UC (Urothelial Carcinoma); MTC (Medullary Thyroid 
Carcinoma); RCC (Renal Clear Cell carcinoma); M (Melanoma); CRC (ColoRectal Cancer); ABTC (Advanced Biliary 
Tract Carcinoma); OC (Ovarian Carcinoma); TBNC (Triple Breast Negative Cancer); PGC (Parotid Gland Carcinoma); EH 
(Epithelioid Hemangiothelioma); NB (NeuroBlastoma); PC (Pancreatic Carcinoma); CR (Complete Response); PR (Partial 
Response); SD (Stable Disease); VEGFR (Vascular Endothelial Growth Factor Receptor); PDGFR (Platelet Derived Growth 
Factor Receptor); TrK (Tropomyosin receptor Kinase); PARP (Poly [ADP-ribose] polymerase); BRCA (BReast CAncer gene); 
Ph (Ph).
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Considering their different toxicity profile [10], MTA 
have favoured the conduction of Healthy Volunteer (HV) 
studies [11, 12], aiming for PK and PD endpoints. 

Based on these premises, we will illustrate the 
change in the population of patients enrolled in early 
clinical trials testing MTA. 

MOLECULARLY- SELECTED 
POPULATION STUDIES

Some MTA have been already approved despite 
the fact of not having identified a predictive biomarker 
to associate their clinical efficacy. Multi-tyrosine kinase 
inhibitors, such as sorafenib in hepatocarcinoma [13], and 
sunitinib in renal cancer [14] would fall into this category. 
But for the majority of these MTA, it has been key in their 
development to tailor them with molecular aberrations that 
harbor different tumor types. Therefore, pre-identification 
of a driver alteration has become mandatory to prescribe 
these MTA. Overexpression or amplification of HER2 
in breast or gastric carcinomas [15], EGFR mutations in 
lung carcinoma [16], and BRAF mutations in melanoma 
[17], would be the best examples of tailored tumor-type 
treatments. One must bear in mind that whilst some of 
the MTA target molecular alterations that have not been 
proven to be drivers for any specific disease (e.g. PI3KCA 
mutations), other MTA target clear defined oncogenic 
aberrations (e.g. EGFR mutations in non-small cell lung 
cancer –NSCLC-). The molecular selection of patients will 
be key in the second case for warranting the success of a 
MTA in that subset of patients, but less obvious and not 
mandatory in the first case. 

Noteworthy, some MTA have been recently 
approved after the initial studies showed impressive 
response rates in subsets of MSP. Interestingly, some of 
these first MTA were not initially developed for a pre-
specified MSP, but as the Ph1 was being conducted, early 
signs of response were noticed in genomically-altered 
subgroups of patients. The later enrichment confirmed the 
oncogenic addiction for a specific aberration, which lead 
to the MTA approval only for those subsets of patients. 
That is the case of crizotinib for NSCLC with ALK 
rearrangement [18]. 

Ph1 clinical trials have emerged as the most suitable 
arena for testing the hypothetical relationship between 
a predictive biomarker and the efficacy of a given drug, 
driving knowledge in the right direction. The idea for 
doing this very early in the development of a drug is to 
test the efficacy in the best-case scenario and for assisting 
in go-no go decisions [19]. By enriching early Ph1 trials 
with patients harboring specific molecular alterations, it 
could be demonstrated the proof-of-concept hypothesis 
for the MTA mechanism and encourage its further 
development [20]. But quite frequently, these markers 
are not well validated, and to date, they are still used 
as enrichment biomarkers. Nevertheless, the discovery 

