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N E U R O S C I E N C E

Spontaneous beat synchronization in rats: Neural 
dynamics and motor entrainment
Yoshiki Ito†, Tomoyo Isoguchi Shiramatsu, Naoki Ishida, Karin Oshima,  
Kaho Magami‡, Hirokazu Takahashi*

Beat perception and synchronization within 120 to 140 beats/min (BPM) are common in humans and frequently 
used in music composition. Why beat synchronization is uncommon in some species and the mechanism determin-
ing the optimal tempo are unclear. Here, we examined physical movements and neural activities in rats to determine 
their beat sensitivity. Close inspection of head movements and neural recordings revealed that rats displayed prom-
inent beat synchronization and activities in the auditory cortex within 120 to 140 BPM. Mathematical modeling 
suggests that short-term adaptation underlies this beat tuning. Our results support the hypothesis that the optimal 
tempo for beat synchronization is determined by the time constant of neural dynamics conserved across species, 
rather than the species-specific time constant of physical movements. Thus, latent neural propensity for auditory 
motor entrainment may provide a basis for human entrainment that is much more widespread than currently 
thought. Further studies comparing humans and animals will offer insights into the origins of music and dancing.

INTRODUCTION
Charles Darwin argued that humans inherit the perception of musi-
cal rhythm from their progenitors (1). Beat perception and synchroni-
zation are common in humans, typically within 120 to 140 beats/min 
(BPM) and most frequently used in musical compositions (2–4). 
However, beat synchronization is not common in some species (5). 
To understand this behavior in animals, we first raised two hypoth-
eses underlying beat synchronization in humans.

In the first hypothesis, the optimal tempo is determined by the 
time constant of body structure and physical movement. This body-
cause theory is evident by the step frequency of ~2 Hz (~120 BPM) 
during human walking (6) and by the relationship between move-
ment and time perception (7, 8). This hypothesis predicts that the 
optimal tempo in small animals such as rats is much faster than that 
in humans, according to the power-law scaling of the step frequency 
and body weight (9, 10). Theoretical models (11, 12) also support 
the power-law scaling where physiological time scales—e.g., heart-
beat (13), breathing rate (14), circulation time (15), and life span 
(16)—shorten with body size.

In the second hypothesis, the optimal tempo is determined by 
the time constant of the brain. This brain-cause theory is evident 
from the rhythm conservation of brain function across species (17) 
and neural entrainment by beats in humans (18, 19). Beats also en-
train neural activities in the auditory cortex of rats (20), where the 
time constant of short-term adaptation possibly affects entrainment 
(21–23). Given that species share similar time constants of short-term 
plasticity in the auditory cortex, this hypothesis predicts that the 
optimal tempo for beat synchronization is preserved across species.

To test these hypotheses, we conducted behavioral and electro-
physiological experiments in rats. Their movement time scale is 
several times faster than that of humans (9). To date, no study has 
reported beat synchronization in rats.

RESULTS
Beat synchronization in rats and humans
We measured rats’ head movements during music playback using a 
wireless, miniature accelerometer fixed to the head (Fig. 1, A and B). For 
three consecutive days, we recorded the accelerations along three axes 
while playing 60-s excerpts of “Sonata for Two Pianos” in D major, 
K.448, by Mozart at four different tempos, 99 (75%), 132 (100%), 
264 (200%), and 528 (400%) BPM. We observed that the head move-
ments synchronized to beats in some trials (movie S1) and that these 
movements were likely more visible in a bipedal stance (movie S2 
and fig. S1). This beat synchronization was better characterized by the 
jerk (derivative of acceleration) than by the acceleration (Fig. 1C) 
(24, 25). Our experiments in humans also confirmed that the head 
jerk captured beat synchronization consistently as video motion 
analyses did (movie S3 and figs. S2 and S3). Note that, here, we use 
the term “beat” to refer to the metric position sometimes described 
as “tactus” or “pulse” [i.e., metric positions (pos.) 1, 2, 3, and 4 in the 
4/4 meter shown in Figs. 2 and 3].

Synchronization to putative beats based on the score (i.e., red 
lines in the top inset in Fig. 2B) was quantified as below

	​ Jerk beat contrast (a . u .) =  ​ ​X​ on​​ − ​X​ off​​ ─ ​X​ on​​ + ​X​ off​​
 ​​	

where Xon is the Euclidean norm of the jerk vector averaged around 
beat (40% of the music playback) and Xoff is that elsewhere (the 
remaining 60%). The average of the jerk beat contrast was derived in 
each rat by shifting the window of putative beat timing (Fig. 1D). 
The amplitude of beat contrast variation (max-min) significantly dif-
fered across the four tempos (Kruskal-Wallis test, P = 2.6 × 10−3; Fig. 1E). 
Of the 10 rats, the variation of beat contrast was significant for 6, 5, 
3, and 1 rats for tempos at 75, 100, 200, and 400%, respectively, 
compared with the random condition (P < 5.0 × 10−2; see Mate-
rial and Methods). In addition, the intersubject similarity of the 
jerk beat contrast differed across tempos (Kruskal-Wallis test, P = 
2.8 × 10−4) and was maximum at the original tempo (Fig. 1F). At 
132 BPM, beat synchronization was distinct on day 1 with a sig-
nificant decay on day 2 (Mann-Whitney U test, P = 4.5 × 10−2; Fig. 1G).
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Fig. 1. Beat synchronization in rats. (A) Wireless accelerometer and holder used in the experiment. (B) Rats with the holder and definition of the three axes. (C) Repre-
sentative head movements during music playback at the original tempo. The acceleration vector, the absolute value of the acceleration vector, the jerk vector, and the 
Euclidean norm of jerk are shown. Triangles indicate the increase in jerk around the beat. Beat timings are indicated by gray lines. (D) Left: Mean jerk beat contrast values 
of days 1 and 2 calculated by shifting the window of the putative on-beat timing for each tempo. In-phase synchrony is plotted in red, whereas reverse-phase synchrony 
is plotted in blue. Gray vertical lines indicate actual beat timing. The crosses indicate the maximum jerk beat contrast in a cycle (n = 10). Right: The distribution of maximum 
jerk beat contrast is plotted in the phase field with 0° corresponding to a beat. Each cross indicates an animal, and the red dot indicates the average. (E) Amplitude 
of beat contrast variation (max-min) at each playback tempo. Each black dot indicates an animal. (F) Intersubject similarity of beat contrast is defined as ​
beat consensus ​ ​ i​​  =∣​∑ j≠i​ ​​ ​​ 

