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Abstract: Renal cell carcinoma (RCC) is one of the most aggressive urological malignancies and has
a poor prognosis, especially in patients with metastasis. Although RCC is traditionally considered
to be radioresistant, radiotherapy (RT) is still a common treatment for palliative management of
metastatic RCC. Novel approaches are urgently needed to overcome radioresistance of RCC. Black
phosphorus quantum dots (BPQDs) have recently received great attention due to their unique physic-
ochemical properties and good biocompatibility. In the present study, we found that BPQDs enhance
ionizing radiation (IR)-induced apoptotic cell death of RCC cells. BPQDs treatment significantly
increases IR-induced DNA double-strand breaks (DSBs), as indicated by the neutral comet assay
and the DSBs biomarkers γH2AX and 53BP1. Mechanistically, BPQDs can interact with purified
DNA–protein kinase catalytic subunit (DNA-PKcs) and promote its kinase activity in vitro. BPQDs
impair the autophosphorylation of DNA-PKcs at S2056, and this site phosphorylation is essential
for efficient DNA DSBs repair and the release of DNA-PKcs from the damage sites. Consistent with
this, BPQDs suppress nonhomologous end-joining (NHEJ) repair and lead to sustained high levels of
autophosphorylated DNA-PKcs on the damaged sites. Moreover, animal experiments indicate that
the combined approach with both BPQDs and IR displays better efficacy than monotreatment. These
findings demonstrate that BPQDs have potential applications in radiosensitizing RCC cells.

Keywords: black phosphorus quantum dots; renal cell carcinoma; irradiation; DNA-PKcs; DNA
damage repair

1. Introduction

Renal cell carcinoma (RCC) is a frequently lethal urological disease and accounts for
~90% of kidney cancers [1]. Its incidence rate has increased during the previous decade,
and one-third of newly diagnosed cases have multiple distant metastases. The metastatic
spread of cancer cells renders RCC incurable by surgical resection and decreases the 5-year
survival rate to approximately 8% [2]. Palliative radiotherapy (RT) plays a valuable role in
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the management of metastatic RCC, especially for brain and painful bone metastasis [3].
Radioresistance remains the major obstacle to limit the efficacy of RT, and there is an
urgent need to develop novel treatment strategies to increase RCC cell radiosensitivity.
DNA is the principle cellular target for the biological effects of ionizing radiation (IR). The
most lethal forms of DNA lesions caused by IR are DNA double-strand breaks (DSBs),
as a single DSB is sufficient to induce cell cycle arrest or trigger cell death [4]. There are
two main pathways to repair DNA DSBs in higher eukaryotes: homologous recombination
(HR) and nonhomologous end joining (NHEJ). HR repairs DSBs that are restricted to the
late S or G2 phases of the cell cycle when a sister chromatid is available [5]. NHEJ is the
predominant repair mechanism and may occur throughout all cell cycle phases. NHEJ
directly relegates the broken DNA ends following limited DNA processing. The key effector
of NHEJ is the DNA-PK complex consisting of DNA-dependent kinase catalytic subunit
(DNA-PKcs) and the Ku70/80 heterodimer [6]. Once DNA DSBs occur, Ku70/80 binds
rapidly to free DNA ends and recruits DNA-PKcs, which stimulates the activity of DNA-
PKcs. The DNA-PK subunits are required for the recruitment of other repair proteins,
including DNA ligase IV and XRCC4 [7]. Activated DNA-PKcs can phosphorylate itself
and Artemis. Phosphorylated Artemis is activated, and its nuclease activity is implicated
in end-processing, whereas autophosphorylation of DNA-PKcs destabilizes its interaction
with the DNA ends, and allows subsequent gap-filling or ligation steps [8]. Recent studies
have implicated the potential role of DNA-PKcs in cancer development. Overexpression of
DNA-PKcs is frequent in a variety of cancers, including RCC [9]. Given its critical role in
NHEJ, DNA-PKcs has been recognized as a promising therapeutic target in concert with
DNA-damaging agents [10].