of robust predictive biomarkers in subsets of patients 
parallel to the development of MTA, could provide a 
personalized therapeutic option for cancer patients lacking 
of standard options. As highlighted before, that was the 
case with crizotinib, the first-in-class ALK inhibitor, that 
demonstrated fast and durable responses in metastatic 
ALK positive NSCLC patients in early Ph1 [18, 21] 
and Ph2 [22] trials. These results lead to the accelerated 
crizotinib-FDA approval after a three-year development 
programme, and opened the door to the pharmaceutical 
companies to apply for a Fast Track designation from the 
regulatory agencies. Recently, the approval of ceritinib 
for NSCLC with ALK rearrangement after progression 
to crizotinib, solely based on the results of the Ph1, has 
supposed another milestone in the history of EDD in 
Oncology [23]. This clearly shows that well conducted 
Ph1 trials could accelerate the drug development, 
especially where a drug could fill a void for a poor 
prognosis orphan disease. This really depends on how 
well designed are these early clinical trials, specially in 
terms of wise collection of the generated data in order to 
prove the MoA of the new MTA and to allow the analysis 
of statistically meaningful preliminary data. Table 1 
depicts some of the most relevant approved MTA. These 
MTA have been selected in view of the impact that their 
development represented for the clinical management of 
these tumor subtypes.

In parallel, we are witnessing the development 
of new molecular diagnostic techniques alongside to 
the discovery of new aberrations. This fact has led to 
a gradually narrowing of the pre-selection criteria for 
candidate patients. Sometimes, a specific molecular 
alteration is not a requirement for participating in a study, 
but throughout the trial, an increasing number of patients 
with that aberration show response, and this biomarker is 
later on required for inclusion. In other cases, Ph1 trials 
do pre-select patients according to a specific molecular 
alteration from the early beginning. In both situations, 
the tactics allows the study to enrich the population, and 
might help us to early identifying the subgroup of patients 
who will benefit the most from the MTA. Some of the 
MTA that are contemporary being developed under strict 
molecular pre-selection criteria are shown in Table 2. 

Recently, the results of a meta-analysis presented by 
Schwaederle MC. et al [24] showed improved outcomes 
in patients treated in Ph1 trials using a biomarker-
selection strategy. The analysis of over 13.203 patients 
demonstrated that a more personalized approach had a 
statistically improved RR (30.6% versus 4.9%, p<0.0001) 
as well as a better PFS (5.7 months versus 2.9 months, 
p=0.002) compared to the non-personalized option. 
These data reflect the importance of delineating a better 
biomarker-selection of patient candidates to participate 
in early clinical trials developing MTA, as the majority 
of Ph1 testing targeted agents in non-selected patients 
presented trivial responses.
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Of note, analyzing a tumor sample can easily change 
the selected population. Firstly, where a fresh tumor 
sample is required, patients deemed not biopsiable might 
have less chances of trial inclusion. Also, patients are at 
risk of deteriorating while waiting for a complex biomarker 
assessment (central review), biasing the trial towards 
healthier patients, and notice that inadequate or too strict 
molecular pre-screening criteria may considerably slow 
down the recruitment. Secondly, patients whose tumor 
bears the pre-specified alteration may be recruited even if 
standard therapies have not been exhausted yet, based on 
increased expectations for response. It is worth noticing 
that not all patients that are tested positive for the selection 
biomarker would be finally considered eligible for a trial, 
therefore molecular selection can sometimes generate 
false hope for patients. Finally, patients may be excluded 
based on an insufficiently validated biomarker. 

In fact, the identification of suitable biomarkers 
has become one of the main priorities in parallel with the 
development of new MTA, although it has proven to be 
challenging [25]. Predictive biomarkers are patient and/or 
disease characteristics that can be objectively measured, 
indicating subgroup of patients who are most likely to 
benefit from a therapy [26, 27]. Whenever developing a 
biomarker, researchers have to keep in mind that a feasible 
assay should be validated according to a “fit-for-purpose” 
approach, in order to ensure accuracy and reproducibility 
of the detection assay [28]. Nevertheless, differences in 
sample acquisition and processing, assay implementation 
and analysis across different centers, can be counted as 
certain of the hurdles to overcome. In addition, knowing 
the intrinsic tumor heterogeneity [29], it should be 
considered that a negative biomarker sample does not 

specifically mean that the patient cannot yet benefit from 
the study drug. 

