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Abstract

Understanding the patterns of chemical exposure among biota across a landscape is chal-

lenging due to the spatial heterogeneity and complexity of the sources, pathways, and fate

of the different chemicals. While spatially-driven relationships between contaminant sources

and biota body burdens of a single chemical are commonly modelled, there has been little

effort on modelling chemical mixtures across multiple wildlife species in the Canadian Oil

Sands region. In this study, we used spatial principal components analysis (sPCA) to assess

spatial patterns of the body burdens of 22 metals and Potentially Toxic Elements (PTEs) in

492 individual wildlife, including fur-bearing mammals, colonial waterbirds, and amphibians

collected from the Canadian Oil Sands region in Canada. Spatial analysis and mapping both

indicate that some of the complex exposures in the studied biota are distributed randomly

across a landscape, which suggests background or non-point source exposures. In con-

trast, the pattern of exposure for seven metals and PTEs, including mercury, vanadium,

lead, rubidium, lithium, strontium, and barium, exhibited a clustered pattern to the east of the

open-pit mining area and in regions downstream of oil sands development which indicates

point-source input. This analysis demonstrated useful methods for integrating monitoring

datasets and identifying sources and potential drivers of exposure to chemical mixtures in

biota across a landscape. These results can be used to support an adaptive monitoring pro-

gram by identifying regions needing additional monitoring, health impact assessments, and

possible intervention strategies.

Introduction

Traditional risk assessments in ecotoxicology have focused on a chemical by chemical expo-

sure approach [1]. While these simple models are easy to develop and interpret, they are not

representative of the true nature of environmental chemical exposure in biota. As the biota in

an ecosystem is often, if not always, exposed to environmental contaminant mixtures, better

exposure models related to complex chemical mixtures are needed to reflect this ecological

realism for valid risk assessments [2]. Complex exposures are particularly true for biota living
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in regions of high anthropogenic disturbance such as the Canadian Oil Sands, which is the

third-largest reserve of crude oil in the world (after Venezuela and Saudi Arabia) [3]. The

Canadian Oil sands, which is comprised of the Athabasca, Cold Lake, and Peace River depos-

its, covers approximately 142,200 km2 and is situated in the middle of the Canadian boreal for-

est [3]. The Athabasca Oil Sands Region (AOSR) is the most heavily disturbed, where

approximately 4,800 km2 are undergoing surface mineable oil development, of which approxi-

mately 895 km2 have been cleared or disturbed [3, 4]. As a result, biota living in this region are

exposed to many chemicals, including metals, primarily released during the upgrading of bitu-

men, and from fugitive dust related to mining activities [5–7].

The Canadian federal government and the Provincial Alberta Government initiated the

Canada-Alberta Joint Oil Sands Monitoring (JOSM) program in 2012 to monitor the potential

impact of oil sands development on the environment, including the potential impacts of con-

taminants of concerns associated with oil sands industrial operations on the health of wildlife

in northern Alberta. JOSM included a total of five monitoring programs that examined the

burdens of oil sands contaminants of concern in wildlife species. Annual sampling campaigns

in the wildlife contaminants and toxicology monitoring program in JOSM measured a selected

suite of chemical contaminants in wood frogs (Lithobates sylvaticus); fur-bearing mammals

including river otter (Lontra canadensis), mink (Neovision vision), fisher (Martes pennant),
and marten (Martes Americana); birds including the eggs of Caspian Terns (Hydroprogne cas-
pia) and California Gulls (Larus californicus), and tree swallow (Tachycineta bicolor) nestlings;

and a variety of aboveground and belowground plant matter. In the wildlife contaminants

monitoring program, exposure to contaminants was measured in collected tissues, including

liver, feathers, and eggs [8–13]. Programs under JOSM also monitored abiotic matrices,

including air, water, and aerial deposition of contaminants, including in snow. The goal of

these contaminant monitoring programs under JOSM was to improve the understanding of

the potential impacts of chemicals released by the industry on the health of the ecosystems in

the Oil Sands Region [14].