Nanoparticles (NPs) are materials with overall dimensions less than 100 nm. Owing
to their unique physicochemical properties, NPs have emerged as important players in
biomedical fields [11,12], such as antimicrobials, disease diagnosis, drug delivery, can-
cer photodynamic therapy (PDT), and photothermal therapy (PTT) [13]. Recently, black
phosphorus quantum dots (BPQDs) have received great attention due to their good bio-
compatibility, high specific surface area, and drug loading rate [14]. BPQDs efficiently
convert near-infrared (NIR) light into thermal energy and significantly induce cancer-cell-
killing effect [14,15]. BPQDs can be used as a gene delivery system for cancer treatment.
Polyelectrolyte-polymer-functionalized BPQDs efficiently deliver lysine-specific demethy-
lase 1 small-interfering RNA (siRNA) into PA-1 cells [16]. A recent study incorporated
BPQDs into a liposomal bilayer to generate an NIR-light-controlled drug delivery system.
This system exhibited excellent cancer-cell-killing effects through rapid intracellular dox-
orubicin release and photothermal-mediated increased cell membrane permeability, thus
easily entering doxorubicin into cell nuclei [17]. BPQDs can also act as radiosensitizers by
generating singlet oxygen (1O2) in tumor in response to X-ray irradiation [18]. The direct in-
trinsic interaction of BPQDs with cell organelles or specific biomolecules has been reported.
Shao et al. revealed that BPQDs directly bind with polo-like kinase 1 (PLK1), through which
destabilize mitotic centrosomes [19]. Our previous study showed that BPQDs suppress
histone deacetylase 1 (HDAC1) activity and impair HDAC1-mediated deacetylation of the
mitotic spindle protein Eg5 in RCC cells, thus disrupting the mitotic spindle and leading to
mitotic arrest. In this study, we found that BPQDs slow DNA damage repair in response
to X-ray irradiation in RCC 786-O cells. Mechanistically, BPQDs impaired NHEJ repair by
directly interacting with DNA-PKcs and suppressing its kinase activity.

2. Materials and Methods
2.1. Western Blot

The 786-O and A498 cells were cultured with PBS or 20 µg/mL BPQDs for 12 h and
then exposed to 5 or 10 Gy X-ray. Protein extraction from 786-O cells was performed, as
described preciously [20]. Then, proteins were subjected to 8% SDS-PAGE and transferred
onto PVDF membranes. Blots were blocked with 5% non-fat dry milk with primary anti-
bodies at 4 ◦C overnight, followed by secondary antibodies, and detected by a chemilumi-
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nescence imager (Tanon, Shanghai, China). The antibodies used for Western blotting were:
Cleaved PARP (CST, 5625, 1:1000), Actin (Beyotime, AA128, 1:1000), DNA-PKcs-ps2056
(Abcam, ab18192, 1:1000), DNA-PKcs (Abcam, ab32566, 1:1000), Chk2-pT68 (CST, 2661S,
1:1000), and Chk2 (CST, 2662S, 1:1000).

2.2. Immunofluorescence Assay

For immunofluorescence analysis, cells were cultured on 35 mm2 dishes with cover-
slips, and treated with BPQDs and indicated dose of irradiation. Cells were fixed with
4% paraformaldehyde, and permeabilized in 0.5% Triton X-100 for additional 20 min,
and blocked in 5% bovine serum albumin. The samples were incubated with the follow-
ing antibodies: γH2AX (Millipore, 05-636, 1:1000), 53BP1 (Novusbio, NB100-904, 1:200),
DNA-PKcs-ps2056 (Abcam, ab18192, 1:1000), Alexa-488-conjugated anti-rabbit secondary
antibodies (CST, 4916, 1:1000), and Alexa-488-conjugated anti-mouse secondary antibodies
(CST, 4408, 1:1000).

2.3. Flow Cytometry

The 786-O cells were culture onto 60 mm2 dishes. Cells were exposed to 20 µg/mL
BPQDs along or in combination with 5 Gy IR for 24 h. Cells were harvested, centrifuged,
and resuspended. Then, PE-Annexin V and 7-AAD were incubated with cell suspension in
the dark condition. Cells were subjected to flow cytometry analysis using a flow cytometer
(FACSVerse, BDBiosciences, San Diego, CA, USA).