We are facing an era where there will be increasing 
evidences that several tumors could be categorized by 
specific molecular changes that drive their proliferation. 
The hypothesis that blocking an activated oncogenic 
pathway will lead to tumor control warrants further 
efforts to determine biomarkers for facilitating this 
patient population identification. In our opinion, a better 
delineation of genomic pre-screening strategies seems to 
be the right direction for identifying those patients who 
may achieve greater benefit from an MTA, and could 
avoid unnecessary toxicities to patients who are less 
likely to benefit from this drugs, minimizing the risks 
and developmental costs of highly expensive targeted 
therapies. However, one should be aware of the level of 
validation of the selection biomarker and its companion 
diagnostic assay, before switching the participating patient 
population towards less pre-treated patients.

WINDOW- OF- OPPORTUNITY STUDIES

The development of MTA and the need of testing 
their biological effect have highlighted the convenience of 
implementing new trial designs, considering that the MTA 
activity may be shadowed in advanced oncology patients, 
because of previous cytotoxic resistances, residual 
toxicities or high tumor burden conferring high intra-
tumor heterogeneity. WOO studies have been considered 
one of the best scenarios for testing MTA and biomarker 
development, as patients receive the MTA for a short 
period of time -concept of window- just before performing 
the standard treatment. Aiming to evaluate the key target 

Table 3: Some ongoing Window-Of-Opportunity (WOO) studies testing MTA in the neo-adjuvant setting.

Family of MTA MTA Mechanism of action Endpoints of the study Subject dose Status 
(histology)

ClinicalTrials.
gov Identifier 
or Reference

AKT inhibitors MK-2206 AKT inhibitor To assess pAKT 
modulation in tumor tissue.

MK-2206 dose
day -9/day -2

Ph2 
(early BC) [94]

IGF-IR inhibitors CP751871 
(figitumumab)

Monoclonal antibody for
IGF-IR

To assess tumor total 
choline changes 
determined by MRS.

CP751871 dose day 
1/22 

Ph1 withdrawn 
(early BC) NCT00635245

IGF-IR CP751871
(figitumumab)

Monoclonal antibody for 
IGF-IR

To assess biological RR 
(proportion of patients 
with inhibition of IGF-IR 
expression by IHC).

CP751871 20 mg/kg 
every 3w x3 cycles

Ph2 
(early PrC)

[95]

mTOR inhibitors

MK-0646 
(dalotuzumab)

with or without

MK-8669 
(ridaforolimus)

Monoclonal antibody for 
IGF-IR

mTOR inhibitor

To demonstrate inhibition 
of GFS in patients with 
high proliferation index.

A) MK-8669 OD x5 
days/week and MK-
0646 once weekly.
B) MK-8669 OD x5 
days/week.
C) MK-0646 once 
weekly

Ph1
(early BC) NCT01220570

Oral anti-
diabetics metformin

Metabolic signalling 
pathway inhibition 
(cAMP, protein kinase 
A)

To evaluate changes in 
proliferation marker (Ki67) 
in tissues.

Daily dose at bedtime 
for 2 weeks, prior 
planned surgery

Ph0
(early BC or 
DCIS)

NCT01980823

Abbreviations: MTA (Molecularly Targeted Agents); pAKT (phospho-AKT); IGF-IR (Insulin-like Growth Factor 1 
Receptor); MRS (Magnetic Resonance Spectroscopy); Ph (Phase); BC (Breast Cancer); RR (Response Rate); IHC 
(ImmunoHistoChemistry); PrC (Prostate Cancer); GFS (Growth Factor Signature); OD (Once Daily); DCIS (Ductal breast 
Carcinoma In Situ).
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modulation accordingly to the drug exposure levels, 
the objective is to deepen into the proof-of-mechanism 
anti-tumor activity of the MTA in a cancer stage that is 
not altered by previous therapies. The main goals are 
to confirm the biological effect of the MTA and its PK 
properties, together with validating possible biomarkers 
that could predict subgroups of patients most likely to 
benefit. However, no clinical benefit is pursued for the 
treated patients [30]. 