Environmental effects monitoring programs typically select bioindicator (also referred to as

a sentinel) species and biomarkers based on their ability to provide information useful to make

inferences about environmental conditions. These bioindicators and biomarkers are also used

to make inferences about the health of ecosystems being monitored and humans living in who

use those ecosystems [15, 16]. However, it is well established that a single species or biomarker

cannot be representative of the health of the entire ecosystem. Therefore, data are collected

from multiple biomarkers in multiple species across a landscape to gain a better understanding

of the impacts contaminants of concern have on ecosystem health [17, 18]. However, the con-

taminant data collected by the various contaminants monitoring projects under JOSM have

yet to be integrated and spatially analyzed [14].

Metals and Potentially Toxic Elements (PTEs), including arsenic, cadmium, cobalt, chro-

mium, nickel, mercury, lead, and zinc, are naturally present in all ecosystems [19]. In some

regions, such as the Canadian Oil Sands, metals and PTEs are being anthropogenically

enriched and potentially increasing wildlife exposures [6, 20, 21]. While some metals (i.e.,

iron, copper, zinc) are essential micro-nutrients and are required at low doses to maintain

physiological homeostasis, high exposures to these elements can be potentially toxic [22]. Fur-

ther, non-essential metals (i.e., mercury, cadmium, lead) are not required for homeostasis and

can be toxic even at low doses [22]. Two previous studies have assessed complex metal expo-

sures in benthic organisms and small mammals using principal components analysis [23, 24].

However, wildlife contaminants monitoring data collected from the Canadian Oil Sands have

yet to be integrated for exposure assessment.
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The JOSM monitoring activities have created geo-referenced datasets of metal and PTE

contaminant burdens and effects in the sentinel species. Therefore, questions related to the

spatial distribution of contaminants in the environment or the relationships between contami-

nant exposure and effects in biota can be investigated using a common geospatial platform

[25]. However, there are many analytical challenges to analyze the highly dimensional spatial

environmental monitoring datasets. For example, different species and life stages will accumu-

late and detoxify contaminants at different rates and use different mechanistic pathways [26].

Further, chemicals are measured in different matrices (e.g., feather, muscle, liver). The species,

life stage, and matrix differences in chemical concentrations can make it challenging to make

direct comparisons between measured biomarkers and can hinder data integration [27]. Addi-

tionally, contaminant variables are often highly correlated, which can be problematic for some

statistical methods such as regression [28].

Geographic information systems (GIS) are useful platforms to integrate data using a nor-

malization method and assess spatial patterns of exposures to complex mixtures using a spatial

principal component analysis (sPCA) [27]. The objective of this study is to demonstrate the

use of a geospatial framework and spatial analytical methods to address the challenges associ-

ated with integrating and analyzing large wildlife datasets in ecotoxicology. Further, we also

identify critical hotspots of metal contamination in wildlife collected as a part of the JOSM

program in the Canadian Oil Sands and suggest possible drivers of the observed patterns.

Materials and methods

Data

Data were obtained from three wildlife contaminants monitoring projects (mammals, colonial

waterbirds, and amphibians) that collected samples from these species under the JOSM wild-

life contaminants monitoring program. The samples used in this study were collected between

2011 and 2016. The tadpole, recent metamorph, and adult wood frogs were ethically captured

under permit in wetlands at varying distances from the surface mineable area. Whole-body

samples were used for chemical analysis [9]. Wetlands are a receiving environment of meltwa-

ter of the winter snowpack and contaminants that were atmospherically deposited onto the

snowpack [9]. The terrestrial and semi-aquatic fur-bearing mammals, including river otter,

marten, mink, muskrat, and fisher, were trapped under permit for the commercial fur trade by

Northern Alberta commercial trappers. All trapped mammals used in this study are adults.

