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ABSTRACT

Alternative splicing is the main mechanism govern-
ing protein diversity. The recent developments in
RNA-Seq technology have enabled the study of the
global impact and regulation of this biological
process. However, the lack of standardized proto-
cols constitutes a major bottleneck in the analysis
of alternative splicing. This is particularly important
for the identification of exon–exon junctions, which
is a critical step in any analysis workflow. Here we
performed a systematic benchmarking of alignment
tools to dissect the impact of design and method on
the mapping, detection and quantification of splice
junctions from multi-exon reads. Accordingly, we
devised a novel pipeline based on TopHat2
combined with a splice junction detection algorithm,
which we have named FineSplice. FineSplice allows
effective elimination of spurious junction hits arising
from artefactual alignments, achieving up to 99%
precision in both real and simulated data sets and
yielding superior F1 scores under most tested con-
ditions. The proposed strategy conjugates an effi-
cient mapping solution with a semi-supervised
anomaly detection scheme to filter out false posi-
tives and allows reliable estimation of expressed
junctions from the alignment output. Ultimately
this provides more accurate information to identify
meaningful splicing patterns. FineSplice is freely
available at https://sourceforge.net/p/finesplice/.

INTRODUCTION

Of the many actors involved in mRNA regulation, alter-
native splicing (AS) plays the lead role in shaping the post-
transcriptional landscape. Through differential exon in-
clusion, intron retention and alternative splice site usage,
AS allows for the generation of multiple transcript and
protein isoforms from a single gene, bridging the gap
between the great structural and functional diversity of
the eukaryotic proteome and the relatively small amount
of coding genes (1). AS constitutes a flexible, conserved
and dynamic layer of regulation, affecting the vast
majority of multi-exon genes (2), often in a tissue-
specific fashion (3,4), and modulating phenotypic
changes with wide-ranging implications in morphogenesis
(5,6), evolution (7,8) and disease (9–12). Despite the ex-
tensive evidence about its functional relevance, the global
impact and regulation of AS are far from being completely
understood.
In recent years, the advent of RNA-Seq has boosted

research in the AS field and is paving the way to a
genome-wide understanding of its regulatory mechanisms
and effects in different biological contexts (2,13). Besides
allowing for the comparison of gene expression changes,
RNA-Seq makes it possible to identify novel isoforms,
assess relative transcript abundances and detect alterna-
tive exon and splice site usage (14–16). Using next-gener-
ation sequencing, knowledge is being accumulated at an
incredibly fast pace, nourishing the expectations of an
integrated splicing code that would allow to predict the
occurrence and impact of specific splicing patterns under
different conditions (17,18). Whereas computational solu-
tions to study gene expression are relatively well
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established, best practices in AS data analysis remain a
largely open-ended issue. A large, and constantly
increasing, number of algorithms address the analysis of
AS at different levels (15,19–21), providing various, often
disparate, solutions to the many challenges posed by AS in
terms of mapping, normalization and statistical analysis of
RNA-Seq data (22–30). The lack of an integrated frame-
work and standardized guidelines constitutes nonetheless
a major bottleneck, and the suitability of different
methods, depending on the aim of the study and the ex-
perimental set-up, is unclear.
Here we address the problem at its fundamental level:

the definition of a reliable set of expressed splice junctions
in a typical context where the full set of transcripts is not
entirely known. Reads that overlap multiple exons repre-
sent, in this respect, the most basic unambiguous piece of
information retrievable from an RNA-Seq experiment
with a direct relevance to AS (31,32). From this perspec-
tive, the problem comes down to three main objectives, all
of which basically rely on the effectiveness of the align-
ment process: (i) split-read mapping and de novo splice
junction discovery, (ii) detection of expressed junctions
from reliable alignment hits and (iii) quantification of ex-
pression levels by read counting. This makes the analysis
conceptually straightforward, and allows for the strengths
and drawbacks of the different methods to be clearly dis-
sected. For each of these tasks, we evaluated the perform-
ance of five alignment algorithms on synthetic data sets.
Based on the results, we propose an integrated pipeline to
conjugate the needs of a reliable detection with those of an
accurate mapping and expression estimation. To this end,
we developed an ad hoc post-processing strategy,
FineSplice, to filter out false-positive hits via a semi-
supervised anomaly detection method. We tested
FineSplice detection performance under all simulation
settings and on publicly available experimental RNA-
Seq data. The suggested pipeline provides a simple effect-
ive solution to address the analysis of RNA-Seq data at
the splice junction level, achieving superior results in terms
of detection precision while attaining high mapping and
quantification accuracy.