WOO trials have been developed in the neo-adjuvant 
setting [31] but differ from traditional neo-adjuvant trials 
[32] in the limited treatment duration, the non-therapeutic 
intent, and the focus on biomarkers of the former MTA in 
comparison to the use of pathological complete response 
(pCR) of the latters [33]. Whilst traditional neo-adjuvant 
trials focus on evaluating the anti-tumor activity of a 
certain drug by assessing the pCR rate, WOO studies aim 
to further characterize the biological activity of the new 
experimental therapy with PK/PD objectives as principal 
end-points.

WOO studies allow obtaining an unperturbed tissue 
specimen, appropriate to validate pathway inhibition by 
the MTA in the same tumor sample and to assess potential 
compensating feedback loops to better understand cross-
talked resistance pathways. WOO studies may represent 
proof-of-biological efficacy/mechanism studies which 
serve as an early step before further phase 2/3 proof-
of-clinical efficacy studies [34]. Basically, WOO neo-

adjuvant studies among women with early large primary 
breast cancers have been performed with this design [6], as 
depicted in Table 3. As these WOO studies have changed 
the concept that curable patients may be treated with an 
experimental drug for interrogating biological questions, 
breast cancer patients have been considered one of the 
most feasible settings considering that radical surgery of 
the primary tumor is often indicated as first therapeutic 
option.

Interestingly, many WOO studies are usually 
performed just after the exploration of a MTA in FIH 
studies. This observation reflects two issues: firstly, that 
biological activity might be a key aspect in EDD, assisting 
in go-no go decisions very early in the drug development 
process. Secondly, curable patients are exposed to 
experimental MTA that have been previously explored in 
small cohorts of patients. While this last observation may 
be due to the relatively favorable profile of these MTA, 
it also reflects a change in the paradigm of the type of 
patients enrolled in clinical trials with experimental drugs. 

But despite all the advantages that represent 
the WOO studies, why have they not been routinely 
implemented for drug development so far? WOO studies 
have been widely debated, considering the ethical 
implications involved in delaying upfront standard 
approved therapies. However, in our opinion, WOO trials 
emerge as a very useful tool for facilitating the accelerated 
development program of a certain drug, shortening the 

Table 4: Examples of Phase 0 (Ph0) studies testing MTA in Oncology.

Family of MTA MTA Mechanism of 
action Endpoints of the study Subject dose

Fulfils 
Ph0 
criteria

Reference

Cytotoxic agent 
radiolabelled with 
positron emitting 
radioisotopes

carbon-11 
radiolabelled 
N-[2-
(dimethylamino)
ethyl]acridine-
4-carboxamide 
(DACA)

11C-labelled 
topoisomerase 
I/II inhibitor 

To evaluate plasma 
PD effects of drugs 
using data obtained 
during PET studies with 
radiolabelled anti-cancer 
agents.

DACA at 
1/1000th of Ph1, 
as part of Ph0 
micro-dosing 
study

Yes [43]

Multi-tyrosine 
kinase inhibitor imatinib

BCR-ABL and 
c-KIT 
inhibitor

To investigate the 
potential use of MS for 
studying pharmacology 
aspects of imatinib.

Imatinib 400 
mg/d plus 13.6  
kBq of 
14C-imatinib

Yes [44]

PARP inhibitor ABT-888
(veliparib)

Poly (ADP-
ribose) 
polymerase 
inhibitor

Proof-of-mechanism of 
action.
To evaluate PARP levels 
after dosing (PD effect). 

Starting dose 
1/50th of 
NOAEL of 
sensitive specie

Yes [7]

Transcription 
factor inhibitor

STAT3 decoy 
oligonucleotide

STAT3 
transcription 
factor gene 
inhibition

Proof-of-mechanism of 
action. 
To demonstrate 
inhibition of STAT3 
target genes (Bcl, Cyclin 
D).

