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Abstract—Almost 25% of COVID-19 patients end up in
ICU needing critical mechanical ventilation support. There
is currently no validated objective way to predict which
patients will end up needing ventilator support, when the
disease is mild and not progressed. N = 869 patients from
two sites (D1: N = 822, D2: N = 47) with baseline clinical
characteristics and chest CT scans were considered for this
study. The entire dataset was randomly divided into 70%
training, D1

train (N = 606) and 30% test-set (Dtest: D1
test (N

= 216) + D2 (N = 47)). An expert radiologist delineated
ground-glass-opacities (GGOs) and consolidation regions
on a subset of D1

train, (D1
train_sub, N = 88). These regions

were automatically segmented and used along with their
corresponding CT volumes to train an imaging AI predictor
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(AIP) on D1
train to predict the need of mechanical ventilators

for COVID-19 patients. Finally, top five prognostic clinical
factors selected using univariate analysis were integrated
with AIP to construct an integrated clinical and AI imag-
ing nomogram (ClAIN). Univariate analysis identified lac-
tate dehydrogenase, prothrombin time, aspartate amino-
transferase, %lymphocytes, albumin as top five prognostic
clinical features. AIP yielded an AUC of 0.81 on Dtest and
was independently prognostic irrespective of other clinical
parameters on multivariable analysis (p<0.001). ClAIN im-
proved the performance over AIP yielding an AUC of 0.84
(p = 0.04) on Dtest. ClAIN outperformed AIP in predicting
which COVID-19 patients ended up needing a ventilator. Our
results across multiple sites suggest that ClAIN could help
identify COVID-19 with severe disease more precisely and
likely to end up on a life-saving mechanical ventilation.

Index Terms—Convolutional neural networks, COVID-19,
deep learning, nomograms, prognosis, ventilator.

I. INTRODUCTION

THE CORONAVIRUS Disease of 2019 (COVID-19) caused
by novel Severe Acute Respiratory Syndrome Coronavirus

2 (SARS-Cov-2) is an ongoing pandemic which has led to
widespread deaths in patients who are older (usually over 65
years [1]) with significant comorbidities especially susceptible
[2], [3].

Multiple studies have shown the presence of lung changes
in CT scans in some COVID-19+ patients who initially tested
negative for the virus on Reverse transcription polymerase chain
reaction (RT-PCR) [4]. CT is currently recommended in patients
with COVID-19 exhibiting moderate to severe clinical features
or worsening respiratory status features as well as for treatment
monitoring [5].

Artificial intelligence (AI) approaches on CT scans, including
convolutional neural network (CNN) based deep-learning (DL)
approaches have recently been proposed for detecting COVID-
19 even in the asymptomatic stage [6], [7]. The majority of
these studies were limited to being single-site, typically devel-
oped on imaging alone, and focused on automated diagnosis or
differentiation as opposed to severity assessment or prognosis
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Fig. 1. Patient flow chart including patient enrollment, eligibility and exclusion criteria and allocation of the data into different splits (training,
internal validation and external validation).

of COVID-19. Identifying those patients at an earlier disease
presentation who would progress on to more aggressive disease
and hence would need mechanical ventilation would decrease
disease progression and mortality.

In this work, we present a novel first of its kind hybrid AI
approach combining DL on CT scans at diagnosis (RT-PCR pos-
itivity) as well as clinical factors to construct an integrated imag-
ing and clinical nomogram (ClAIN) to predict which COVID-19
patients would have a severe disease phenotype and end up need-
ing invasive mechanical ventilation. The presented approach
is fully automated, where a U-Net based CNN is first used
to segment ground glass opacities (GGOs) and consolidation
regions. Subsequently a second network, a 3D CNN, is used to
capture image representations from the areas identified by the
first network, followed by the integration of the imaging features
with the clinical parameters. The models were trained on D1

train

(N = 606 patients) and evaluated on data from two different
sites (Dtest: D1

test (N = 216) + D2 (N = 47)). The integrated
nomogram ClAIN was compared with the imaging AI predictor
(AIP) and clinical AI predictor (ACP) models built using only
CT imaging and clinical features respectively.