Carcasses were stored at − 20˚C until the completion of gross necropsies, where the livers were

dissected for chemical analysis [13, 29]. Fisher and marten favor old-growth coniferous forest

with dense canopy cover [13] while the semi-aquatic furbearers inhabit the shorelines of rivers

and lakes [30]. The eggs of gull and tern species were ethically collected under permit from

nesting colonies. These colonial waterbirds nest along the shores and on islands of lakes and

rivers in the region [10, 11, 21].

Metal and PTE analysis

Briefly, the metal and PTE analyses of the sampled tissues were conducted at the National

Wildlife Research Centre (Ottawa, ON, Canada). The laboratory is a CALA-accredited and

ISO 17025 certified facility using a standardized operating protocol (SOP# MTH-MET-TE-

01C0). Samples were acid-digested and analyzed using a PerkinElmer NexION 300d induc-

tively-coupled plasma-mass spectrometer (ICP-MS) using the principles of the USEPA 6020

and 200.8 methods, with modifications for wildlife tissue. Quality assurance and control meth-

ods included the use of certified reference material (NIST CRM Oyster Tissue 1566b and CRM

Lobster Hepatopancreas TorT-2) and an internal standard (Ge, Lu, Rh, and Sc mixed inhouse
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purchased from Delta Scientific, Mississauga, ON, Canada). The data were corrected for the

percent recovery of each internal standard. Blanks (1% HNO3) were run at the beginning and

the end of each set of nine samples, as well as before and after the standard calibration. Each

sample was run in duplicate or triplicate. Metal and PTE results were expressed in μg/g dry

weight (d.w.).

Data pre-processing

Once compiled, the dataset was cleaned prior to statistical analysis. Not all chemicals were ana-

lyzed in all samples. Thus, samples with missing data were removed. All measurements that

were below the method detection limit (MDL) were recoded to half of the detection limit of

each metal. All metals and PTEs that had a high proportion of measurements below the MDL

(BDL) were removed from the dataset; beryllium (81% BDL), antimony (91% BDL), and ura-

nium (96% BDL) were removed before analysis. In the cleaned dataset, there were 22 metal

covariates with a sample size of 492. A summary of the species, life stages, and the number of

samples from each monitoring project before data cleaning and after data cleaning is presented

in Table 1. An overview of the study area, the Oil Sands Region (OSR) of northern Alberta,

Canada, is shown in Fig 1A, and the collection locations of each species (from the cleaned data

set) in the OSR are presented in Fig 1B.

The dataset was assessed to ensure it met PCA assumptions, which includes a sufficient

sample size and a linear correlation between covariates. Since PCA results can be influenced

by outliers, it is important to transform the datasets as contaminant concentrations in ecotoxi-

cology tend to be skewed left, with many low exposures and few high exposures. Scaling and

centering the data is common in PCA algorithms [31]. We choose to do these steps manually

to control and evaluate the process. First, we conducted both a log10 and square-root transfor-

mation (centering) to compare the effectiveness of the normalizing methods. Further, to inte-

grate the datasets collected from different species and life stages, we range-normalized (scaled)

by species-life stage subgroups to convert all measurements to a common scale (0–1) within

each subgroup. Essentially this ranks the exposure within each subgroup [27, 32]. This is nec-

essary to control for the differences in bioaccumulation and biomagnification rate of metals

and PTEs between species and life stages and allows for contaminant concentrations to be

compared and integrated [27, 33]. A workflow of the data preparation and analysis is shown in

Table 1. Summary of samples used in the analysis pre- and post-data cleaning.

Species Pre-cleaning n Post-cleaning n

Amphibian

Wood Frog (Adult) 51 13

Wood Frog (Recent Metamorph) 32 8

Wood Frog (Tadpole) 44 21

Mammals

Adult River Otter 113 113

Adult Marten 120 50

Adult Mink 23 23

Adult Muskrat 20 20

Adult Fisher 63 63

Colonial Waterbirds

Gull Eggs 255 181

Tern Eggs 24 0

Total 694 492

https://doi.org/10.1371/journal.pone.0239086.t001
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Fig 2. All analyses were completed in R 3.4.3 using the packages ade4, adespatial, spdep, and sp

[34–37].