Single intra-
tumoral injection 
of several doses:
250 mg/250uL vs 
500 mg/500 uL 
vs 1000 mg/1000 
uL

Yes [8]

Abbreviations: MTA (Molecularly Targeted Agents); PD (PharmacoDynamic); MS (Mass Spectrometry); PARP (Poly [ADP-
ribose] polymerase).
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laborious process of evaluating a new MTA. As long as 
safety monitoring and careful candidate pre-selection 
are performed, WOO studies may optimize and increase 
the chances of success of a specific MTA from the 
early beginning, as the failure to achieve the predefined 
objectives in the study may be a sign for not continuing 
with its development. Also, it has to be considered that 
patients included in WOO trials may truly reflect the real 
intention-to-treat population compared to the heavily pre-
treated Ph1 patients. Nevertheless, intense efforts should 
be done in order to ensure that patients understand the 
risk/benefit ratio of participating in these clinical trials, to 
warrant precocious detection of disease progression and to 
avoid enrolling unfit patients [35]. Maybe because of this 
risk/benefit ratio, most of the WOO trials testing MTA in 
the neo-adjuvant setting have included well-known drugs. 
In reality, as depicted in table 3, very few of them include 
experimental drugs in early stages of their development, 
with most of the WOO studies published in the literature 
examining drugs that are already transitioning to the late 
development process.

Despite their appealing potential, moving an 
experimental therapy with a limited long-term toxicity 
profile experience to the neo-adjuvant setting, with 
curable untreated patients, may be carefully considered. 
That is the reason why WOO studies should only be 
considered and acceptable in populations with a high 
risk of relapse and a significant unmet medical need (e.g. 
patients with high grade, hormone receptor positive and 
HER2-negative breast cancers). It should be kept in mind 
that not all drugs are suitable for being tested in a WOO 
trial, as only some drugs with a plausible biological MoA 
thought to be involved in cancer modulation, with a well-
described toxicity profile and displaying particular PK/
PD characteristics, can be considered good candidates for 
being explored in this setting. As example, the oral anti-
diabetic drug, metformin, is currently moving towards 
a new classification as a potential cancer metabolism-
targeted drug, due to the underlying link between obesity 
and hyper-insulinemia and breast cancer [36]. However, 
the clinical translation of metformin as a new anti-cancer 
therapy has been limited by the lack of PD biomarkers (e.g. 

Table 5: Examples of Healthy Volunteer (HV) studies testing MTA.
Type of HV 
study MTA Mechanism of 

action
Endpoints of the 
study

Healthy subject 
dose Status ClinicalTrials.gov 

identifier

Drug-drug PF-00299804
(dacomitinib)

Pan-HER 
inhibitor

Pharmacokinetic.
To asses 
interactions 
between 
paroxetine and 
dacomitinib.

Single doses 45 
mg dacomitinib 
with or without 
30 mg paroxetine

Ph1 
completed NCT01318031

Food-drug AG-013736
(axitinib)

VEGFR, 
PDGFR,
c-KIT inhibitor

Pharmacokinetic.
To assess the food 
effect on drug 
levels.

Single doses 
axitinib in 
different fasting 
conditions

Ph1 
completed NCT00918632

Cardiovascular 
Safety

SOM230
(pasireotide)

Somatostatin 
analogue

Safety.
To assess cardiac 
repolarization.

Therapeutic 
pasireotide dose 
600ug vs MTD 
vs placebo vs 
moxifloxacin

Ph1 
completed NCT01128192

Bioavailability SR13668 AKT inhibitor
Pharmacokinetic.
To determine the 
best bioavailable 
formulation.

Single doses 
of SR13668 
testing different 
formulations

Ph1 
completed NCT00896207

Bioequivalence PF-05280014 Anti-EGFR2 
inhibitor

Pharmacokinetic. 
To assess 
bioequivalence 
between PF-
05280014 and 
approved TTZ.

PF-05280014 vs 
TTZ-EU vs TTZ-
US

Ph1 
completed NCT01603264

Ph1 FIH ARRY-142866
(selumetinib)

MEK1/2 
inhibitor

Pharmacokinetic, 
safety and 
tolerability.