2.4. Comet Assay for DNA Double-Strand Breaks

Cells were treated with 20 µg/mL of BPQDs for 12 h, and washed out with PBS, and
were then irradiation with 4 Gy of X-ray. A duration of 4 h post IR, the cells were mixed
with low melting point agarose, spread on a comet assay slide. Those slides were left into
4 ◦C for drying, and incubated with neutral lysis buffer and subjected to electrophoresis.
Cells were stained with SYBR Green I, and comet tails were visualized using a confocal
microscope (FV1200, Olympus, Tokyo, Japan). Experiments were performed at least three
times for each sample.

2.5. NHEJ Repair Efficiency

The 786-O cells were cultured in 6-well plates, and 3 µg of CRISPR/Cas9 plasmid was
co-transfected with 25 pmol dsODN into 786-O cells. BPQDs (20 µg/mL or 40 µg/mL)
were added to the cells 24 h post transfection. Then, the genomic DNA of 786-O cells was
extracted by a Genomic DNA Kit (Tiangen, Beijing, China) and real-time PCR (Applied
Biosystems, Foster City, CA) was performed.

2.6. Animal Experiment

The 1.5-month-old male BALB/c nude mice (Shanghai SLAC Laboratory Animal
Co. Ltd., Shanghai, China) were raised in the SPF-level laboratory animal room of Soochow
University. A total of 1 × 107 786-O cells were injected subcutaneously into the flanks of
nude mice. When the tumor grew to 50–100 mm3, the mice were treated with PBS or BPQDs
(1 mg/kg), 10 Gy X-rays or BPQDs + X-rays. Radiation was administered (2 Gy/min) to
the tumor xenografts in mice by a linear accelerator (Varian). BPQDs were administered to
the tumors on days 0, 3, 6, and 9. Every other day, the volume of tumors was measured and
recorded. Mice were sacrificed and the tumor tissues were harvested and fixed in tissue
fixation fluid on day 20.

2.7. Statistical Analyses

All results are presented as the mean ± standard deviation (s.d.). Comparisons
were evaluated by Student’s t-test for differences between two groups and ANOVA for
differences among three or more groups.
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3. Results
3.1. Synthesis and Characterization and BPQDs

The BPQDs used in this study were prepared according to our previous study [20].
The morphology of the obtained BPQDs is shown in the supporting information. BPQDs
have an average diameter of approximately 10 nm and a thickness of 3–6 nm (Figure S1).
In addition, the surface zeta potential and hydrodynamic size of BPQDs were measured
and are summarized in Table S1.

3.2. BPQDs Increase Radiation-Induced Apoptosis of RCC

Our previous study showed that BPQDs enhance the chemosensitivity of RCC cells by
impairing spindle assembly [20]. Spindle-targeting drugs have been proven to be highly
active as radiosensitizers to enhance the killing effect of tumor cells and improve clinical
outcome for patients with cancers. Here, we determined the potential role of BPQDs in
RCC 786-O cell radiosensitivity by treating 786-O cells with IR alone or in combination
with BPQDs. The percentage of apoptotic cells was significantly higher in BPQDs- and
radiation-treated cells than in either monotreatment group (Figure 1A,B). An increase
in combination-treatment-induced apoptosis was also evidenced by cleavage of PARP-1
through immunoblotting analysis (Figure 1C). In addition, we found that BPQDs decrease
the capacity of DNA DSBs and enhance IR-induced apoptosis in another RCC cell line,
A498 cells (Figures S2 and S3). These results suggest that BPQDs dramatically enhance
radiation-induced apoptotic cell death of RCC.
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Figure 1. BPQDs enhance IR-induced apoptotic cell death of 786-O cells. (A) Cells were exposed to
20 µg/mL BPQDs along or in combination with 5 Gy IR for 24 h, and representative flow cytometry
plots; (B) the percentage of AnnexinV-positive apoptotic cells (* p < 0.05, BRQDs + IR versus BPQDs
and IR monotreatment groups). (C) Cells were exposed to 20 µg/mL BPQDs along or in combination
with 5 Gy IR for 24 h and subjected to immunoblotting with anti-Cleaved PARP (Asp214), and
anti-actin antibodies.