II. MATERIALS AND METHODS

A. Patients

The retrospective chart review study was approved by the
Institutional Review Board committee of record at University
Hospitals, Cleveland and Ethics committee of the Renmin Hos-
pital of Wuhan University (ethics number: V1.0), and the need
for the written consent was waived. Following the inclusion and
exclusion criteria (Fig. 1), the study included D1 (N = 822)
patients, from Renmin hospital of Wuhan University, Hubei
General Hospital and D2 (N= 47) patients from University Hos-
pitals, Cleveland. A stratified random sampling was performed
to split the data into 70% training, D1

train (N = 606) and 30%
test set Dtest (D1

test (N = 216) + D2 (N = 47)). The patients
were acquired by consecutive chart review for patients who
were seen between 1 January and 10 June 2020. The baseline
clinical characteristics and chest CT scans was acquired for
all the patients. The CT examinations included GE medical
systems, United Imaging Healthcare, Philips and SIEMENS
manufacturers with standard chest imaging protocol (the patient
placed in supine position, and helical scanning performed during
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breath hold at end inspiration). The scan parameters include
120 kVp, automatic tube current modulation and slice thick-
nesses ranging from 2 mm to 5 mm. Additional details of the
chest CT acquisition parameters are provided in SUPPLEMEN-
TARY TABLE I.

B. Detection and Segmentation of Lung Lesions on the
Baseline Chest CT Scans of COVID-19 Patients

An expert radiologist with 14 years of experience delin-
eated GGOs and consolidation regions on a subset of D1

train

(D1
train_sub, N = 88) and a subset of D1

test (D1
test_sub, N = 96

patients). A CNN with U-Net architecture [8] (Supplementary
Fig. 1) was employed to segment out these regions in the lung
on the baseline chest CT scans.

A previously used automatic lung segmentation method uti-
lizing watershed transform [9] was used to segment out and crop
the CT volume around the regions of the lung. Each 2D slice of
the cropped volume was resized to a shape of 256x320 and parts
of the lung region (right, left) were given as separate inputs
(input size: 256x160) to the network to segment GGOs and
consolidation regions (see supplementary section, Appendix A,
for further data pre-processing and data augmentation details).

C. A Deep Learning Network on Chest CT Scans for
Predicting the Need for Mechanical Ventilation in
COVID-19 Patients

A 3D CNN [10] with 6 convolutional layers and 3 dense layers
(Supplementary Fig. 2) was used to construct an imaging AI
predictor (AIP). The network consisted of two distinct input
channels with CT volume cropped around the lung region being
the first input and the corresponding volume of automatically
segmented binary segmentations of GGOs and consolidations
being the second. The details of the network initialization pa-
rameters, hyper-parameters and the programming software /
platform used to build the DL framework is provided in the
supplementary section (Appendix B, C).

D. Evaluation Metrics and Statistical Analysis

Performance of detection and segmentation of GGOs and
consolidation regions: Dice Similarity Coefficient (DSC) was
used to evaluate the voxel wise segmentation performance as
compared to an expert radiologist reader.

Performance of the classifiers in predicting which COVID-19
patients would end up needing invasive mechanical ventilation:
The outcome of interest was disease severity as invasive mechan-
ical ventilation/ECMO/death vs. no invasive ventilator support
(no respiratory distress, oxygen supplementation, non-invasive
ventilation).

The receiver operating characteristic (ROC) analysis with
sensitivity, specificity, Area under ROC curve (AUC) and
positive predictive value (PPV) as performance metrics was
used to evaluate the accuracy of detection of COVID-19
regions on CT and the performance of the models that predict
the need of invasive mechanical ventilation for COVID-19
patients. DeLong test [11] was used to compare the statistical
significance of difference in AUCs between two models.