Single doses 
of 25 mg 
selumetinib, and 
with or without 
itraconazol or 
fluconazol

Ph1 
completed NCT02093728

Abbreviations: MTA (Molecularly Targeted Agents); HER (Human Epidermal growth factor Receptor); VEGFR (Vascular 
Endothelial Growth Factor Receptor); PDGFR (Platelet Derived Growth Factor Receptor); MTD (Maximum Tolerated Dose); 
EGFR2 (Epidermal Growth Factor Receptor 2); TTZ (TrasTuZumab); vs (versus); EU (European Union); US (United States).
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Ki67 % or proliferative index) that could translate into an 
early read out of its biological activity in cancer patients so 
far. On top of that, as most of the preclinical studies do not 
have an appropriate PK design, some of the limited results 
obtained in in vivo and in vitro experiments may be related 
to the suboptimal doses tested of metformin [37]. One 
of the strengths of metformin is that its short and long-
term toxicity effects are already well-described, and the 
drug is deemed safe and widely implemented in the daily 
care of millions of diabetic patients. Testing metformin 
in a WOO clinical trial design [6] could provide more 
insights into the clinical PK/PD of the drug in an optimal 
model that mimics the real patient scenario. The WOO 
strategy will help to better illustrate its PD mechanism of 
action (whether the administration of metformin reduces 
the proliferation of tumoral cells by assessing the Ki67 
proliferative index in surgical specimens) and to optimize 
a relevant and achievable drug concentration in plasma by 
obtaining detailed PK data. Therefore, the PD/PK data will 
help in delineating future large scale randomized clinical 
trials, maximizing the chance of success of metformin as 
a new anti-cancer strategy.

PHASE 0 STUDIES

By definition, Ph0 trials are clinical studies 
conducted in EDD before the traditional Ph1 studies, 
to provide human PK and PD data, benefiting EDD by 
allowing to clinically testing a proposed MoA. They are 
FIH trials with neither therapeutic nor diagnostic intent, 
with a low number of patients included and limited drug 
exposure. Part of the rationale for conducting them is 
that the new agent promises significant biological effect 
in a substantial percentage of participants, even at doses 
below the expected ones that could lead to toxicity [38]. 
However, several limitations of the Ph0 have made highly 
controversial their implementation, such as their intense 
resource use and complexity, the request of serial tumor 
biopsies, the requirement of analytical methods that are not 
routinely available, and specially, the lack of therapeutic 
purpose for the treated patients [39].

The Ph0 concept implies a change in role of studies 
in Oncology. In Ph0 studies, candidates assume the role 
of “sick volunteers” given the absence of any direct 
efficacy for the participant, closer to the HV concept –see 
next section- [40]. The main motivator may be altruism 
for the “benefit to others”. Hence, Ph0 trials are both 
ethically challenged and challenging, since the patient 
has to understand that clinical benefit is not pursued, 
and that even if the risks seem low, there is a high 
degree of uncertainty regarding potential toxicities [41]. 
Under these circumstances, only patients with advanced 
incurable malignancies should be recruited after failure 
of standard therapy or in case that their indolent diseases 
do not require immediate treatment. Furthermore, not all 
MTA can be explored within a Ph0 context. Ideally, one 

must have a minimum of toxicology package and certain 
knowledge of the PK properties of the drug evaluated. 
Previous extensive preclinical experiments are required to 
establish a safe starting dose and schedule, in order to help 
in predicting the plasmatic levels of the MTA (PD data) 
that are required for target modulation (PK data) without 
reaching a therapeutic level [42]. 

Despite the fact that some experts in EDD consider 
that such trials will become a routine of the field in 
the future [42], we could only find few examples of 
contemporary trials with this design, probably because 
of the previously mentioned challenges and that similar 
information can be achieved with the regular Ph1 trial 
designs. It is worth noticing that many of them were 
published as Ph0 trials, although they do not fulfill the 
criteria for a Ph0 design, as shown in Table 4. Most of 
these studies include drugs with a significant clinical 
experience, which should be called “biomarker-driven” 
studies. Among the properly Ph0 trials detected, 
new imaging compounds have been tested, such as 
the 11C-labeled topoisomerase I/II inhibitor N-[2-
(dimethylamino)ethyl]acridine-4-carboxamide (DACA) 
[43]. Ph0 trials could be also focused on determining 
pharmacologically relevant doses of a certain drug, such as 
imatinib [44], or they could assess the MoA/PD markers 
of new compounds, like the ABT-888 [7] or the STAT3 
decoy oligonucleotide [8].