Data analysis

We ran a between-class analysis (BCA), a subtype of PCA that assesses the variance attributed

to each grouping in the dataset including site, species, and year of sample collection, before

and after transformation (Fig 2) [38]. The goal of this analysis was to minimize the amount of

variance explained by species differences without sacrificing the variance explained by the

sample site. The square-root transformed and normalized data transformation was the optimal

transformation method as that dataset retains the highest amount of total variance explained

(71.2%) while minimizing the variance explained by species differences (21.3%) and maximiz-

ing the amount of variance explained by site (41.9%). The square-root transformed range-

Fig 1. Overview of study location and samples. (A) The location of the Oil Sands Region within Canada. (B) Locations of the different collection locations of

the species across the landscape (after data cleaning, n = 492). The figure is generated using the Statistics Canada GIS data (https://www12.statcan.gc.ca/census-

recensement/2011/geo/bound-limit/bound-limit-2016-eng.cfm).

https://doi.org/10.1371/journal.pone.0239086.g001

Fig 2. Overview of data processes and methods used in the integration and analysis of wildlife contaminants datasets. PCA = principal components

analysis, BCA = between-class analysis, and MEM = Moran eigenvector map.

https://doi.org/10.1371/journal.pone.0239086.g002
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normalized data were spatially analyzed using the Moran eigenvector map (MEM) framework

to assess the multivariate spatial structure of contaminant exposures in the studied wildlife. A

spatially weighted matrix, which encodes the topological spatial relationships between samples,

is required for the MEM. Due to the irregular distribution of the samples, a Gabriel graph with

edges weighted by inverse distances was used to define the spatial connectedness [39]. The

inverse distance weighting guarantees that samples closer together will have a stronger influ-

ence in the spatial PCA than samples further apart. The spatial autocorrelation of the MEM

components was assessed using a Monte-Carlo Moran’s I and then mapped to quantify spatial

patterns. The mapped components are interpreted using biplots/loading values.

We then used the environmental fitting (envfit: vegan package [40]) to assess the correlation

between environmental variables from the Alberta Biodiversity Monitoring Institute (AMBI)

including, human footprint (2015) for mining activities (mines and industrial area), active and

abandoned wells, seismic lines, harvest/ cultivated lands, habitat intactness (all species) [41] and

landcover from the 2010 North American Land Change Monitoring System (NALCMS) [42].

In ArcGIS 10.6 [43], a 2 km radius buffered was created around each sampling site to extract

environmental variables from the local environment, which results in the percentage of land

disturbed by each disturbance category and the predominant landcover class. These variables

were used as the environmental predictors in the environmental fitting analysis.

Results

The BCA results comparing the two data transformation methods (square-root and log base

10) in combination with the range-normalization method are shown in Fig 3. A comparison of

life stage differences is presented in S1 Fig. A lack of overlap between the amphibians and the

other species in the unnormalized and untransformed data (Fig 3A) highlights the need to

undertake normalization methods to make the datasets more comparable across species. After

range-normalizing, the datasets were more comparable as shown by the overlap of all species

in Fig 3B. The goal of the normalization is to minimize species differences, so the variance cap-

tured in the PCA will be more reflective of the site differences as opposed to the differences in

the biology of different species. While the normalization method minimized the variance dif-

ferences between amphibians and the other species, this also increased the variance differences

between the gulls and the other species, as indicated by the separation of the gulls from the

other species in Fig 3B–3D. Further, there is little difference seen between the data transforma-

tions seen in Fig 3C and 3D. The transformation has corrected the non-normal distribution of

the data.