Fig. 2. An end-end deep learning framework consisting of (a) 2D
U-Net based segmentation network for segmenting the GGOs and con-
solidation regions in the lung and (b) an imaging AI predictor (AIP)
constructed using 3D CNN to predict which COVID-19 patients would
end up getting a ventilator. The segmentations of ground glass opacities
and consolidation regions in the lung are performed using a 2D U-Net
based network. At first, the lung region is segmented and part of the
lung slice (right, left) is given as input to the network. A 3D CNN is
used to construct AIP. The CT volume cropped around the lung and
its corresponding segmented regions of ground glass opacities and
consolidations are given as input to the AIP.

95% confidence intervals (CI) were calculated to determine
statistical significance, and cross validation results on D1

train

were reported as mean ± standard deviation.

III. EXPERIMENTAL DESIGN

A. Experiment 1: Deep Learning Classifier Using
Baseline Chest CT for Predicting the Need for
Mechanical Ventilation in COVID-19 Patients

An end-end deep learning framework consisted of a) 2D
U-Net based segmentation network for segmenting the GGOs
and consolidation regions in the lung and b) AIP constructed
using 3D CNN to predict the need of a ventilator in COVID-19
patients (Fig. 2).

The U-Net network was trained on the training set, D1
train_sub,

with a 3-fold cross-validation setting and further evaluated on
D1

test_sub (N= 96). We used the segmentation maps outputted by
the networks to evaluate detection performance of the network in
detecting the GGOs and consolidations. We defined the region
as being detected if ≥ 0.2 DSC overlap existed between the
network segmentation map and the ground-truth delineation of
that corresponding region. We report the segmentation accuracy
of the detected regions in terms of DSC.

Subsequently, the AIP was trained on D1
train with a 3-fold

cross validation setting for predicting which COVID-19 patients
would end up getting on a ventilator. Further, the ensemble of
the AIP’s predictions trained on 3-fold cross validation (average
predictions of the predictors) was used to evaluate the perfor-
mance on Dtest. Additionally, the performance of the presented
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Fig. 3. Overall modelling framework to create an integrated clinical and
imaging-based nomogram (ClAIN) to predict which COVID-19 patients
would end up getting a ventilator. The decision obtained from an imag-
ing AI predictor (AIP) and the most discriminating clinical features are
integrated in a multivariate logistic regression model to construct ClAIN.

architecture of AIP was compared with other widely used archi-
tectures such as 3D ResNet [12], [13] and DenseNet [14].

B. Experiment 2: An Integrated Clinical and Imaging
Nomogram to Predict the Need of Mechanical Ventilation
in COVID-19 Patients

Univariate analysis was performed to identify the top 5
most prognostic clinical (age, gender) and laboratory parame-
ters (CBC, Inflammation markers, coagulation markers, general
chemistry). We excluded those clinical factors which were found
in less than 50% of the cases in the training set (such as IL6 which
is not routinely captured). For a full list of clinical and laboratory
parameters used see SUPPLEMENTARY TABLE II. The results
of univariate analysis performed of each variable is shown in the
SUPPLEMENTARY TABLE III. A median value based missing
value imputation was used to impute the missing values in the
dataset. Subsequently, min-max normalization was applied to
each of the clinical features, normalizing the values between
0 and 1. A clinical AI predictor (ACP) was built by training
a logistic regression classifier on the top 5 selected features.
Finally, the top 5 features were integrated with the probability
scores obtained by AIP and a multivariable logistic regression
was trained to generate an integrated clinical and AI imaging
nomogram (ClAIN). The overall workflow diagram to construct
ClAIN is depicted in Fig. 3. Both the models, ACP and ClAIN
were validated on Dtest. DeLong [11] test was used to compare
the performance between the models.

IV. RESULTS

A. Study Population Characteristics

TABLE I lists the study population characteristics for the two
sites D1 and D2. The median age of the patients was 59 in D1

and 60 in D2, and, 46.8%, 53.2% and 51%, 49% were male,
female in D1 and D2 respectively. (For detailed patient charac-
teristics, refer to TABLE I). 41.9%, 55.3% had a mild disease
which resolved while 58.1%, 44.7% had severe ARDS needing
invasive mechanical ventilation in D1 and D2 respectively. The
clinical characteristics were not significantly different between
the training and validation datasets with age (p = 0.2), sex (p =
0.09) being largely similar.