MATERIALS AND METHODS

Simulation of RNA-Seq experiments

A total of 10 random data sets for 12 different experimen-
tal set-ups were generated using the Flux Simulator (33)
pipeline (version 1.2), based on the GRCh37.p8 assembly
of the human genome and Ensembl genebuild (release 69)
annotation (34). Each combination of the following par-
ameters was used to generate a data set: 50 and 76 bp read
length, 8M, 20M and 40M reads sequencing depth, single-
end and paired-end library. Following the procedure in
the documentation, a custom error model at 50 bp read
length was produced using in-house RNA-Seq data
(Supplementary Figure S1). The sequencing run was de-
posited in the NCBI Sequence Read Archive, with acces-
sion number SRR1105576. Default parameters were used
for all other options. For each simulated data set, 10% of
the exons at each expression decile were removed from the

original annotation to evaluate the de novo splice junction
detection capability and the impact of novel and
misannotated features.

Alignment algorithm benchmarking

The following alignment algorithms have been tested:
TopHat2 version 2.0.6 (35), GSNAP version 2012-12-20
(36,37), STAR version 2.2.0 (38), OLego version 1.08 (39)
and SOAPsplice version 1.9 (40). All aligners were run
with default parameters. For paired-end data, whereby
required, the insert size was empirically determined from
uniquely mapping, perfect matching pairs via a prelimin-
ary alignment with Bowtie version 0.12.9 (41) and
supplied to the algorithm. Except for SOAPsplice, which
is an ab initio alignment method, input annotations were
constructed to comply the required format of each aligner.
Site-level input files were produced for GSNAP, as sug-
gested in the documentation.

Performance evaluation

For both known and novel exon junctions, the mapping
performance was evaluated in terms of percentage of
uniquely mapped reads and positive predictive value
over unique alignments at base pair resolution.
Nucleotides mapped to the wrong genomic location
were regarded as false positives, correctly aligned nucleo-
tides as true positives. The junction detection perform-
ance was assessed in terms of sensitivity and positive
predictive value based on unique gapped alignments
reported with an N operation in the CIGAR string.
Expressed junctions in the simulated data spanned by
at least one read in the alignment were considered true
positives. Expressed junctions with no unique hits were
regarded as false negatives and junctions spanned by at
least one read in the alignment but not present in the
simulated data as false positives. Over all detectable junc-
tions, quantification accuracy was assessed in terms of
absolute difference between true counts and alignment
counts (number of uniquely mapped reads spanning a
junction). For true positive hits, the absolute difference
was as well computed relative to the true expression
value. Plots were generated using ggplot2 (version
0.9.3.1) R package (42).

The FineSplice pipeline

Step 1. Align with TopHat2. Transcriptome alignment with
de novo splice junction discovery is performed using
TopHat2 with available annotations for known transcript
isoforms.

Step 2. Compute the set of split-read overhangs across each
junction. For each uniquely mapping read j spanning a
given junction i, its overhang Oi

j is defined as the
shortest overlapping segment of the read across the
junction, i.e.Oi

j ¼ minðLi
j,R

i
jÞ, where Li

j and Ri
j represent

the length of the left and right arm of the read across
the junction. Each junction is hence represented by a set
Oi ¼ ðOi

jÞj¼1,:::,n of n split-reads overhangs. Under the
assumption of random cDNA fragmentation, all
overhangs are taken to be equally likely and Oi

j hence
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assumed to follow a discrete uniform distribution
Oi

j � U 1, read length=2
� �� �

.

Step 3. Define a subset of potential false positives. For each
junction, if (i) a single mismatch is present and (ii) none
out of n reads is found with an overhang greater than the
first mismatching position, the following probability is
considered:

P at least one Oi
j w=mismatches � max Oi

� �� �

¼ 1�
max Oi

� �
read length=2
� �
 !n

If >0.99, the junction i is deemed as a potential false
positive and labeled Yi ¼ 1. Splice junctions with no
matching overhang are labelled as well as potential false
positives. The remaining total of detectable junctions is
assumed to mostly comprise valid spliced alignments and
assigned the class label Yi ¼ 0.