The visual patterns observed in Fig 3 were statistically tested using the Monte-Carlo simula-

tion to quantify the amount of variance attributed to each factor (species, life stage, and site)

(Table 2). Results from the Monte-Carlo simulations show that the sample site explains the

most variance in the contaminant data, followed by species, and then the year the data were

collected. When comparing the variance explained by each factor, transforming and normaliz-

ing the data reduces the effect of both species and life stage, compared to the untransformed or

unnormalized data. After range normalization, 49.8% (p = 0.001) of the variance was explained

by site in the amphibian dataset, 29.3% (p = 0.001) of the variance was explained by site in the

gull dataset, and 26.4% (p = 0.001) of the variance was explained by site in the mammal dataset.

The PCA and BCA results from the individual datasets (amphibians, gulls and terns, and

mammals) are presented in S2 Fig.

The square-root transformed range-normalized data were fully interpreted using MEM to

assess hotspots of complex metal exposure. The biplot from this analysis (Fig 4), and the load-

ings (Table 3) were used to interpret the mapped components (Fig 5).
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The first four components explained a total of 82.2% of the variance, which was attributed

to positive spatial autocorrelation (self-similarity over space). In component 1, the positively

loaded metals and PTEs were mercury, zinc, and thallium (Fig 5A). The pattern observed in

the first component are similar to the location locations and loadings of the amphibian and

gull PCA (Figs 1B and S2). This may be the result of the species differences not being

accounted for by the normalization method (Fig 3). The negatively loaded metals and PTEs

were iron, arsenic, and cobalt, which had no apparent spatial pattern (Fig 5A).

Fig 3. The between group variance attributed to each species group comparing the transformations. (A)

untransformed and unnormalized, (B) untransformed and range normalized, (C) square-root (SQRT) transformed

and range normalized, and (D) log10 transformed and range normalized. The transformation and normalization with

the smallest species effect will have the most overlap between the species groups.

https://doi.org/10.1371/journal.pone.0239086.g003

Table 2. Summary from the Monte Carlo permutation test quantifying the amount of variance explained by each factor (species, life stage, and site).

Untransformed Normalized

(Raw)

Untransformed Normalized SQRT Transformed

Normalized

Log10 Transformed

Normalized

Variance Explained by Site 54.9% 42.3% 43.5% 44.2%

Variance Explained by

Species

35.7% 25.0% 25.6% 26.9%

Variance Explained by Year 7.1% 7.0% 7.4% 7.8%

Total 97.7% 74.3% 76.5% 78.9%

� All tests were significant at p = <0.001.

https://doi.org/10.1371/journal.pone.0239086.t002
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The positively loaded metals and PTEs in component 2 were rubidium and bismuth which

had a dispersed pattern across the OSR (Fig 5B). The negatively loaded metals and PTEs in

component 2 were lead, vanadium, nickel, and lithium. These mapped scores mostly clustered

north of Fort McMurray, around the oil sands surface mining area, and the oil sands upgrad-

ing operations, as well as in the downstream receiving environment.

Component 3 was positively loaded with mercury, vanadium, and cadmium. This distinct

pattern is observed around Fort McMurray, Alberta and extends northward. West of the OSR,

sites are negatively loaded with barium, silver, and bismuth (Fig 5C). Component 4 was posi-

tively loaded with the metals and PTEs such as tin, manganese, and vanadium. The most nega-

tive scores are observed east of the oil sands area (Fig 5D). Negatively loaded metals and PTEs

include strontium, selenium, barium, and lithium. These scores are highest in northwest

Alberta and the west of the oil sands area.

The environmental fitting results in Fig 6 shows the similarity in the ordination between

environmental variables and metal loadings of the sPCA. In Fig 6A, mining, roads, seismic

lines, and landcover are significant at (P<0.05) In Fig 6B, only landcover is significant

(p<0.05). In general, mercury, lead, thallium, and vanadium have similar locations and direc-

tion on the ordination plots with variables associated with the mining environmental variable.