TABLE I
DEMOGRAPHIC INFORMATION AND CLINICAL LAB TEST INFORMATION

IQR: Interquartile range.

TABLE II
U-NET SEGMENTATION RESULTS IN SEGMENTING GROUND GLASS

OPACITIES AND CONSOLIDATION REGIONS

PPV: Positive predictive value.DSC: Dice similarity coefficient.

B. Experiment 1: Deep Learning Classifier Using
Baseline Chest CT for Predicting the Need for
Mechanical Ventilation in COVID-19 Patients

The performance of U-Net in detection (number of 3D con-
nected regions detected, false positives, sensitivity and positive
predictive value (PPV)), and segmentation (DSC) of GGOs and
consolidation regions is presented in TABLE II. The U-Net
network resulted in detection sensitivity and PPV of 80.71%
and 69.3% respectively, and segmentation (Fig. 4) DSC of
0.60±0.02 on D1

train_sub. On D1
test_sub (N = 96), the sensitivity

and PPV was found to be 79.15% and 69.5% respectively, and
the corresponding DSC of the segmentations was 0.59.

The 3-fold cross-validation results and performance on Dtest

of AIP and other classical architectures in predicting which
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Fig. 4. Segmentations results of a 2D U-Net in segmentation of ground
glass opacities and consolidation regions in the lung. Green contours
represent ground-truth delineations of the GGOs and consolidations and
their corresponding network segmentation contours are represented in
yellow. The 2D U-Net network was trained on the training set of N=88
patients and was evaluated on a subset of the testing set D1

sub (N=96
patients).

TABLE III
COMPARISON OF PERFORMANCE (AUC) OF THE PRESENTED

ARCHITECTURE AIP WITH OTHER ARCHITECTURES (RESNET AND
DENSENET) ON D1

TRAIN AND DTEST

AUC: area under the receiver operating characteristic curve. ACC: Accuracy. std:
standard deviation.

COVID-19 patients needed mechanical ventilation support are
presented in TABLE III. AIP yielded a 3-fold cross-validation
AUC of 0.86±0.01 on D1

train, outperforming other architectures
such as ResNet [12], [13] and DenseNet [14] whose performance
was found to be in the range of 0.72-0.81. The ensemble of
the AIP’s predictions (average predictions of AIP trained on
three different folds of cross-validation) resulted in an AUC of
0.809; 95% CI [0.75-0.87], on Dtest. Although, DenseNet169
yielded an AUC = 0.820; 95% CI [0.77-0.87], we chose AIP
as the base architecture since the difference in the performance
was not found to be statistically significant (p>0.05), and AIP
(1323768 parameters) has 18x fewer parameters compared to
DenseNet169 (18568002 parameters). The unsupervised clus-
tered heat map of deep features extracted from the pre-final
layer of AIP shows separate clusters for patients who ended up
getting on a ventilator and for those who did not (Supplementary
Fig. 3).

TABLE IV
COMPARISON OF PERFORMANCE (AUC) WITH AND WITHOUT THE
USE OF BINARY SEGMENTATION MAPS AS SECONDARY CHANNEL

TO AIP ON D1
TRAIN AND DTEST

AUC: area under the receiver operating characteristic curve.ACC: Accuracy. std:
standard deviation.

Gradient-weighted Class Activation Maps (Grad-CAM) [15]
were used to showcase some examples of interpretation of AIP.
Grad-CAM helps in highlighting the regions in an image that are
associated with a particular class. From Fig. 5, we observe that
the network primarily focuses on the segmented GGOs and con-
solidation regions. Additionally, when the network was trained
without the use of binary segmentation masks as an auxiliary
input channel to the network, a performance drop of 10% AUC
was observed on D1

train (TABLE IV). The corresponding AUCs
on Dtest was found to be 0.753; 95% CI [0.69-0.81] leading to
drop in AUC of 5.6% on Dtest. Therefore, the use of binary seg-
mentations as the second channel input to the network aids the
network in setting an attention region [10] helping the network
to focus on these regions, while at the same time, providing the
context of the whole lung region.