Step 4. Construct feature vectors. For all possible overhang
values k 2 1, read length=2

� �� 	
, let Ni

k be the number of
reads with an overhang larger than k after trimming
mismatching overhangs at the first mismatch
position. For each junction i, a feature vector
Xi ¼ xik

� �
k¼1,:::, read length=2b c

is constructed based on the

log2 deviation of observed counts from expected at each
position relative to the splice site, i.e.

xik ¼ log2
Ni

k

Ei
k


 �

where Ei
k ¼ number of reads � P Oi

j � k
� �

and

P Oi
j � k

� �
¼ 1� k�1

read length=2b c

� �
.

Step 5. Fit a logistic regression model. Following step 3 and
4, each junction is represented by a class label Yi and a
feature vector Xi. A L1-regularized logistic regression
model is therefore fitted over the whole set of junctions.

Step 6. Discard spurious alignments based on posterior
probability. For each junction i, the posterior probability
of belonging to the false-positive class is computed: if
P Yi ¼ 1jXið Þ > 0:5, the junction is deemed as a false
positive and discarded.
Step 7. Rescue multiple mapping reads. Reads mapped to
multiple splice sites for which a unique hit is recovered
after filtering are allocated to the accepted junction.

FineSplice depends on pysam (version 0.7.4), scipy
(version 0.7.2) and numpy (version 1.7.1) modules for
BAM file parsing and scientific computing. The logistic
regression model relies on scikit-learn (version
0.13.1) implementation (43), based on the LIBLINEAR
library (44,45).

FineSplice testing in simulated and real data

FineSplice improvement in splice junction detection over
TopHat2 was assessed in synthetic data, under all
simulation settings, allowing for multiple alignment
options. Additional TopHat2 alignments were performed
enabling the realignment option for ambiguously mapping

multi-exon reads, with a cut-off of either one or two
mismatches in the segment alignment step. FineSplice
performance was further compared with TrueSight
version 0.06 (46), a recently published ab initio alignment
method using logistic regression to enhance junction
mapping. TrueSight was run with default parameters,
and splice junctions, together with the associated score
(posterior probability), were retrieved from the
corresponding output. Precision and sensitivity were
computed as described above, both in the default setting
and at increasing thresholds for the posterior probability
estimates of FineSplice and TrueSight.
The splice junction detection performance was

moreover evaluated on real data from publicly available
RNA-Seq experiments in human (two data sets, high-
quality or low-quality reads) and pig (poorly annotated
transcriptome). The high-quality human data set
comprises three high-depth paired-end sequencing runs
at 76 bp read length (Supplementary Figure S2, SRA
Experiment SRX084679). The low-quality human data
set comprises two low-depth paired-end sequencing runs
at 45 bp read length, exhibiting a high per base error rate
(Supplementary Figure S3, SRA Experiment
SRX011546). The pig data set comprises three sequencing
runs at 51 bp read length, single-end (Supplementary
Figure S4, SRA Experiments SRX242929, SRX242930
and SRX242931). Raw data were downloaded from the
NCBI Short Read Archive (SRA) and converted to
FASTQ with the SRA Toolkit. The alignment was
carried out with the five benchmarked algorithms plus
TrueSight, as described above, but using the full transcript
annotation (whereby possible). In the absence of ground
truth, the detection performance was evaluated by
computing pseudo sensitivity and pseudo precision
metrics (38,47), along with the corresponding F1 score,
and by evaluating the mean read counts and the consensus
across all alignments for all the junctions detected by each
algorithm. Splice junctions were designated as pseudo true
(i.e. effectively expressed) based on read counts and
consensus among all methods, by deeming as effectively
expressed those with a median read count across all
methods >0. The distribution of read counts at each
overhang position over all alignments was further
assessed for all junctions accepted and discarded by
FineSplice.