Further efforts to improve their design limitations 
seem mandatory, as they may be a promising field to 
get data from a new compound in early phases of its 
development.

HEALTHY VOLUNTEER STUDIES

Outside the Oncology field, it is common that 
the introduction of a new drug in patients is tested 
firstly in HV, limiting human exposure. Designing the 
appropriate FIH dose requires close collaboration among 
the toxicologists and the preclinical scientists, to use 
modeling data from animal experiments to determine a 
safe starting dose and a dosing interval [45]. The definition 
of HV per se is challenging. The widely accepted 
definition comprises those healthy, adult volunteers, 
in well-defined and controlled conditions. However, 
this definition underlies several margins of discretion 
regarding the wellness of a patient, and a critical judgment 
is mandatory when enrolling a candidate. Several ethical 
concerns arouse in 2006 with The TeGenero incident 
[46], where TGN1412 caused life-threatening toxicities 
and fostered the implementation of strict guidelines 
for EDD. Subsequently, specific rules were developed 
to guide HV studies [47]. These HV studies should be 
conducted in units with sufficient expertise, and their usual 
characteristics include: 1) A single subject receives the 
first dose within a justified period of observation before 
the next subject receives another dose, 2) double-blind 



Oncotarget14166www.impactjournals.com/oncotarget

design is preferred to avoid risks of bias, 3) subjects are 
randomly assigned to receive either the active drug or the 
placebo/control drug, and 4) different designs are used 
(parallel, crossover and sequential groups) based on the 
objectives of the study. 

In Oncology, though, most anticancer agents have 
been tested only in advanced cancer patients assuming 
their potential severe side effects, mutagenicity and 
carcinogenesis, accepting higher degrees of toxicity 
considering that these secondary effects would be less 
threatening than the disease itself [48]. Interestingly, new 
MTA have started to be explored in HV studies recently. 
This is probably based on their relatively broaden safety 
profile and because these HV are more able to withstand 
any unexpected toxicity from these new molecular entities 
[49]. However, careful consideration must be taken 
in view of the novelty of their MoA. We may not fully 
know the exact MoA for a specific MTA by the time we 

initiate early studies, therefore special attention is required 
in view of possible interactions between biological 
cascades. The risk with MTA could emerge not only from 
their chemical structure but also from their biologic or 
intended pharmacological mechanisms [50]. As example, 
some MTA have revealed delayed severe side effects (e.g. 
pneumonitis with mTOR inhibitors [51, 52]) and many 
combinations of MTA have proven to be challenging in 
terms of overlapping toxicities [53, 54].

The types of studies done in HV in Oncology 
include: 

1. Drug-drug and food-drug interaction studies, 
conducted to investigate what concomitant 
medications or food/drink products can interfere 
with the pharmacokinetic characteristics of a 
tested MTA [11, 12].

2. Cardiovascular safety studies are required if 
the new MTA shows potential cardiovascular 

Figure 1: Depicting the journey of a cancer patient through the different new clinical trial designs in the Early Drug 
Development field. The development of novel Molecularly Targeted Agents (MTA) has lead to the possibility of receiving these anti-
cancer drugs in new patient populations. Noteworthy, one single patient could aim to participate in each one of the four types of studies 
here depicted throughout the evolution of his/her cancer. Being in good health status, the individual could participate in a Healthy Volunteer 
(HV) study, sometimes even decades before developing a premalignant lesion. Once diagnosed with an early invasive localized cancer, 
the patient may be considered candidate for receiving neo-adjuvant therapy according to the gold standard approach. It is in this same 
neo-adjuvant setting where the patient could consider to participate in a Window-Of-Opportunity (WOO) study, before proceeding with 
a radical surgery and adjuvancy. Whenever a metastatic disease recurrence occurs, the evaluation of a potential novel cancer biomarker 
for the tumor may significantly change the standard-of-care. If a predictive biomarker was identified, this patient may be prioritized for 
participating in a Molecularly Selected Population (MSP) trial, aiming to match the specific molecular aberration with a highly selective 
MTA. Should this patient progress despite receiving all the standard options, the patient may still be suitable for participating in a Phase 0 
(Ph0) study for altruism reasons, even if no efficacy was pursuit.
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toxicity in preclinical animal studies, especially 
changes in the repolarization based on drug-
induced inhibition of potassium channels 
[55, 56]. If feasible, these studies are strongly 
recommended to perform in HV, with far 
less inter-subject variability and without 
interference by any other adjacent comorbidity 
or concomitant medication.