→ r ​​ i​​ · ​​ → r ​​ j​​∣​, where i is the animal index and ​​​ → r ​​ i​​​ is the maximum jerk beat contrast in the phase field. The beat consensus of animal i increases when ​​​ → r ​​ i​​​ 
is in phase or in reverse phase with that of other animals. (G) Jerk beat contrast at beat (0°) on each day. Box plots here and hereafter show the median, 25th/75th percen-
tiles, and maximum/minimum within the 1.5× interquartile range. n.s., not significant. *P < 0.05.
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Head movements in human participants during music listening 
exhibited similar trends of beat contrast and beat consensus to those 
in rats (Kruskal-Wallis test: beat contrast, P = 5.1 × 10−5; beat con-
sensus, P = 1.3 × 10−8; fig. S4 and movie S3). In both species, the 
head movements decayed with a tempo increase in both accelera-
tion (fig. S5A) and jerk (Fig. 2A). In rats and human participants 
that exhibited a significant beat contrast at the original tempo, i.e., 5 
of 10 rats and all 12 human participants, we investigated the mean 
jerk as a function of the phase angle between metric positions of 
beats to address whether these beat synchronous movements were 
predictive or reactive and found that the beat synchronous move-
ments in rats were more reactive than those in humans (i.e., the jerk 
at the original tempo was maximized at phase >0 in rats, while at 
phase <0 in humans) (fig. S3A). However, close inspection of our 
data did not rule out the possibility that the beat synchronous 
movements in rats were predictive at pos. 1 in the original tempo, 
because the jerk z score started to increase before the beat, and were 
significantly positive at the beat (fig. S3B). For beat perception and 

synchronization, the musical context was likely to play an import-
ant role because a click sequence of rasterized rhythm of the original 
piece induced a significantly smaller beat contrast and beat consensus 
than the original music excerpt in our human participants (Mann-
Whitney U test: beat contrast, P = 1.7 × 10−2; beat consensus, P = 
9.7 × 10−5; fig. S4, B and C). To test whether the musical context in-
duced similar movements in rats and humans, we analyzed the tem-
poral variation of jerks across a musical passage and found that the 
maximum jerk at each putative beat varied across the music passage 
(Fig. 2B) and that these patterns in rats were significantly correlated 
to those in humans only at the original tempo [r = 0.31, P = 5.1 × 10−4, 
t test; (see fig. S5 for acceleration); r = 0.37, P = 1.1 × 10−5 (Fig. 2C)]. 
This interspecies similarity supported our hypothesis of the brain-
caused theory.

Beat tuning in the auditory cortex
To investigate whether the beat synchronization matched the time 
scale of neural beat processing, we measured multi-unit activities 

Fig. 2. Comparison of beat synchronization between rats and humans during music presentation (K.448). (A) Distribution of maximum jerk between each putative 
beat as a function of playback tempos (75, 100, 200 and 400%). (B) Maximum jerk at each beat. Z scores of jerk were plotted at each beat index (1 to 132). The sound 
waveform of music with putative beat timings (red lines) are shown in the top inset. (C) Correlation of jerk at each beat index between rats and humans. The correlation 
coefficient (r) is indicated in each inset.
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(MUAs) at the fourth layer of the auditory cortex and determined 
the core cortex (the primary and anterior auditory fields, or A1 and 
AAF) and the belt cortex (other higher-order auditory fields), based 
on the characteristic frequency (CF) and onset latency using a micro-
electrode array with 10 × 10 sites (26). We characterized the neural 
responses to putative beats during presentation of the music excerpt 
used in the behavioral experiment. The excerpt included 127 beat 
notes and 362 nonbeat notes and was played at different tempos, 75, 
100, 200, 300, and 400% (Fig. 3A). Following a previous study (20), 
we quantified neural beat contrast as follows

	​ Neural beat contrast (a. u.) = ​ ​R​ on​​ − ​R​ off​​ ─ ​R​ on​​ + ​R​ off​​
 ​​	

where R was the mean difference between the onset response of 
MUAs for 5 to 30 ms (MUAonset) and the baseline level of MUAs for 
0 to 5 ms (MUAbase) following the onset of beat (Ron) and nonbeat 
(Roff) notes. Neural beat contrast was derived for each recording site 

(Fig. 3B) and averaged for each animal (n = 7). Consequently, this 
contrast significantly differed among tempos (Kruskal-Wallis test, 
P = 7.0 × 10−4), with the original tempo displaying the highest con-
trast (Fig. 3C).

The beat tuning was different between fields: At all playback tempos, 
the neural beat contrasts in the belt were smaller than those in the 
core (fig. S6). The neural beat contrasts significantly differed across 
tempos in both the core (Kruskal-Wallis test, P = 6.5 × 10−3) and belt 
(P = 8.0 × 10−5). The neural beat contrast in the higher-order auditory 
cortex was maximized at a slower tempo than those in the core cortex, 
suggesting that the higher-order auditory cortex is critical to the tuning 
of beat perception and is similar to prosodic chunking in humans (27).