RESULTS

Splice junction mapping performance

The crucial and most demanding step in a typical AS
analysis workflow is aligning reads that span exon–exon
junctions in an effective manner. To evaluate the impact of
experimental design, alignment method and prior
knowledge on the mapping performance, we
systematically compared the behaviour of different
algorithms under varying simulated set-ups (different
read lengths, sequencing depths and library preparation
protocols), across 10 random data sets per experimental
condition. We generated sampled transcript annotations
via a random exclusion of exon features at different
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expression deciles for each experiment. We evaluated a
selection of five alignment algorithms: TopHat2,
GSNAP, STAR, SOAPsplice and OLego. These aligners
offer different approaches to mapping (exon-first, seed-
and-extend and multi-seed), indexing (hash table and
FM-index), annotation use (transcript-based, intron-
based and ab initio) and de novo splice site prediction
[see (21) for a comprehensive review]. The benchmarked
methods mostly take advantage of available annotations
either at the transcriptome level (full-length transcripts or
known combinations of donors and acceptors e.g.
TopHat2 and GSNAP) or at the intron level (set of
donor–acceptor pairs e.g. OLego, STAR), except for
SOAPsplice, which is geared towards ab initio detection
of junction spanning reads.
Figure 1 summarizes the average performance across

the 10 simulated data sets per experimental setting at
20M reads sequencing depth. Results at 8M and 40M
reads sequencing depth are shown in Supplementary
Figure S5. Under all tested conditions, for both known
and novel junctions, TopHat2 appears to outperform
other methods in terms of mapping precision (positive
predictive value, colour coded) while attaining, at the
same time, a high percentage of uniquely mapping reads.
Overall, TopHat2 provides the best trade-off in terms of
mapping performance, even when other algorithms exhibit
slightly higher percentages of unique hits (e.g. STAR or
GSNAP). With the exception of sequencing depth, which
does not appear to substantially affect the results, the
impact of experimental design is mostly aligner-
dependent. TopHat2 shows small but consistent
improvements with paired-end data (whereas STAR
performs slightly worse), OLego and GSNAP achieve
better results with increasing read lengths and paired-
end information, as well as SOAPsplice (mostly in terms

of positive predictive value). Across the 10 data sets
generated for each simulation set-up, the alignment
performance was rather consistent, with low standard
deviations both in the case of junction-spanning reads
(Supplementary Tables S1 and S2) and considering also
exon mapping reads (Supplementary Table S3).

Splice junction detection performance

The detection of expressed junctions relies on the retrieval
of gapped alignment hits (in genome space) from the
mapping output. We assessed the sensitivity and positive
predictive value of each alignment method by considering
as true positives all junctions present in the simulated data
spanned by at least one uniquely mapping read, as false
positives all gapped alignments which do not correspond
to an expressed junction, and as false negatives expressed
junctions with no unique hit. The results of the
comparison, under all simulation settings, are shown in
Figure 2 at 20M reads sequencing depth and in
Supplementary Figure S6 at 8M and 40M. Again, all
metrics were averaged over 10 random data sets per
experimental condition and low standard deviation was
observed across the data sets (Supplementary Table S4).
In terms of splice junction detection precision (positive
predictive value) STAR exhibits the best performance,
with remarkably low amounts of false positive hits and
high sensitivity, further improving at increasing read
lengths with minor loss in precision. OLego provides as
well high precision, though at lower sensitivity, while
GSNAP and TopHat2 achieve greater sensitivity but
with relatively poor positive predictive value.
SOAPsplice does not rely on prior knowledge to detect
expressed junctions, yet it proves to achieve a good
trade-off between precision and sensitivity, often with

Figure 1. TopHat2 provides the best trade-off in terms of alignment precision and percentage of uniquely mapped reads, for both known and novel
junctions. The percentage of uniquely mapped reads (bar chart, y-axis) and the positive predictive value (ratio of correctly aligned nucleotides, colour
coded), averaged over 10 simulated data sets per experimental condition, are shown for each alignment method on a separate panel. With the
exception of SOAPsplice, which exclusively aligns reads ab initio, left and right sides of each panel correspond, respectively, to reads spanning known
and novel junctions (i.e. randomly included or excluded from the input annotation). Each bar corresponds to a different simulation set-up: 50 or
76 bp read length, single-end (SE) or paired-end (PE) library, at 20M reads sequencing depth.
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noteworthy gains at higher read lengths and with paired-
end information.

Splice junction quantification performance

The quantification of expression levels is carried out by
counting the number of uniquely mapping reads spanning
a given junction. The absolute difference between true
counts and alignment counts has been evaluated over all
detectable junctions, i.e. spanned by at least a uniquely
mapping read. Additionally, for true-positive ones, the
relative error (absolute difference divided by the true
expression value) was computed to further discern the
impact of quantification errors at different expression
ranges. In either case, and consistently with the mapping
performance, TopHat2 achieves the best quantification
accuracy under all tested experimental conditions. For
most true-positive junctions (�80%, cf. Figure 3A and
Supplementary Figure S7) the quantification is exact,
with no difference in read counts, and the 1.5 interquartile
range of absolute errors across all simulated data sets and
experimental settings lies within 5 read counts, with a
median of zero. Predictably, the absolute error increases
at increasing sequencing depths (see Figure 3B at 20M
reads and Supplementary Figure S8 at 8M and 40M)
and read lengths, though with minor discrepancies in
relative terms.