3. Bioavailability and bioequivalence studies 
are developed in order to analyze the effect of 
changes in the physiochemical properties of a 
drug, like comparing different formulations 
and dosage forms, or assessing bioequivalence 
between several medicinal products containing 
the same active substance [57]. As MTA are 
complex molecules, the new ones may not be 
identical although potentially “biosimilar” to 
the marketed drugs [58]. 

4. Finally, classical dose-escalation FIH studies 
in HV pretend to assess safety and tolerability 
of a new MTA, considering escalating single 
or multiple doses [59]. These types of studies 
do not differ from Ph1 studies done in other 
disciplines, such as in Endocrinology.

Some examples of MTA tested in each subtype of 
HV studies are represented in Table 5. Remarkably, HV 
studies imply a substantial change in patient populations in 
EDD, since HV represent the opposite side of the spectrum 
compared with the classical refractory cancer patients.

CONCLUSIONS

The advent of new MTA has broadened the EDD 
landscape, not only in terms of expanding the portfolio 
of drugs, but also in changing the candidates exposed to 
these experimental therapies. It is clear that many different 
patient populations other than advanced cancer patients 
are currently exposed to MTA in their early development. 
Figure 1. Proposes a potential journey of a cancer patient 
through the conventional available therapies and their 
sequence, in parallel to the different new clinical trial 
designs currently available in EDD.

The appearance of these MTA has opened a field 
of possibilities towards a second paradigm in EDD, 
facing the physicians with the challenge of reconsidering 
“the old paradigm” that only heavily pre-treated cancer 
patients should be included in a FIH study. As MTA have 
reshaped clinical trials, there is a rising need to revisit the 
I/E criteria, considering that some of these criteria may be 
disproportionately restrictive and should be tailored to the 
potential risk/benefit for incurable cancer patients. Other 
key points would be how to homogenize the molecular pre-
selection criteria for participating into MSP studies and the 
need of shortening the time of biomarker analysis, how to 
obtain higher purity tumor samples and how to overcome 

the intra-tumor heterogeinity. A coordination effort among 
multiple academic centers seems mandatory to guarantee 
a suitable patient identification and adequate accrual, 
especially considering these small patient populations. 
WOO studies in the neo-adjuvant setting will need to be 
considered as one of the most suitable arenas for obtaining 
more robust biomarker information. However, increasing 
the recruitment in WOO, Ph0 and HV studies, with no 
therapeutic intent at all, will certainly suppose a challenge 
for the Oncologists, as they will need to provide a correct 
comprehension of trial design and its objectives to the 
patients, ensuring they understand the risks whilst dealing 
with patient expectations. Physicians should keep in mind 
that Ph1 trials still need to focus on finding the appropriate 
dose that can be administered safely, with optimal efficacy 
and minimal side effects. Even if most Ph1 focus on early 
efficacy or biomarkers data nowadays, these should not 
shadow the primary objective of delineating the safety 
profile of new MTA, key for further development.

In conclusion, the particular toxicity profile of 
MTA has broaden the therapeutic window of the anti-
cancer agents, although there is still a long way to go, and 
special caution will need to be taken when new therapeutic 
options are tested in these new settings. All these studies 
may represent a promising, fast and cost-effective method 
for developing new compounds that can overcome the 
traditional difficult processes for drug approval based on 
expensive larger randomized trials. Oncology is one of the 
fields with higher rates of failures at exceptionally high 
economic costs, a fact that mandates a profound review 
of the appropriate clinical trial design for regulatory 
approval of new MTA. MSP, WOO, Ph0 and HV studies 
may represent an optimal scenario for further progressing 
in the development of new drugs, in a timely-effective 
manner and reducing the economic burden for EDD field.
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