Discussion

This paper demonstrates the application of methods for combining complex contaminants

monitoring datasets comprised of multiple species and life stages. Range normalizing data is

an important step that allows datasets to be combined and assessed for overarching spatial pat-

terns of metal and PTE exposure, as demonstrated in Fig 3. Further, when assessing data

Fig 4. Spatial principal component analysis (sPCA) of metal and PTE concentrations in wildlife tissues using the Moran Eigenvector Maps (MEM) biplot for

components 1–4. (A) Biplot between component 1 (x-axis) and 2 (y-axis) from the sPCA MEM. (B) Biplot between component 3 (x-axis) and 4 (y-axis) from the sPCA

using MEM.

https://doi.org/10.1371/journal.pone.0239086.g004
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during a spatial analysis, range normalization is superior as it retains more of the spatial struc-

ture in the data [32]. This method can also be used to help address one of the criticisms of envi-

ronmental contaminants monitoring programs, that assessing a single sentinel species or

single biomarker may bias a true evaluation of ecological health. However, while the range

normalization is effective in making it possible to integrate the data, additional challenges

remained when the sample types, locations, and chemicals analyzed did not overlap between

datasets, which resulted in missing data.

Missing data is problematic for statistical methods, as it can limit analyses that can be used

[44]. The simplest way of handling missing data is to delete cases with missing information or

to selectively remove covariates with many missing values. We deleted cases where all metals

and PTEs were not measured, which resulted in a 29% reduction in sample size and the loss of

information related to contaminant exposure in terns. While this was the most straightforward

method, a loss of information can lead to bias [45], which is a limitation of our model. Other

methods to deal with missing data include imputation using maximum likelihood or multiple

correspondence analysis. However, these methods rely on known or assumed patterns and

underlying mechanisms leading to the missing data. Therefore, there must be an understand-

ing of the underlying structure of the data for these methods to be effective [45]. Due to the

complexity of this dataset and the exploratory nature of this analysis, we opted for the most

straightforward method. Other methods of imputation could be explored in the future.

This paper also presents the application of a novel method for assessing the spatial patterns

of multidimensional ecotoxicology data and builds on our previous work using the MEM

method to assess spatial patterns of complex metal exposure in adult wood frogs in northern

Alberta [27]. The results of this analysis identify key hotspots of complex metal and PTE

Table 3. Table of loadings for Moran eigenvector maps (MEM) by site for square-root transformed and range normalized data. The metals and PTEs with the highest

positive and negative loading value have been bolded.

Metal Component 1 Component 2 Component 3 Component 4

Silver 0.15 -0.14 -0.35 0.25

Arsenic -0.43 0.07 -0.11 -0.05

Barium 0.14 -0.24 -0.33 -0.20

Bismuth -0.03 0.39 -0.37 -0.03

Cadmium -0.20 0.07 0.16 -0.08

Cobalt -0.33 -0.15 0.01 0.21

Copper 0.17 0.09 -0.04 -0.17

Iron -0.41 0.00 -0.09 0.15

Gallium 0.15 -0.15 -0.15 0.14

Mercury 0.29 0.04 0.39 0.29

Lithium 0.14 -0.29 -0.29 0.04

Manganes -0.01 -0.10 -0.14 0.39

Molybdenum -0.20 -0.03 -0.28 0.05/17

Nickel 0.05 -0.30 0.09 0.12

Lead -0.05 -0.36 0.12 0.12

Rubidium 0.17 0.38 0.10 0.18

Selenium -0.30 -0.09 0.04 -0.23

Tin -0.05 0.19 -0.28 0.42

Strontium 0.16 -0.28 -0.21 -0.31

Thallium 0.22 0.18 -0.18 0.16

Vanadium -0.09 -0.30 0.18 0.33

Zinc 0.21 -0.07 0.06 -0.08

https://doi.org/10.1371/journal.pone.0239086.t003
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exposure in different species and life stages in the OSR. The MEM method has successfully

been used to assess spatial patterns in a variety of applications, including genetic variability

[46, 47], metals in soil [48], and taxonomic and phylogenetic diversity of tadpoles [49].