Enhanced splice junction detection and quantification with
FineSplice

Our results show that TopHat2 achieves the best results in
terms of mapping and quantification precision, but at the
undesirable price of a high rate of false detections. To
conjugate TopHat2 superior mapping capability with
efficient splice junction discovery we propose an
integrated pipeline based on a semi-supervised detection
of reliable junction alignments. The suggested procedure,

FineSplice, has been implemented in the form of a post-
processing tool for TopHat2, and evaluated under all
simulated conditions (see ‘Materials and Methods’
section). To assess whether false-positive hits could be
corrected by more stringent alignment options, we also
ran TopHat2 allowing for the realignment of ambiguously
mapping multi-exon reads, with different edit distance cut-
offs in the initial segment mapping phase. In most cases,
TopHat2 with default parameters appears to achieve
better results, with only minor improvements in terms of
precision (if any) when allowing for the realignment of
ambiguously mapping reads (Table 1 and Supplementary
Table S5). Our strategy, instead, allows remarkable gain in
detection precision, with up to 10% of false-positive
junctions being filtered out while having only minor
losses in sensitivity. Accordingly, superior F1 scores were
obtained under all experimental conditions and alignment
options (see Table 1 at 20M reads sequencing depth and
Supplementary Table S5 for different library sizes). The
effect of filtering false-positive hits and rescuing multiple
mapping reads lead, moreover, to a better quantification
accuracy both in terms of absolute error (shown in
Figure 4 at 20M reads sequencing depth, and
Supplementary Figure S9 at 8M and 40M) and relatively
to the actual value for true-positive junctions
(Supplementary Figure S10).
To compare the performance of our pipeline with tools

following a somehow similar strategy, we compared
FineSplice with TrueSight, a recently released ab initio
alignment method that uses semi-supervised logistic
regression to accurately map junction-spanning reads.
Under all simulation settings, the combination of
TopHat2 and FineSplice achieves superior detection
performance, with higher sensitivity and precision
(Supplementary Figure S11). The sensitivity and positive
predictive value of inferred junctions were also computed
at increasing thresholds for the respective score (posterior

Figure 2. STAR exhibits superior splice junction detection precision, whereas TopHat2 shows the best sensitivity. The plot shows the junction
detection sensitivity (y-axis) and positive predictive value (x-axis) of each alignment method, averaged over 10 simulated data sets per experimental
condition, at 20M reads sequencing depth. Each panel corresponds to a different simulation set-up: 50 or 76 bp read length, single-end (SE) or
paired-end (PE) library.
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probability computed by the two algorithms), with larger
dots designating the default behaviour. TrueSight uses
model predictions (i.e. the posterior probability) to
allocate potentially gapped reads to a reliable mapping
location, so by default no threshold is actually applied.
Instead, FineSplice uses logistic regression to discriminate
potential false-positive junctions from the alignment
output, and uses a default threshold of 0.5 to filter out
unreliable mapping hits. The score assigned by FineSplice
correlates with an improvement in detection precision,
and the posterior probability can effectively discriminate
false-positive hits (i.e. not expressed junctions) with small
loss in sensitivity. On the contrary, TrueSight score does
not correlate with a more accurate detection of expressed
junctions and thresholding the posterior probability
results in a decrease in sensitivity with no apparent
improvement in positive predictive value.

Detection performance in experimental data

We took advantage of publicly available RNA-Seq
experiments to evaluate the splice junction detection

performance in real data. Three data sets, for eight
sequencing runs, were chosen from organisms with
variable annotation qualities (human and pig), covering
different experimental set-ups (read lengths and library
preparation protocols) and per base error rates (low and
high per base Phred quality scores, see ‘Materials and
Methods’ section). Though in the absence of ground
truth it is impossible to make exact statements about the
expression status of a splice junction (and hence rigorously
define true and false detections), the agreement among
different methods and the average number of reads over
all alignments can be used as a proxy for evaluating the
reliability of a junction hit. We therefore assessed the
detection performance by means of pseudo metrics,
based on median read counts across alignments, and by
unbiasedly evaluating the mean number of reads and
concordant detections across alignment algorithms for
all splice junctions detected by each method. While not
rigorous, these definitions allow for the performance of
each method to be evaluated under different assumptions.
Pseudo sensitivity and pseudo precision (together with the