At the original tempo, the neural beat contrasts were different 
between beat positions (Kruskal-Wallis test, P = 2.9 × 10−4; Fig. 3D). 
Beat contrasts at pos.1 were significantly larger than those at either 
pos. 2 (P = 2.9 × 10−3) or pos. 4 (P = 2.9 × 10−3) but not at pos. 3 
(P = 8.7 × 10−2), and beat contrasts at pos. 3 were significantly larg-
er than those at pos. 2 (P = 2.9 × 10−3) but not at pos. 4 (P = 8.2 × 
10−1) (Mann-Whitney U test with Bonferroni correction), suggest-
ing a (weak) downbeat effect on pos. 3. Although the notes at pos. 1 
and 3 had a higher acoustic energy than those at pos. 2 and 4, these 
differences in acoustic energy did not purely reflect the neural re-
sponse magnitudes (fig. S7), suggesting that the neural responses at 
each note were modulated by the preceding stimulus context.

The ratio of neural beat contrasts between the first position and 
other positions increased with tempo (Kruskal-Wallis test, P = 1.8 × 
10−5; Fig. 3E). This result suggests that the auditory cortex rescaled 
the excerpts with high tempo into its optimal tempo, where notes at 
the first beat in the musical score were more underscored than those 
at other beats.

To further investigate the mechanism underlying this cortical tuning, 
we tested simplified rhythmic click sequences at four different tem-
pos, 60, 120, 240, and 480 BPM (Fig. 4A). Because every click in the 
sequence was identical, a click at pos. 1 is the only distinct stimulus 
that had a longer interstimulus interval (ISI) than other positions, 
and therefore, pos. 1 was defined as a beat in this sequence, whereas 
pos. 2 and 3 were defined as nonbeats. We observed that the evoked 
responses significantly differed among metric positions in 120 BPM 
(Kruskal-Wallis test, P = 3.2 × 10−2) and marginally in 240 BPM 
(P = 6.7 × 10−2) (Fig. 4B and fig. S8) possibly due to the short-term 
adaptation to the preceding clicks. We also found that neural responses 
at a rest was significantly negative, i.e., MUAonset < MUAbase, at 120, 
240, and 480 BPM (one-sided t test, P = 1.7 × 10−3, P = 1.9 × 10−2, 
and P = 3.2 × 10−3), suggesting that the auditory cortex encoded the 
rest in a predictive manner. Similar to the music stimulus, the beat 
contrast differed among tempos in this rhythmic click sequence 
(Kruskal-Wallis test, P = 9.1 × 10−5) with the highest contrast around 
120 BPM (n = 9; Fig. 4C).

We hypothesized that short-term adaptation underlies cortical 
tuning within 120 to 140 BPM. To quantify the short-term adapta-
tion property of auditory cortex, we estimated the adaptation kernel 
in a data driven manner from MUA responses to periodic click se-
quences. On the basis of a previous study (28), we modeled neural 
responses to click sequences as follows

	​ MUA(t) = max(​M​ 0​​, M(s(t) − I(t)))​	

	​ I(t) = ​∫0​ 
t
 ​​K(t − t′) · MUA(t′)dt′​	

Fig. 3. Neural tuning of music beats. (A) An excerpt of a musical piece was pre-
sented at five different tempos. Colored notes correspond to putative beats, each 
categorized into four positions (pos.1 to 4) in a bar. (B) Neural beat contrast in a 
representative animal. Each dot indicates a recording site in the auditory cortex. (C) Neural 
beat contrast with calculated mean for each animal (n = 7). (D) Neural beat contrast 
at each beat position. The error bar indicates the 25th and 75th percentiles of indi-
vidual differences. (E) The ratio of neural beat contrast at the first beat with respect 
to those at other beats.
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where M0 is the minimum MUA response to stimulus, M is a scal-
ing parameter, s(t) is a binary function indicating the presence of 
the stimulus, I(t) is the short-term adaptation level, and K(t) is the 
temporal property of neural suppression after the sound presenta-
tion. The outline of K(t) was estimated from the MUA response to 
periodic clicks with an ISI ranging between 1/32 and 1 s and fitted 
to the response to rhythmic clicks at 60, 120, 240 and 480 BPM (see 
Materials and Methods). Consequently, our model explained rhythm-
dependent MUAs across all tested tempos in terms of not only the 
global decrease but also the cyclic changes in MUAs (Fig. 4D). In 
addition, it explained the MUA response to both periodic and rhyth-
mic clicks (Fig. 4E). According to our model, the neural beat con-
trast was maximum around 120 BPM (Fig. 4F). To obtain this tuning, 
the outline of K(t) suggests that neural activities in the auditory cortex 
are strongly suppressed for ~250 ms after the sound stimulus (Fig. 4G). 
The estimated effect of short-term adaptation lasted longer in the 

higher-order auditory cortex than in the core cortex, supporting the 
importance of the higher auditory cortex in the neural beat tuning 
(fig. S9).

Conventional models with different kernel functions (28, 29) failed 
to explain the above beat tuning properties (fig. S10). We also tested 
how well the kernel functions predicted the MUA response to random 
click sequences (Fig. 4H). Our model showed the highest prediction 
performance when the mean ISI was around 200 ms, while those by 
Zuk et al. (29) and by Drew and Abbott (28) performed better for 
faster and slower click sequences, respectively (Fig. 4I and fig. S11). 
To estimate which adaptation model best predicts neural activities 
to music stimuli, we examined the Humdrum Kern database (http://
kern.humdrum.org) to characterize ISI distributions used in music 
(bars in Fig. 4I). Consequently, we found that the ISI range that our 
model predicted covered more music genres than the previous models. 
We also estimated the spatiotemporal receptive field (STRF) with a 