Fig 5. Mapped scores produced by the spatial Moran Eigenvector Maps (MEM). (A) component 1, (B) component

2, (C) component 3, and (D) component 4. These scores are interpreted using the biplots from Fig 3 and Table 2. The

red box highlights the location of operating facilities in the Athabasca Oil Sands region.

https://doi.org/10.1371/journal.pone.0239086.g005
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The results of this research demonstrate how the traditional PCA method can be expanded

to include spatial structure into the analysis of ecotoxicological data. In this analysis, compo-

nent 1 identified hotspots of mercury, rubidium, and thallium exposures. The mapped positive

scores are similar to the locations of gull and amphibian data from northern Alberta. Thus,

this spatial pattern may be related to a species difference, rather than differences in metal and

PTE body burdens between sample locations. However, these scores also exhibit a latitudinal

gradient, where the scores downstream of oil sands development are larger than scores

upstream. This matches patterns of mercury exposures observed in the gull and tern eggs in

northern Alberta [10, 11]. Further, the spatial patterns observed in the first component also

supports research demonstrating the Athabasca River as a pathway of transport of anthropo-

genic mercury from the OSR to downstream receiving environments [21].

Hotspots of lead, vanadium, nickel, lithium, and strontium (component 2), and mercury,

vanadium, and cadmium (component 3) clustered around the open-pit mining and upgrading

operations. These elements also had similar directionality on the ordination plot with an envi-

ronmental variable quantifying the percentage of mining in the local environment. Local

enrichment of these metals and PTEs from oil sands operations has been widely reported [5–7,

20, 50]. The common pathways of local enrichment of metals and PTEs into the environment

from oil sands operations are from fugitive dust and emissions [20], and the release of metals

and PTEs in an aqueous solution from process water and tailings ponds [5]. Lynam et al. [7]

showed that strontium is enriched in the OSR and is a tracer for deposition of crustal dust that

results from mining and land clearing activities. Further, Landis et al. [5], attributed sources of

rubidium in the OSR to biomass burning and fugitive dust from mining activities. The overlap

between locally enriched metals and PTEs and patterns of complex metal and PTE exposures

Fig 6. Ordination plot comparing metal and PTE concentrations in wildlife tissues with environmental variables. (A) Ordination between component 1 (x-axis) and

2 (y-axis) from the environmental fitting analysis. (B) Biplot between component 3 (x-axis) and 4 (y-axis) from the environmental fitting analysis. On both of these plots,

red variables indicate metals and PTEs from sPCA, blue variables are categorical landcover environmental variables, and the grey variables are continuous environmental

variables.

https://doi.org/10.1371/journal.pone.0239086.g006
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in wildlife suggests wildlife is being exposed to a unique “fingerprint” of metals and PTEs from

oil sands development.

Some components had no apparent clustering pattern. The most highly loaded metals and

PTEs in these components included arsenic and iron, and a variety of other crustal elements

including bismuth, strontium, rubidium, cobalt, and lithium, The mapped components that

exhibit a random pattern are likely indicative of background metal and PTE exposures. In the

environmental fitting ordination plot, these elements clustered with intact landscapes and

deciduous and mixed forests. Northern Alberta has very complex underlying natural geologi-

cal and geochemical properties. For example, monitoring data shows that northern Alberta

has arsenic levels up to 10 times higher, and iron levels up to 100 times higher than back-

ground concentrations in other regions of Alberta, which is due to the naturally occurring

shale deposits [51, 52]. The sPCA method discussed here helps to identify key hotspots of

metal and PTE exposures as opposed to the natural background. Further, crustal elementals

such as strontium may also serve as useful biomarkers for complex metal and PTE exposures

that result from anthropogenic augmentation of metals and PTEs to the natural environment.