3.3. BPQDs Enhance IR-Induced DNA Damage and Slow Damage Repair

DNA is the principal target of IR in cells [21]. To understand how BPQDs contribute
to the IR-induced cell-killing effect on 786-O cells, a comet assay was used to detect DNA
DSBs after treatment of 786-O cells with IR along or in combination with BPQDs. The comet
tails of cotreated 786-O cells were much longer than those in either mono-treated cells
(Figure 2A,B). The phosphorylation of H2AX on its Ser139 (γH2AX) will occur around DNA
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DSBs and is a sensitive molecular marker of DNA DSBs. Immunofluorescence staining
for γH2AX foci was adopted, and showed that BPQDs-treated 786-O and A498 cells had
prolonged repair kinetics compared to the mock group of 786-O cells at 0.5–24 h post 2 Gy
of IR (Figures 2C,D and S3). An early step in DNA DSBs repair involves the recruitment
of 53BP1 to form foci at the damaged DNA ends. The DNA DSBs repair kinetics were
also supported by counting 53BP1 foci numbers. We observed a significantly slower rate
of DNA DSBs repair in combined-treated 786-O cells than in either BPQDs or IR mono-
treated cells (Figure 2E,F). There are two main pathways to repair damaged DSBs: HR
and NHEJ. Thus, the efficiencies of NHEJ and HR were quantitatively monitored in vivo
via a CRISPR/Cas9-induced oligodeoxynucleotide (ODN) detection system as described
in a previous report [22]. BPQDs treatment markedly decreased NHEJ activity in 786-O
cells (Figure 2G) but did not affect HR repair (data not shown). These results suggest that
BPQDs impair IR-induced DNA DSBs repair.
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Figure 2. BPQDs decrease the capacity of DNA DSBs in 786-O cells. The 786-O cells were either
exposed to 20 µg/mL BPQDs, 4 Gy X-ray irradiation, or combined treatment, and the cells were
subjected to neutral single cell gel electrophoresis 4 h posttreatment. (A) Representative comet
images of different groups of cells. (B) Repair ability of DNA DSBs were measured (more than
100 cells were counted, three independent assays). (C) Representative IF images showing γH2AX
foci in 786-O cells treated with 20 µg/mL BPQDs or PBS 2 h before 2 Gy IR (scale bar = 10 µm).
(D) Number of γH2AX foci per cell at the indicated time points post-IR (data were generated from
three independent experiments. * p < 0.05, *** p < 0.001). (E) Representative IF images showing
53BP1 foci in 786-O cells treated with 20 µg/mL BPQDs or PBS 2 h before 2 Gy IR (scale bar = 10 µm).
(F) Number of 53BP1 foci per cell at the indicated time points post-IR (data were generated from three
independent experiments. *** p < 0.001). (G) The 786-O cells were transfected with 3 µg Cas9/sgHPRT
plasmid and 25 pmol dsODN. At 24 h post-transfection, real-time PCR analysis was performed to
measure the dosage of BPQDs that had suppressive effects on NHEJ repair. Nu7441 was adopted as a
positive control.
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3.4. BPQDs Suppress DNA-PKcs Activity and Limit the Dynamics of DNA-PKcs at Damage Sites

DNA-PKcs is the key regulator of the NHEJ repair pathway [23]. We investigated
whether BPQDs affect the activity of DNA-PKcs in response to IR. IR-induced autophospho-
rylation of DNA-PKcs on its Ser2056 site was significantly reduced in BPQDs-pretreated
786-O cells compared with the IR-only group (Figure 3A). We further investigated whether
BPQDs affect DNA-PKcs activity in an in vitro system. BPQDs (20 and 40 µg/mL) were
mixed with purified DNA-PK complexes, and DNA-PK activity was determined using p53
peptide as a substrate. The BPQDs significantly inhibited DNA-PKcs kinase activity in a
dose-dependent manner (Figure 3B). The system was verified using treatment with the
DNA-PKcs inhibitor Nu7441 (0.5 µM). The direct interaction between BP NPs and biological
systems has attracted more attention. Here, we examined the possible association of BPQDs
with the DNA-PK complex. As shown, purified DNA-PKcs and Ku80 could be well pulled
down by BPQDs (Figure 3C). When we examined the foci of phosphorylated DNA-PKcs
at Ser2056, an unexpected result showed that the frequency of pDNA-PKcs-Ser2056 foci
after BPQDs treatment was significantly enhanced (Figure 3D,E). Autophosphorylation of
DNA-PKcs at Ser2056 is essential for DNA-PKcs dissociation and the accessibility of its
downstream factors at damage sites [8]. Therefore, BPQDs impair DNA-PKcs activity and
trap it at the damage sites.
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Figure 3. BPQDs inhibit DNA-PKcs activity. (A) Immunoblot showing DNA-PKcs pS2056 levels in
BPQDs-treated or control 786-O cells at 30 min post 10 Gy IR. (B) The in vitro kinase activity of the
purified DNA-PK complex was determined after incubation with the indicated dosage of BPQDs.
(C) BPQDs were incubated with purified DNA-PK complex for 1 h. The BPQDs–protein complexes
were centrifuged, washed, and analyzed by immunoblotting. (D) Representative IF images showing
the foci of autophosphorylation of DNA-PKcs at Ser2056 in 786-O cells treated with 20 µg/mL BPQDs
or PBS 2 h before 2 Gy IR (scale bar = 10 µm). (E) Number of DNA-PKcs-pSer2056 foci per cell at the
indicated time points post-IR. *** p < 0.001.