Fig. 4. Short-term adaptation model to explain neural tuning around 120 BPM. (A) Rhythmic click sequences of 15 s (three clicks and one rest) played at four different 
tempos. Beat was defined as the first of three consecutive clicks. (B) Representative MUAs averaged among 10 trials. MUAs of 48 recording sites plotted according to mean 
MUA amplitudes. Each data is aligned at 7 s from stimulus onset and scaled. Gray lines indicate click presentation. (C) Neural beat contrasts of all animals (n = 9) calculated 
from their MUA responses to rhythmic click stimuli. Each dot represents the mean neural beat contrast of all recording sites per animal. (D) Simulated MUA responses to 
the rhythmic click stimuli. Green lines indicate the mean MUA responses of all recording sites with click-elicited responses; black lines indicate the simulation results. 
(E) Mean MUA responses to periodic and rhythmic clicks. Solid lines indicate the MUA data in electrophysiological experiments; dashed lines indicate the simulation re-
sults. The error bar indicates the SEM. (F) Neural beat contrast to rhythmic clicks in electrophysiology and simulation. (G) Outline of the kernel function predicted from the 
present experiments. The kernel functions of previous studies are also shown for reference. (H) Representative MUA in response to random click sequences with different 
mean ISIs. (I) Prediction accuracy of each model (solid lines). The distribution of mean ISI in a variety of music is shown for reference (bars).

http://kern.humdrum.org
http://kern.humdrum.org
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time window of 200 ms in a data-driven manner (20, 30), but this 
STRF failed to explain the beat tuning within 120 to 140 BPM (fig. 
S12) possibly because the temporal window in this STRF model was 
much shorter than that in our adaptation model, i.e., 5 s. Thus, the 
adaptation property we revealed herein in a data-driven manner is 
likely to underlie the perception and creation of musical rhythms.

DISCUSSION
In this study, we demonstrated that rats displayed spontaneous beat 
synchronization and neural tuning in the auditory cortex within 120 
to 140 BPM, possibly due to short-term adaptation. Both subcorti-
cal and thalamocortical pathways are likely responsible for said ad-
aptation (21, 31–35). These results suggest that the optimal tempo 
for beat synchronization depends on the time constant in the brain, 
which is conserved across species (17). Previous studies on beat 
synchronization in animals shaped this behavior through training 
or exposure to a musical environment (35–40). To the best of our 
knowledge, this is the first report on innate beat synchronization, 
except in humans (2).

Beat synchronization in nonhuman mammals has been charac-
terized as reactive movements to an audible beat (35, 36), while hu-
mans commonly exhibit predictive beat synchronization. Our data 
also showed that the beat synchronization in rats was more reactive 
than that in humans (fig. S3A). However, the beat synchronization 
in rats could neither be characterized as being purely reactive nor be 
explained only by startles, because (i) the jerk increased significantly 
with the timing of beat at pos. 1 in the original tempo (fig. S3B), (ii) 
no synchronization was observed at pos. 3 despite the relatively large 
beat amplitude (figs. S3B and S7A), and (iii) the jerk increase was 
not aligned with beats at 75% playback tempo although beat ampli-
tudes and evoked neural activities were larger than those in the 
original tempo (Fig. 1D and figs. S3A and S7). Future studies are 
still needed to fully identify whether and how the beat synchroniza-
tion is predictive in rodents and other nonhuman animals.

Regardless of whether it is reactive or predictive, this spontaneous 
synchronization to beats in rodents might act as an evolutional pre-
cursor for predictive synchronization to musical beats in humans, 
perhaps being necessary but not sufficient for the development of 
voluntary predictive synchronization. Previous studies have also ar-
gued that the “bottom-up” processing of music in the auditory system 
even in rodents predisposes the human-like predictive properties of 
beat perception and synchronization (20, 21).

Spontaneous beat synchronization in rats and other animals has 
been overlooked thus far, probably because the movements were 
too small to be identified visually (41). Although beats within 120 to 
140 BPM are appealing to the sensorimotor cortex, the smaller body 
structure of rodents with their quadruped posture, characterized as 
a higher resonance frequency than the human body, is one of the 
constraints in amplifying rhythmic movements. In future studies, 
rats in bipedal stance might address the bodily amplification of beat 
synchronization (movie S2 and fig. S1). However, our comparisons 
between rats and humans indicate that the head acceleration in 
humans while listening to music alone in a quiet room was compa-
rable with that in rats (10 to 15 m/s2; fig. S5) and that the head jerk 
in humans (10 to 40 m/s3) was 10 times smaller than that in rats 
(100 to 300 m/s3; Fig. 2), due to the smaller mass of head. Thus, beat 
synchronization in humans is neither always larger than in rats nor 
large enough to be visible.

Another potential constraint in animals that do exhibit beat syn-
chronization is the limited connectivity between the auditory and 
motor systems, which might underlie vocal learning and beat syn-
chronization (5, 37, 42). As in humans, intricate interaction between 
the basal ganglia (19, 43–45), premotor cortex (19, 43, 46), supple-
mentary motor cortex (18, 43), cerebellum (19, 45), and auditory 
system (19–21) underlies beat perception and its interspecies differ-
ences. Furthermore, this behavior disappeared after a few experimental 
trials in our study. The beat synchronization was unlikely to be re-
inforced because rats, unlike humans, had no motivation to move in 
synchrony to music. On the first day, stimulus novelty might amplify 
beat synchronization in rats through the dopaminergic system (47–49). 
Alternatively, to the extent that beat synchronization was partially 
caused by startles (i.e., in a reactive manner), rats might become 
accustomed to the music stimuli and gradually exhibit less startles 
over days.

Despite the small movements, our experiments demonstrated 
that both humans and rats showed consistent beat synchronization 
without any motivation to move while listening to music. How this 
innate beat synchronization is reinforced as voluntary large-scale 
rhythmic movements to a beat in humans goes beyond the scope of 
our study. Music-induced physical movement and music-induced physi-
cal social interactions might have intrinsic rewarding effects (50–53).