C. Experiment 2: An Integrated Clinical and Imaging
Nomogram to Predict Need for Mechanical Ventilation in
COVID-19 Patients

The most prognostic clinical factors (see SUPPLEMEN-
TARY TABLE II for the list of all the clinical factors) iden-
tified were prothrombin time, albumin, lactate dehydrogenase,
aspartate aminotransferase, and % lymphocyte. The ACP model
trained using the most discriminating clinical factors yielded an
AUC of 0.74; 95% CI [0.67-0.80] on Dtest.

The integrated model, ClAIN outperformed AIP resulting
in an AUC of 0.84; 95% CI [0.79-0.89] (p = 0.04) on Dtest.
TABLE V shows other performance metrics such as sensitivity
and specificity for all the models AIP, ACP and ClAIN on
Dtest at two optimal cut-off points on the ROC (maximizing
sensitivity on D1

train, and maximizing F1- score on D1
train). At an

optimal operating point on the ROC determined by maximizing
F1-score [16] on the D1

train, ClAIN resulted in the accuracy,
sensitivity and specificity of 77.9%, 97.3% and 52.6% on Dtest

respectively.
The multivariate logistic regression analysis of the ClAIN

model (TABLE VI) revealed that AIP, Lactate Dehydrogenase
(LDH) and Prothrombin Time (PT), added independent prog-
nostic value irrespective of other clinical parameters on mul-
tivariable analysis (p < 0.001). Fig. 6 depicts the integrated
clinical nomogram, ClAIN. We can observe that LDH, PT, and
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Fig. 5. Model interpretability results with guided gradient weighted class activation maps (Grad-CAM) based on Chest CT scan to differentiate
COVID-19 patients not requiring a ventilator (top row patients 1, 2 and 3) from the ones needing a ventilator (bottom row patients 4, 5 and 6). The
color “red” indicates the pixel contributing towards the need of a ventilator while the color “green” corresponds to the pixel contributing towards not
requiring a ventilator. The color bar gradient corresponds to the strength of the contribution. We can observe that the use of binary segmentation
maps as an input channel aids the network to focus on areas of ground glass opacities and consolidations. We can also observe that for patients
who need a ventilator, the majority of the GGOs and consolidations are illustrated in red.

TABLE V
PERFORMANCE METRICS (AUC, SENSITIVITY, SPECIFICITY) OF THREE MODELS; AIP, ACP, ClAIN ON DTEST (N=263)

(AIP: A 3D convolutional neural network (CNN) trained on baseline non-contrast chest CT images), clinical AI predictor (ACP: A logistic regression-based model trained
on the most discriminable clinical factors) and ClAIN (a logistic regression based integrated clinical and AI imaging nomogram).

TABLE VI
MULTIVARIABLE LOGISTIC REGRESSION ANALYSIS OF ClAIN

ClAIN: integrated clinical and imaging AI nomogram.

risk score from AIP are the major contributing factors in the
integrated nomogram, ClAIN. The decision curve analysis on
Dtest indicated an added net-benefit in using ClAIN over AIP
and ACP (Fig. 6).

V. DISCUSSION

In this study we constructed an integrated clinical and AI
based nomogram (ClAIN) to predict at baseline which patients
have a severe phenotype of COVID-19 and would end up
developing severe ARDS needing intubation and mechanical
ventilation. In order to decrease bias, we explicitly used those
patients along with baseline CT scans and laboratory parameters
in the mild stage of disease without any respiratory assistance.
ClAIN comprised a state-of-the-art DL model (AIP) based off
baseline non contrast CT scans. AIP incorporated a CNN where
automatically segmented COVID-19 regions on lung CT was
taken as an auxiliary input, beside the whole segmented lung as
the region of interest, to predict the need for invasive ventilation
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Fig. 6. A ClAIN (Clinical and imaging integrated nomogram) (top) con-
structed using output probability score of the imaging AI predictor (AIP: a
3D convolutional neural network trained for predicting which COVID-19
patients would end up getting on a ventilator) and five most discriminable
clinical features with decision curve analysis (bottom) to evaluate the net
benefit of using ClAIN over the models AIP (only imaging) and ACP (only
clinical). The models were trained on D1

train (N=606 patients) and was
evaluated on D1

test (N=216 patients) and D2 (N = 47 patients).

as the outcome of interest. Meanwhile, the ACP incorporated
prothrombin time, albumin, lactate dehydrogenase, aspartate
aminotransferase, % lymphocyte out of routine clinical param-
eters. Additionally, the three models were trained and evaluated
on a large multi-institutional dataset making this the largest
study we are aware of involving the use of AI for prognosis
of COVID-19 patients.