3.5. BPQDs Increase IR-Induced Mitotic Errors and Subsequent Micronuclei Formation

Massive unrepaired DNA entering mitosis will lead to mitotic error and form lagging
chromosomes and chromatin bridges. Emerging evidence shows that such errors in chro-
mosome segregation trigger the generation of micronuclei (MNs), and the recognition of
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MNs by innate immune sensors, such as cGAS, leads to autoinflammation or antitumor
immunity [24,25]. Here, we found that BPQDs markedly increased IR-induced lagging
chromosomes and chromatin bridges in 786-O cells (Figure 4A,B). We further assessed
whether BPQDs would exacerbate the formation of cGAS-positive micronuclei. As shown,
BPQDs-treated RCC cells showed significantly increased formation of micronuclei as well
as cGAS- and γH2AX-positive micronuclei in response to 10 Gy X-ray irradiation (22.6%
in combined-treated cells versus 5.5% in IR-only cells, and 4.3% in BPQDs-treated cells)
(Figure 4C,D).
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Figure 4. BPQDs increase IR-induced mitotic aberrations. (A) The 786-O cells were treated with
BPQDs (20 µg/mL) and/or 4 Gy IR for 48 h. Cells were fixed and stained with α-tubulin (greed)
and DAPI (blue). Representative immunofluorescence images are shown. The scale bar represents
10 µm. (B) Percentages of anaphase cells with chromatin bridges and lagging chromosomes (Data
were generated from three independent experiments. *** p < 0.001). (C) The 786-O cells were
treated with BPQDs (20 µg/mL) and/or 10 Gy IR for 48 h. Cells were fixed and stained with cGAS
(greed), γH2AX (red), and DAPI (blue). Representative immunofluorescence images are shown. The
scale bar represents 10 µm. (D) Percentages of anaphase cells with chromatin bridges and lagging
chromosomes. *** p < 0.001.

3.6. BPQDs Sensitize RCC Cells to IR In Vivo

To evaluate the potential radiosensitizing activity of BPQDs, we subcutaneously in-
jected 786-O cells into athymic nude mice and recorded the volume of tumors. We found
that the relative tumor volume was dramatically decreased when comparing mice with
combined treatment (BPQDs + IR) versus either the BPQDs or IR-treated mice, suggesting
the benefit of BPQDs on radiosensitization (Figure 5A,B). We also performed the histopatho-
logical examination of the dissected tumor tissues and found severe vacuolization and
structural damage in the combination-treated versus the monotherapy and control groups
(Figure 5C). These results suggested that BPQDs have the potential to radiosensitize the
786-O cells in in vivo.



Cells 2022, 11, 1651 8 of 12

Cells 2022, 11, x FOR PEER REVIEW 8 of 12 
 

 

groups (Figure 5C). These results suggested that BPQDs have the potential to radiosensi-
tize the 786-O cells in in vivo. 