We used a mathematical model of short-term adaptation to ex-
plain the response properties in the auditory cortex, rather than the 
neural mechanism of beat processing. Some studies have used pre-
determined mathematical functions to model adaptation, e.g., an 
exponential and power-law decay (28), a specific temporal smoothing 
window (29), and the gammatone filters for temporal modulation 
(54). These models might be biologically realistic or plausible but 
have not been verified through neurophysiological experiments in 
the auditory cortex. Unlike these works, we determined the kernel 
function outline in a data-driven manner as a model of short-term 
adaptation. We believe that this complementary approach is one of 
the most important contributions of our work, and we reveal that 
the beat tuning within 120 to 140 BPM was obtained by the tempo-
ral window of ~250 ms, strongly suppressing neural activities after 
the sound stimulus. Considering that the STRF model could better 
explain the neural responses in the auditory midbrain (20) than in 
the auditory cortex (fig. S12) and that the long-lasting adaptation model 
better predicted the auditory cortical responses than the STRF model, 
the beat processing is possibly more temporally dynamic in the au-
ditory cortex than in the midbrain. Similarly, the adaptation at the 
level of midbrain may influence the perceptual emergence of a beat 
(21). Moreover, since the higher-order auditory cortex had a longer 
time window of adaptation than the core cortex (fig. S9), the evolution 
of the adaptation time scale along the auditory pathway is likely to 
play a key role in the beat perception.

Our data suggest that sound patterns with energy peaks within 
120 to 140 BPM produce the largest neural responses in the auditory 
cortex and trigger the largest head movements at this tempo. How-
ever, how the auditory information at each note is converted into 
motor commands, in a predictive manner rather than in a purely 
sequential manner, is beyond the scope of this study. Neural activity 
at layer 4 in the auditory cortex reflects auditory information and is 
hardly modulated by movement (55). Therefore, the auditory cortex 
is essentially reactive but is equipped with some prediction mecha-
nisms before triggering the motor system (33–35). For example, we 
characterized temporally dynamic adaptation (Fig. 4), which might 
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produce predictive activities in the auditory cortex. We also showed 
that the omitted stimulus slightly but significantly modulated MUA 
in the rhythmic click sequence (fig. S8B), suggesting that the audi-
tory cortex in rats encoded the rest in a predictive manner, similar 
to the human auditory cortex exhibiting omitted stimulus potentials 
(56). Furthermore, the auditory cortex in rats exhibited human-like 
mismatch negativity (57), which is consistent with predictive pro-
cessing. Neural oscillatory models beyond the auditory cortex (3, 58–61) 
might offer insights into predictive beat synchronous movements.

Thus, further studies into the behavioral and neural characteri-
zation of beat synchronization are still required to draw conclusions 
about its predictive mechanism in nonhuman animals. Comparing 
humans and other animals will open a new avenue to elucidate the 
mechanism of beat synchronization beyond the sensory system and 
possibly offer insights into the origins of music and dancing.

MATERIALS AND METHODS
Animals
This study was conducted in strict accordance with Guiding Principles 
for the Care and Use of Animals in the Field of Physiological Science 
published by the Physiological Society of Japan. The experimental 
protocol was approved by the Committee on the Ethics of Animal 
Experiments at the Graduate School of Information Science and 
Technology, the University of Tokyo (JA19-2). All efforts were made 
to minimize animal suffering or discomfort and to reduce the number 
of animals used. After the experiments, animals were euthanized with 
an overdose of pentobarbital sodium (160 mg/kg, intraperitoneally).

Wistar rats were used in the experiments. All rats were bought 
from Tokyo Laboratory Animals Science Co. Ltd. at 9 weeks old and 
were housed on a 12:12 light-dark cycle (light on at 7:00 p.m./light 
off at 7:00 a.m.).

Human participants
The experimental protocol was approved by the Committee on the 
Ethics at the Graduate School of Information Science and Technology, 
the University of Tokyo (UT-IST-RE-210708). Twenty healthy par-
ticipants (mean age, 29.6 ± 10 years; seven females) participated in 
the experiment. All participants provided informed consent.

Acceleration measurement of beat synchronous movements
Accelerometer
To measure head movements of rats and human participants, we 
used a wireless accelerometer (TWELITE 2525A, Mono Wireless Inc., 
Japan) that weighed 6.5 g including the battery (Fig. 1A). To attach 
it to the rat skull, we designed a holder (Fig. 1B) and fabricated it 
using a three-dimensional printer (Replicator 2X, MakerBot Indus-
tries, Brooklyn, NY).

Ten rats aged 9 to 10 weeks were anesthetized by isoflurane inha-
lation (3 to 5%). Xylocaine (1%, 0.1 ml) was administered subcu-
taneously for local anesthesia. Atropine sulfate (5%, 0.5 ml) was 
administered intraperitoneally to reduce the viscosity of bronchial 
secretions. After the removal of tissues covering the parietal skull, 
five M1 × 3-mm screws were drilled into the skull. All were distributed 
posterior to the bregma. The accelerometer holder was fixed to the 
screws with two types of dental cement (Super-Bond C & B, Sun Medical, 
Shiga, Japan; Unifast II, GC Corporation, Tokyo, Japan). After the 
surgery, capisten (5 mg/ml, 0.2 ml) and viccillin (25 mg/ml, 0.2 ml) 
were injected intramuscularly into the left and right legs, respectively.

For human participants, the accelerometer was attached onto 
a headphone (ATH-AR3, Audio-technica, Tokyo, Japan). Data 
from 12 human participants were obtained and compared to those 
from rats.
Stimuli
A 60-s excerpt of “Sonata for two pianos (K.448)” by Mozart was 
used as stimulus in our behavioral experiment. Defining a beat as a 
quarter note in music score (Fig. 3A), 132 beats were included in the 
test excerpt. We modified the MIDI file for four different playback 
tempos, 75% (99 BPM), 100% (132 BPM), 200% (264 BPM), and 
400% (528 BPM). In these test stimuli, the tempo was modified, but 
the pitch of each note was identical to the original excerpt. To align 
the sound pressure, each MIDI file was converted to a WAV file of 
96-kHz sampling, and the squared amplitude was modified to be 
constant. To align the playback duration, 200 and 400% playback tem-
pos were played two and four times in a row, respectively. In human 
experiments, a click sequence of rasterized rhythm of the original 
piece was also presented.
Data acquisition in rats
Following full recovery from the surgery, the rats were habituated 
to the experimental apparatus—dim-lit black box, 70 cm (W) × 
70 cm (D) × 80 cm (H) in size—and allowed to freely explore inside 
the box for 20 min. The habituation was conducted for two con-
secutive days.