The integrated ClAIN model outperformed AIP and ACP
models in predicting which COVID-19 patients would ulti-
mately need invasive mechanical ventilation on both internal
(D1

test) and external validation sets (D2). ClAIN improved per-
formance by over 10% (p<0.001) over ACP and by 3% (p =
0.04) over AIP in terms of AUC with the performance increase
found to be statistically significant by DeLong’s test. AIP model
performance was found to be independently predictive irrespec-
tive of other clinical parameters on multivariable analysis. The
ClAIN model was also used to individualize risk assessments by
constructing a nomogram which showed benefit over using only
the DL approach or the clinical factors. Nomogram predicted
score of 0.28 and greater (optimal cutoff point on the ROC curve)
suggested the need for mechanical ventilation while scores less
than or equal to 0.28 could be managed conservatively.

Given current expert recommendations for early intubation
and initiation of invasive mechanical ventilation to significantly
reduce disease progression and decrease COVID-19 related

mortality [17], there is an urgent need to build a validated
prognostic approach using routine clinical tools to risk assess
patients who have tested positive for COVID-19 and are at a
relatively early course of disease. This would not only allow
for early initiation of medications or supportive interventions to
decelerate disease progression for these patients [17], [18], but
in the face of worldwide ventilator shortage [19] allow for early
identification of ideal ventilator candidates - those at increased
risk of developing severe ARDS or death.

At present, increase in laboratory parameters including but not
limited to lymphocytopenia, acute phase reactants like procal-
citonin, LDH, IL-6, coagulation factors like Prothrombin time,
D-dimer, Fibrinogen have been correlated with severe disease or
respiratory deterioration, but there is no currently validated way
to risk assess these patients rapidly on the bedside immediately
when they test positive by RT-PCR for COVID-19.

Ellinghaus et al[20]. meanwhile took a GWAS approach on
1980 patients and found ABO blood group and 3p21.31 gene
cluster as a genetic susceptibility locus for disease severity
defined by the need for invasive mechanical ventilation. Our
study differs from the above in being easy to deploy for routine
clinical use unlike expensive genomic assays as it makes use of
routinely acquired non-contrast CT scans and routine laboratory
parameters. Additionally, to the best of our knowledge, ours
is one of the first studies to i) construct and validate a hybrid
(clinical and CT-derived DL) approach to predict the need for
intubation and mechanical ventilation in RT-PCR determined
COVID-19 patients, ii) validate our approach in over 800 pa-
tients from two different institutions; iii) completely automated
– from disease detection on CT to assessment of severity; iv)
predicts disease outcome rather than using AI for diagnostic or
differentiation applications.

While our approach makes use of a DL network with its
inherent limitations including the relative lack of robust bio-
logical underpinning, we rectified that to an extent by passing
the binary segmentation of GGOs and consolidation regions as
an input to the CNN. The automatically segmented region of
COVID-19 lesions as an auxiliary input to the network directs
the network to clinical regions of interest for its decision making.
In fact, when compared to the same network but without the
segmentations as an input to the network, performance decreased
by 10% and 5.6% on D1

train and Dtest respectively. This seemed
to suggest that it is subtle changes that the network picks up
from COVID-19 regions which allows it to predict outcome.
Additionally, on post-hoc analysis of network activation maps
(Fig. 5) by Grad-CAM, we could observe the regions with
GGOs, and consolidations got activated based on the class that
they belong to (patients who would end up getting on a ventilator
and the ones who did not).