 
Figure 5. BPQDs and IR suppress tumor growth in a subcutaneous tumor model. (A) The 786-O 
tumor-bearing mice treated by PBS, IR, BPQDs, and IR + BPQDs. * p < 0.05, *** p < 0.001. (B) Tumor 
tissues from mice at the termination of the experiments. (C) Images of tumor tissue sections (H&E 
staining). Scale bar = 100 μm. n = 5 per treatment group. 

4. Discussion 
Our present study demonstrated that BPQDs can act as radiosensitizers in RCC be-

cause BPQDs-treated RCC cells exhibit sustained DNA damage signaling, which reflects 
defects in DNA DSB repair, particularly through NHEJ repair, and consequently enhance 
IR-induced apoptotic cell death. Furthermore, the results from the in vitro system showed 
that BPQDs can pull down the DNA-PK complex and inhibit DNA-PK kinase activity. 
Although our study showed that BPQDs impair IR-induced autophosphorylation of 
DNA-PKcs in RCC cells, the direct interaction between BPQDs and the DNA-PK complex 
in vivo and the translocation of BPQDs to the cell nucleus, especially on the damaged 
DNA ends, are still unanswered questions. Several studies have suggested that DNA-PK 
can be regulated by various cytoplasmic signaling pathways, including EGFR-Akt signal-
ing [26,27], NF-κB signaling [28], and cytoskeleton-related signaling [29]. Our previous 
reports showed that BPQDs treatment leads to the stress fiber of microtubule [20], sug-
gesting that BPQDs might regulate DNA-PKcs function through the cytoplasmic signaling 
pathway. BPQDs also suppress the deacetylase activity of HDAC1 in RCC cells. Histone 
deacetylases play multiple roles in regulating the DNA damage response, including NHEJ 
repair. HDAC1 and HDAC2 have been identified as upstream participants of NHEJ, at 
least in part by regulating the proper dynamics of NHEJ factors from damaged sites [30]. 
Here, we found that BPQDs trap phosphorylated DNA-PKcs at damaged sites. Whether 
BPQDs induce inappropriate disassembly of DNA-PKcs from DSBs sites by eliminating 
HDAC1 activity remains unclear and needs further investigation. 

DNA-PKcs also functions as a key mitotic signaling kinase other than the DNA dam-
age response [31,32]. Mitotic activation of DNA-PKcs is required for phosphorylation of 
downstream target factors, including Chk2 [33] and PLK1 [34,35]. DNA-PKcs-dependent 
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tissues from mice at the termination of the experiments. (C) Images of tumor tissue sections (H&E
staining). Scale bar = 100 µm. n = 5 per treatment group.

4. Discussion

Our present study demonstrated that BPQDs can act as radiosensitizers in RCC
because BPQDs-treated RCC cells exhibit sustained DNA damage signaling, which re-
flects defects in DNA DSB repair, particularly through NHEJ repair, and consequently
enhance IR-induced apoptotic cell death. Furthermore, the results from the in vitro system
showed that BPQDs can pull down the DNA-PK complex and inhibit DNA-PK kinase
activity. Although our study showed that BPQDs impair IR-induced autophosphorylation
of DNA-PKcs in RCC cells, the direct interaction between BPQDs and the DNA-PK com-
plex in vivo and the translocation of BPQDs to the cell nucleus, especially on the damaged
DNA ends, are still unanswered questions. Several studies have suggested that DNA-PK
can be regulated by various cytoplasmic signaling pathways, including EGFR-Akt signal-
ing [26,27], NF-κB signaling [28], and cytoskeleton-related signaling [29]. Our previous
reports showed that BPQDs treatment leads to the stress fiber of microtubule [20], sug-
gesting that BPQDs might regulate DNA-PKcs function through the cytoplasmic signaling
pathway. BPQDs also suppress the deacetylase activity of HDAC1 in RCC cells. Histone
deacetylases play multiple roles in regulating the DNA damage response, including NHEJ
repair. HDAC1 and HDAC2 have been identified as upstream participants of NHEJ, at
least in part by regulating the proper dynamics of NHEJ factors from damaged sites [30].
Here, we found that BPQDs trap phosphorylated DNA-PKcs at damaged sites. Whether
BPQDs induce inappropriate disassembly of DNA-PKcs from DSBs sites by eliminating
HDAC1 activity remains unclear and needs further investigation.