From the day after habituation was completed, recordings were 
conducted for three consecutive days. All sounds were played through 
a speaker placed above the experimental arena. The sound pressure 
level (SPL) was adjusted at approximately 70-dB SPL (with respect 
to 20 Pa) on the ground. The accelerometer was inserted in the 
holder just before the recording. The rats were placed in the experi-
mental box and allowed to freely explore in silence for a minute. Then, 
music stimuli of four different tempos were played in a random order, 
interleaved with 1 min of silence. This procedure was repeated twice. 
Throughout the experiment, acceleration data and overhead video 
were recorded.

To control the rats’ physiological states, habituation and measure-
ments were conducted between 13:00 and 15:00 every day. In addi-
tion, they were fed right after these procedures. The body weight at 
the time of measurement was maintained between 290 and 310 g by 
controlling the amount of food.
Data acquisition in humans
Human participants entered a soundproof room and were fitted with 
headphones. The participants adjusted the volume to a comfortable 
level by themselves while listening to a part of Mozart K.448 not 
used in the main experiment. After the adjustment, the participants 
were asked to move their head to the music presented through the 
headphone. The acceleration of head movements was monitored by 
the same setup used in the animal experiment.
Statistical significance of the jerk beat contrast
The null distribution of random jerk beat contrast was calculated. 
The 40% pseudo-beat time and 60% pseudo-nonbeat time were ran-
domly selected from recorded data. Pseudo–jerk beat contrast was 
calculated using the mean jerk (Euclidean norm of the jerk vector) 
at each time. This manipulation was repeated 250 times for each tempo, 
and the null distribution of 1000 pseudo–jerk beat contrast in total 
was obtained for each animal. The top 1% of the null distribution 
was used as threshold of statistical significance. When the jerk beat 
contrast was larger than this threshold, the animal was considered 
to exhibit beat synchronization.
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Visual characterization of beat synchronous movements
Experimental procedure
We reasoned that the quadruped posture of rats hampered amplifi-
cation of beat synchronous head movements. Therefore, we attempted 
to investigate beat synchronous movements when rats maintained a 
biped stance during music presentation. To motivate rats to keep a 
biped stance, a water supplier in an experimental arena was raised 
gradually higher and lastly placed at a height a rat could not reach 
without standing bipedally and could not hold the filling port with 
its forelegs (62). To reinforce the reward effect, water was restricted 
for 24 hours before the training.

The experiment was conducted in a transparent box [30 cm (W) × 
30 cm (D) × 36 cm (H)] with a height-adjustable ceiling, where a 
water supplier was placed. This box was placed in a soundproof room 
with a dim light. One training session lasted for about 30 min, and 
this session was repeated until a rat immediately stood up to seek a 
water bottle once put in the arena. Rats typically completed this training 
within a few days.

The main experiment was conducted in an identical arena as used 
for the training. Water was restricted for 5 hours before the experi-
ments. To observe the bipedal standing motion while not drinking 
water, the water supplier was placed slightly higher than the height 
where rats could comfortably reach and drink water in the standing 
posture. During the experiment, rats could move freely in the arena. 
Five pieces of music were presented as follows: K.448 by Mozart, 
“Born This Way” by Lady Gaga, “Another One Bites the Dust” by 
Queen, “Beat It” by Michael Jackson, and “Sugar” by Maroon 5. 
Each music piece was randomly played through the speaker twice 
(approximately 45 min). All movements in the experimental session 
were recorded from a camera behind the arena.
Video analysis
DeepLabCut 2.1.10.4 (63) was used to analyses the beat synchronous 
movements of the standing rats. After manual annotation of 500 images 
for seven parts of the body (nose, right/left eye, right/left ear, neck, 
and the base of tail), the network was trained for 60,000 iterations.

The prominent frames of beat synchronization were extracted 
manually (see movie S2). The nose displacement in the extracted 
frames was calculated as

	​ displacement  =  norm (​P​ nose​​ − mean(​P​ eye,ear​​))​	

where Pnose is the nose position and mean (Peye, ear) is the mean posi-
tion of the right/left eye and right/left ear. We quantified the displace-
ment instead of jerk in this video analysis because the sampling rate 
of the video acquisition was not sufficiently high to reliably quantify 
the jerk. To quantify the beat synchronization, the local maximum 
and local minimum of nose displacement was calculated. The 
MATLAB function “findpeaks” was used to identify the upper and 
lower peaks with a prominence level between 2 and 50. A prominence 
level of >50 is considered as misdetection of body parts.
Data acquisition in humans
In 8 of 20 human participants, the head movements were monitored 
by a video camera from overhead during music listening. A red marker 
was attached on the top of the accelerometer holder for video tracking.

To quantify the head movement, the displacement of the accelero
meter holder was tracked in the video using the manually wrote 
Python code. The video was first cropped around the accelerometer 
holder. Each video frame was then transformed into a binary image 
to extract the red marker attached on the accelerometer holder, and 

the marker contour was detected using “findCounters” function in 
the OpenCV library. The contour center was regarded as the head 
position (see movie S3).

Electrophysiology experiment
Surgery
Apart from the behavioral experiments, 13 naïve rats in total were 
used for electrophysiological experiments. Music stimuli were tested 
in seven animals, periodic and rhythmic click sequence in nine ani-
mals, and random click sequences in five animals.