There are other sources that could contribute to the overall variance in the complex metal

and PTE exposures in the biota. First, while the range normalization method attempted to

address some of the issues associated with integrating contaminant data across different spe-

cies and life stages, this method was not able to completely diminish the effect of species and

life stage. This may be due to the bioaccumulative nature of some metals and PTEs with the

age of the biota [22]. In this study, we treated all biota in the adult category similarly, but a

“young” adult may have a different contaminant burden than an “old” adult. Future work

should include more precise age estimations (i.e., annuli) to better control for metal bioaccu-

mulation. Second, approximately 7–8% of the variance in the metals and PTEs could be attrib-

uted to the sampling year, which may be related to the yearly variability in production,

deposition, and metal exposure in the oil sands. This variation is observed in the depositional

patterns of metals and PTEs and factors affecting bioavailability, such as acidification in the

OSR [6, 20, 53, 54]. Third, other environmental factors may play a role in how deposited met-

als and PTEs are delivered to downstream environments. Hebert [21], found that in years

where the flow rate of the Athabasca River was higher, due to a greater volume snowpack melt,

there were higher concentrations of Hg observed in tern eggs downstream of Oil Sands devel-

opment. This highlights how the mobilization of contaminants to downstream receiving envi-

ronments is mediated by complex environmental processes.

Oil Sands development is changing how wildlife uses the landscape, population densities,

and species interactions both during the process of development and reclamation [4, 55].

Changes in landscape features (i.e., connectivity) and usage by wildlife can change the preda-

tor-prey relationship changing the trophic position where wildlife are feeding [55]. The trophic

position has implications for altering exposures and body burdens [10, 29]. Our environmental

fitting analysis showed that habitat intactness was opposite to mining and mining-associated

metals and PTEs on the ordination plot (Fig 5A). This indicates that wildlife living in more

intact habitats have different contaminant burdens than wildlife living in anthropogenically

impacted areas. Additional research using a cumulative effects approach is needed to help bet-

ter understand the complicated relationship between anthropogenic changes to landcover,

wildlife usage, and contaminant burdens.

Spatial analyses of wildlife exposures can be used to identify priority metals and PTEs,

determine sources, identify priority areas for further study, and help develop targeted strate-

gies for additional monitoring or exposure reduction [13]. However, as one limitation of this

method is that it only identifies statistical associations and does not allow a determination of

whether the complex exposures are likely to cause adverse health effects, it is not possible to
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characterize the risk of the exposure. Another limitation of this paper is that we only assessed

one class of contaminants in this paper. Future research should also work to incorporate other

contaminant classes such as polycyclic aromatic compounds (PACs). Nevertheless, by analyz-

ing existing monitoring data using this integrative spatial framework, we provide a cost-effec-

tive and data-led approach to identify areas that need intensive and immediate attention for

monitoring and possible intervention. Based on our results, we suggest more detailed monitor-

ing, such as a health impact assessment, is required east and downstream of oil sands develop-

ment. This is of vital importance as Indigenous harvesters and other land users rely on wildlife

for subsistence and food safety and security in the region. The results from this study also sup-

port an adaptive monitoring framework, where ongoing monitoring data can be incorporated

into this established model, allowing ground-truthing of hotspots and identifying additional

regions that may require intensive monitoring.

Conclusion

In this paper, we demonstrate the application of an sPCA method and address current limita-

tions of spatially assessing landscape-level complex exposures across different species and life

stages. The methods we used to transform and normalize the data diminished the effect of spe-

cies and life-stage differences in contaminant burdens and is a useful pre-processing step for

data integration. Results show that patterns observed in the sPCA were related to patterns of

environmental exposures and not a difference in species-specific accumulation rates. The spa-

tial analysis conducted in this study demonstrates that some metals and PTEs are being

anthropogenically delivered and concentrated around oil sands development. For example,

levels of mercury, vanadium, lead, rubidium, lithium, strontium, and barium were elevated in

multiple species around the open-pit mining area as well as regions downstream of oil sands

development. The techniques presented in this paper can be applied to monitoring programs

in other areas undergoing development and anthropogenic change. We also highlight areas of

further research, which include the need to evaluate a broader spectrum of contaminants,

including PACs, and how anthropogenic changes to the landscape result in altered contami-

nant burdens in wildlife.
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