DNA-PKcs also functions as a key mitotic signaling kinase other than the DNA dam-
age response [31,32]. Mitotic activation of DNA-PKcs is required for phosphorylation of
downstream target factors, including Chk2 [33] and PLK1 [34,35]. DNA-PKcs-dependent
Chk2-phosphorylation on its Thr68 site facilitates activation of the Chk2-BRCA1 path-
way [33]. DNA-PKcs also colocalizes with PLK1, which is an essential kinase during
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mitosis progression [36], at the centrosome, and DNA-PKcs promotes the PLK1 activity-
mediated G2/M transition [34]. Shao and colleagues showed that BP nanomaterials can
exist on the centrosome to compromise centrosome integrity by deactivating the PLK1 activ-
ity [19]. The BP nanomaterials interact with PLK1, leading to its aggregation and restricting
the recruitment of PLK1 to centrosomes. The BPQDs may block the interaction between
DNA-PKcs and PLK1, and disrupt DNA-PKcs-mediated activation of PLK1. Our recent
study revealed that DNA-PKcs associates with HDAC6 and modulates HDAC6-mediated
deacetylation of HSP90, which is important to maintain the protein stability of the mitotic
kinase Aurora A [37]. Aurora A plays essential roles in regulating mitotic spindle forma-
tion, and inhibition of Aurora A leads to failure of chromosome congression at metaphase
and lagging chromosomes and chromatin bridges in anaphase [38]. Consistent with this,
our present data showed that BPQDs treatment enhanced IR-induced lagging chromo-
somes and chromatin bridges in RCC cells, indicating that BPQDs may also influence
HDAC6-HSP90 signaling via suppression of DNA-PKcs.

Cytosolic self-DNA, such as micronuclei, can be generated by mitosis error follow-
ing DNA damage in mammalian cells, triggering cGAS-STING-dependent inflammatory
signaling [24,25]. Most recent work identified that DNA-PKcs phosphorylates cGAS and
inhibits its enzymatic activity. DNA-PKcs deficiency enhances the cGAS-mediated innate
immune response [38]. The BPQDs suppress the kinase activity of DNA-PKcs, impair DNA
DSBs repair efficiency, and disrupt the mitotic spindle structure. In line with this notion,
we observed that BPQDs-pretreated RCC cells exhibit an increased number of IR-induced
micronuclei and an elevated amount of cGAS localization to micronuclei, suggesting that
BPQDs may have the potential to enhance IR-induced innate immunity in RCC cells. RCC
is traditionally considered to be resistant to conventionally fractionated radiotherapy with
the dose 1.8–2.1 Gy per fraction [39]. Modern technological advances in radiation oncology
have increased the efficacy of radiotherapy, allowing higher dosage delivery to tumor,
and leading to effective management of cancer patients [40]. Recent studies showed that
the application of stereotactic body radiotherapy (SBRT) was associated with better local
control of metastatic RCC [41–43]. These studies show that RCC can no longer simply be
recognized as radioresistant, and more studies are necessary for exploring the combina-
tion of SBRT with other therapy strategies [44]. Therefore, development of target-based
radiosensitization strategies to sensitize cancer cells to RT become attractive therapeutic
strategy for the clinical benefit of RCC patients. Significant evidence has revealed the
potential of DNA-PKcs in cancer development; thus, various anti-DNA-PKcs strategies
have been proposed as either monotherapy or in combination with chemo- and radiother-
apy [45]. Here, we found that BPQDs can inhibit the kinase activity of DNA-PKcs and
radiosensitize RCC cells in vivo and in vitro.

5. Conclusions

In summary, we found that BPQDs inhibit DNA-PKcs activity and impair DNA-PKcs-
mediated NHEJ DNA DSBs repair, resulting in sustained DNA damage in response to
IR. BPQDs enhances IR-induced suppression of RCC xenografts growth in vivo, pointing
toward a promising BPQDs-based targeted cancer therapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11101651/s1, Figure S1: TEM and AFM images of BPQDs;
Figure S2. BPQDs treatment sensitizes RCC cells to irradiation; Figure S3. BPQDs decrease the
capacity of DNA DSBs and enhance IR-induced apoptosis in A498 cells; Table S1: Characterization
of BPQDs.
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