Rats were anesthetized with urethane (1.2 g/kg) administered 
intraperitoneally. Xylocaine (1%, 0.1 ml) was administered sub-
cutaneously for local anesthesia. Atropine sulfate (5%, 0.5 ml) was 
administered intraperitoneally to reduce the viscosity of bronchial 
secretions. The parietal and right temporal tissues were removed. 
Cerebrospinal fluid was drained to avoid edema. An M1 × 3-mm 
screw was drilled into the left parietal bone to contact the dura and 
was used as a reference electrode. A needle was inserted into the 
skin of the right forelimb and was used as a ground electrode. The 
right temporal bone and part of the dura mater were removed to 
expose the auditory cortex. To limit the sound presentation to the 
left ear, the right eardrum was ruptured, and a cotton swab was plugged 
into the right ear to ensure unilateral sound inputs from the ear contra-
lateral to the exposed cortex.
Neural measurement
After surgery, an electrophysiological recording similar to the pre-
vious studies was conducted (26). The neural activities of the auditory 
cortex were recorded under anesthesia using a microelectrode array 
with 10 × 10 sites (96 active measurement electrodes) (ICS-96, 
Blackrock Microsystems, Salt Lake City, UT) in a 4-mm by 4-mm 
site. Using a custom-made spacer, we adjusted the recording depth 
at 700 m from the pial surface. Neural activities were amplified 
1000-fold, bandpass-filtered from 0.3 to 500 Hz and 250 to 7500 Hz, 
and measured at a sampling frequency of 1 kHz for local field 
potentials (LFPs) and 30 kHz for MUAs, respectively (Cerebus Data 
Acquisition System, Cyberkinetics Inc., Salt Lake City, UT).

To identify the location of the auditory cortex, click-evoked LFPs 
were measured on the cortical surface. Each click was a positive-first 
biphasic square pulse with a duration of 50 s per phase. The array 
was positioned so as to cover the entire click-evoked activation and 
slowly inserted into the cortex. To confirm that the electrode reached 
the fourth layer of the auditory cortex, click-evoked LFP was con-
stantly monitored. The LFP exhibited a positive deflection at the cor-
tical surface but a negative one at the fourth layer. MUA recordings 
were initiated >30 min after insertion.

As previously described (26, 64, 65), we identified the auditory 
cortex and its subregions according to the tonotopic map and onset 
latency of tone-evoked MUA. Tone bursts with a 5-ms rise/fall time 
and 30-ms total duration were used to determine a CF at each re-
cording site. From MUAs within 40-ms poststimulus latency, CF was 
determined as the frequency at which test tones evoked MUA at the 
lowest intensity or as the largest response at 20-dB SPL, i.e., the mini-
mum intensity used in this experiment. The test frequencies ranged 
from 1.6 to 64 kHz with an increment of 1/3 octaves, and test inten-
sities ranged from 20- to 80-dB SPL with an increment of 10 dB. Each 
test tone was repeated 20 times in a pseudo-random order with an 
intertone interval of 600 ms. The core (A1 and AAF) and belt (ventral, 
suprarhinal, and posterior, anterior ventral auditory fields) regions 
were then identified from CF map and MUAs onset latency.
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When calculating the neural beat contrast (Fig. 3), we used the 
electrodes with identifiable CF. For the neural beat contrast of the 
rhythmic click stimuli (Fig. 4), the analysis was further limited to 
click-evoked MUAs, which were larger than the mean + 2SDs of 
spontaneous MUA (≥5 s after a previous sound stimulus). The 
mean and SD were derived as the temporal variance of spontaneous 
MUAs at each electrode.
Stimuli
In the electrophysiological experiment, neural activities in the auditory 
cortex were stimulated by identical musical excerpts (Mozart K.448) 
to those used in the behavioral experiment. In addition to the four 
playback tempos described above, a tempo of 300% (396 BPM) was 
added to the test conditions in electrophysiological experiments.

As simpler stimuli than the music excerpt, periodic, rhythmic, and 
random click sequences were prepared. In the periodic click sequence, 
clicks were repeated for 15 s with a fixed ISI of 1, 1/2, 1/4, 1/8, 1/16, and 
1/32 s. The rhythmic click sequence comprised three consecutive clicks 
and a rest at equal intervals (Fig. 4A) repeated for 15 s at a fixed 
tempo of 60, 120, 240, or 480 BPM. Beat was defined as the first of 
the three consecutive clicks. Each stimulus was played randomly for 
10 times. In the random click sequence, clicks were presented with 
an interval of 32, 56, 100, 178, and 316 ms at a probability of 0.5 for 
5 min. Each click sequence was fixed across animals and presented 
once. Each stimulus was played through a speaker placed 10  cm 
from the left ear and the SPL was adjusted to 70 dB at the left ear.
Short-term adaptation model
We hypothesized that short-term adaptation played a role in the beat 
tuning in the auditory cortex and built a mathematical model to 
estimate the short-term adaptation property in a data-driven manner. 
On the basis of a previous study (28), the following model was used

	​ MUA(t) = max(​M​ 0​​, M(s(t) − I(t)))​	 (1)

	​ I(t) = ​∫ 0​ 
 t
 ​​K(t − t′) · MUA(t′) dt′​	

where MUA(t) is the mean MUA between 5 and 30 ms after the 
stimulus, M0 is the minimum MUA response to stimuli, M is a scal-
ing parameter adjusted to each data point, s(t) is a binary function 
that indicates the presence of a click sound, I(t) is the short-term 
adaptation level, and K(t) is the temporal properties of neural sup-
pression after the sound presentation. To reduce the parameters, M0/M 
is fixed to the ratio between the mean MUA response of the 10 to 15 s 
after the stimulus onset of the most frequent periodic click (ISI = 
1/32 s) and that of the initial click.