Our study did have its limitations. Our study was retrospective
in nature and the two cohorts were not homogeneously defined,
and hence to ensure the clinical usefulness of ClAIN, we need to
validate the tool in a prospective setting by following up patients
till discharge. Additionally, the retrospective nature of the study
also precluded us from standardizing the time between RT-PCR
positivity and CT scans across the cohort. Furthermore, while
a single experienced radiologist delineated the COVID regions
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(GGOs and consolidations), employing multiple readers could
have yielded a consensus annotation which might have been less
prone to sensitivity of the annotations made by the individual
reader. Additionally, since the dataset in the study was retro-
spectively obtained from multiple institutions, we did not have
access to the raw pre reconstructed data. Therefore, standardiz-
ing and constructing all the scans with only one reconstruction
kernel to perform the analysis remains part of future research
directions. Finally, we did not explicitly compare segmentation
and prediction performances between the AI model and expert
radiologist interpretations, because our final goal was to build
a prognostic model, and not focus solely on region detection
accuracy.

VI. CONCLUSION

In conclusion, we constructed an integrated DL and clinical
parameter prognostic model using routinely available blood
parameters and standard-of-care CT scans at baseline in SARS-
CoV-2 positive patients at the milder stage of disease. We showed
in a multi-institutional cohort that our integrated model was able
to accurately identify as to which of these patients would decline
to severe respiratory distress and would need intubation and
mechanical ventilation assistance. Further multi-site prospec-
tive validation would allow for clinical deployment of ClAIN
specially to triage patients for ventilator usage, in the face of
worldwide shortages in availability of mechanical ventilators.
The developed tool once prospectively validated could provide
an objective way to risk stratify patients immediately following
diagnosis with COVID-19.

APPENDIX

A. Data Preprocessing and Augmentation

All CT scans were first pre-processed by converting them
from Hounsfield units to image intensities by considering the
air in the lungs as having zero intensity value. Augmentations
were performed on 3D volume. A random combination with
certain probabilities of rotation (3°, 5°, 8°) along the axial plane,
and shearing was performed to increase the size of the training
dataset. For each of the volumes 5 different combinations of
randomly chosen augmentations were performed.

B. Initialization and Hyper-Parameter Settings of the
Deep Learning Networks

U-Net (segmentation of GGOs and consolidation regions)
and the imaging AI predictor (AIP) were both implemented in
pytorch (0.4.1).

Initialization: Both the CNNs were initialized with a manual
seed.

Loss function: Dice Loss = 1 – dice similarity co-efficient
(DSC) function was used train U-Net for segmentation of GGOs
and consolidation regions. Binary cross entropy loss function
was used for training AIP for predicting which COVID-19
patients would end up getting on a ventilator.

Stopping criteria: An early stopping criterion (patience = 10)
was used to stop the network training with respect to the leave
one out cross validation loss.

Optimizer: The training of both the networks was performed
using an Adam optimizer.

Learning rate and optimizer weight decay: A grid search was
performed to choose the learning rate (10−5–10−3) and weight
decay parameter (10−5–10−3) for the optimizer. A learning-rate
of 10−4 and weight decay of 10−5 was chosen based on highest
cross-validation AUC (SUPPLEMENTARY TABLE IV).

Size of the training set: An ablation study was conducted
to choose the size of the training set (10%, 30%, 50%, 70%).
Using 70% of the training set, lead to the highest cross-validation
AUC= 0.86 (SUPPLEMENTARY TABLE IV). Therefore, 70%
training set and 30% test set was chosen to build and evaluate
all the models (AIP, ACP and ClAIN).

Batch size: A batch-size of 24 was used to train the networks.

C. Programming Language

Most of the analysis in this study was done using python as a
programming language as well as “R” for some of the statistical
analysis.

Specific packages such as matplotlib (2.2.2), numpy (1.17.4),
scipy (1.1.0), scikit-learn (0.20.2), pytorch (0.4.1) was used.

Area under the receiver characteristic operating curve (AUC)
was calculated using R package ‘pROC’. A trapezoidal rule
was used along with 95% confidence interval (CI) obtained
by performing 2000 stratified bootstrap replicates to calculate
AUCs. A DeLong test was used to compare the difference
between two AUCs.
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