In this study, we estimated the outline of kernel function (𝑡) from 
the MUA response to five periodic click sequences (MUAP(t)), where 
 (in seconds) denotes the ISIs in the periodic clicks ( = {0, 1, 2, 
3, 4} = {1,1/2,1/4,1/8,1/16}).

We posited that MUA(t) and s(t) converges to ​​‾ MUA(t)​​ and /M, 
respectively, under periodic input if t is long enough. From the Eq. 1, 
the mean MUA response to the periodic click (P, given) is approx-
imated as below

	​​ P​ ​​  = ​ ‾ MU ​A​​ ​P​ ​​​(t)​  ⋍  M(s(t) − I(t)) ⋍  − M​∫ 0 ​ 
t
 ​​K(t − t′) dt′· ​‾ MU ​A​​ ​P​ ​​​(t)​​	

We approximated the integral of the kernel function with the 
summation of representative kernel values with a scaling parameter 
 and a linear correction parameter  as below

	​​ P​ ​​  ⋍   − (​  ∑ 
m=1

​ 
·m≤1

​​K( · m ) ) · ​P​ ​​​	

The representative kernel values K(n)(n ∈ {0,1,2,3,4}) was re-
cursively estimated as below

	​ When n  =  0, K(​​ 0​​ ) ≃  ( / ​P​ ​​ n​​​​ − 1) / ​	

	​ When n  >  0, K(​​ n​​ ) ≃  ( / ​P​ ​​ n​​​​ − 1 ) /  − ​∑ m=2​ 1/  ​​K(​​ n​​ ∙ m)​	

Here, unknown K(n ∙ m) is approximated by the mean value of 
known K(n ∙ m) as below

	​​ K(​​ n​​ · m′) ≃ ​ {​​K​(​​ ​​ n−1​​ · ​ m′− 1 ─ 2 ​​ )​​ + K​(​​ ​​ n−1​​ · ​ m′+ 1 ─ 2 ​​ )​​​}​​ / 2​​	

Under the assumption that K(t ≤ 0,5 ≤ t) = 0, the whole K(t) was 
obtained by linear interpolation. The parameters  and  were opti-
mized to fit the MUA responses to the rhythmic clicks. The identical 
K(t) was used for the simulation of MUA responses to the periodic 
clicks and random clicks.

We also tested the simulation with existing models by Drew and 
Abbott (28) and Zuk et al. (29). Drew and Abbott and Zuk et al. de-
fined their kernel functions, KD and KZ, respectively, as expressed below

	​​ K​ D​​(t) = ​   ─ 
 + t ​​	

	​​ K​ Z​​(t) =  ​f​ z​​(t)​	

where  and  are fitting parameters and fz(t) is a temporal smooth 
window of Zuk et al. (29). Similar to the model above,  and  were 
optimized to fit the MUA responses to the rhythmic clicks. The 
identical K(t) was used for the simulation of MUA responses to the 
periodic clicks and random clicks.
Fitting the linear-nonlinear model with STRF
On the basis of previous studies (20, 30), MUA response to musical 
stimuli was fitted using a linear-nonlinear STRF model. First, a Mel 
spectrogram of Mozart K.448 with five different tempos (75, 100, 
200, 300, and 400%) was calculated, using MATLAB function “mel-
Spectrogram.” We used 31 log-spaced frequencies from 1 to 32 kHz 
(1/6 octave spacing) with 10-ms Hanning windows, overlapping by 
5 ms. Then, we took the logarithm of the resulting values, and the 
values lower than 0 dB were set to 0 dB. The music spectrogram with 
31 frequencies and 40 bins (200 ms in the past) was linearly fitted to 
the training dataset of MUA (the average of 8 trials of 10) using Ridge 
regression. Fivefold testing was used to determine the optimal pa-
rameters. We obtained the STRF kernel (fig. S12A) by averaging the 
STRF kernel of five different tempos. The output of the linear model 
zt was calculated using the convolution of music spectral data and 
STRF kernel. The nonlinear model ​​ ̂  y ​​ below was used to fit the MUA 
test dataset (the average of 2 trials of 10) yt with 10-ms Hanning 
window, overlapping by 5 ms.

	​​ ​   y ​​ t​​  =  a + ​  b ────────────  1 + exp(− (​z​ t​​ − c ) / d) ​​	

The parameters a, b, c, and d were fitted to the five musical ex-
cerpts respectively using MATLAB function “lsqcurvefit.” We 
obtained the result by changing the combination of training dataset 
and test dataset five times. The fitting result was evaluated by
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	​​ R​​ 2​  =  1 − ​ 
​∑ t​​ ​(​y​ t​​ − ​   y ​)​​ 2​​

 ─ 
​∑ t​​ ​(​y​ t​​ − ​ _ y ​)​​ 2​​

 ​​	

where ​​ _ y ​​ is the mean of y.

Music analysis
The distribution of the mean ISI of music was characterized using 
the Humdrum Kern database (http://kern.humdrum.org). Up to 30 
music scores of 16 genres each (ballet, chorale, contrafacta, etude, 
fugue, madrigal, mazurka, motet, prelude, quartet, scherzo, sonata, 
sonatina, symphony, virelai, and waltz) were used. The mean ISI of 
each score was calculated using Humdrum toolkit and Python (Fig. 4I).

To quantify the amplitude of Mozart K.448 at each musical note, 
the waveforms of WAV files at the play speed ratio (X) of either 0.75, 
1, 2, 3, or 4 were squared (96-kHz sampling), and the peak envelope 
of the squared waveform was calculated using the MATLAB function 
“envelope” (MathWorks, Natick, MA). The peak separation param
eter was set to 3000/X. The local maximum of peak envelope around 
each musical note (0 to 0.1/X s) was regarded as the sound ampli-
tude. The amplitude of musical notes at each beat position and non-
beat position was averaged.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abo7019

View/request a protocol for this paper from Bio-protocol.
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