Figure 3. TopHat2 achieves the best quantification accuracy, both in terms of relative and absolute counts of junction-spanning reads. (A) The plot
shows the relative quantification error (absolute difference between alignment and true counts relative to the true expression value, y-axis) at
increasing percentiles (x-axis) for each alignment method and under different simulation set-ups (at 20M reads sequencing depth), all values
being averaged over 10 simulated data sets per experimental condition. Reads of 50 and 76 bp are represented on separate panels, single-end and
paired-end reads with, respectively, continuous and dashed lines. (B) For each alignment method, the absolute quantification error (absolute
difference between alignment and true counts, comprising false-negative and false-positive junctions, y-axis) is shown in a box plot representation
encompassing all 10 simulated data sets, at 20M reads sequencing depth. Reads of 50 and 76 bp are represented on separate panels, single-end (SE)
and paired-end (PE) reads with distinct fill gradients.
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corresponding F1 score) were computed by regarding as
true all junctions with a median number of reads across all
methods >0. In all three data sets, FineSplice effectively
improves TopHat2 performance by filtering a high
amount of junctions that were found exclusively by
TopHat2 and/or with an average read counts across all
alignments as low as 0.25 or 0.5 (Supplementary Figures
S12–S14). FineSplice enhances pseudo precision with
minor decrease in pseudo sensitivity and achieves
superior F1 scores in virtually all cases. TrueSight
attains high pseudo precision at the expense of a low
percentage of detected junctions and poor overall
pseudo sensitivity, while SOAPsplice obtains better
results and provides a better trade-off for pure ab initio
discovery. Consistently with the benchmarking results in

simulated data, GSNAP usually achieves high pseudo

sensitivity at lower precision and detects a high percentage

of junctions with a low average read count and consensus

over all alignments. However, it performs notably well in

the pig data set, achieving superior F1 scores though at

slightly worse pseudo precision.
To test our assumptions about the expected overhang

distribution of reliable versus potential false-positive hits,
we further assessed the coverage at each overhang position
across all alignment methods for all junctions accepted
and rejected by FineSplice. Compared with the set of
accepted junctions, the potential false positives discarded
by FineSplice show systematically shorter overhangs and
low read counts across all alignment methods
(Supplementary Figures S15–S17). Consistently with the

Figure 4. FineSplice achieves better quantification accuracy by filtering out false positive junctions and rescuing multiple mapping reads. TopHat2
absolute quantification error before (blue bars) and after (yellow bars) filtering with FineSplice in a box plot representation (cf. Figure 3B). Different
simulation settings at 20M reads sequencing depth are represented on separate panels: 50 bp or 76 bp read length, single-end (SE) or paired-end (PE)
library. Each bar corresponds to different TopHat2 alignment options, either default (�) or with realignment of reads spanning multiple exons,
allowing up to 1 or 2 mismatches in read segments alignment.

Table 1. FineSplice improves TopHat2 detection precision with small loss in sensitivity and superior F1 scores

Read length Library Sensitivity PPV F1 score Realign w/ segment
mismatches

TopHat2 FineSplice TopHat2 FineSplice TopHat2 FineSplice

50bp SE 0.966 0.941 0.908 0.989 0.936 0.964 –

0.966 0.922 0.919 0.987 0.942 0.953 1

0.966 0.922 0.918 0.986 0.941 0.953 2

PE 0.978 0.960 0.906 0.984 0.940 0.972 –

0.977 0.966 0.902 0.973 0.938 0.969 1

0.978 0.966 0.902 0.973 0.938 0.969 2

76bp SE 0.967 0.950 0.919 0.993 0.943 0.971 –

0.967 0.911 0.929 0.990 0.947 0.949 1

0.967 0.911 0.929 0.990 0.947 0.949 2

PE 0.978 0.961 0.917 0.991 0.947 0.976 –

0.978 0.971 0.901 0.974 0.938 0.973 1

0.978 0.971 0.901 0.974 0.938 0.973 2

TopHat2 run with default parameters (highlighted) or realignment option (--read-realign-edit-dist 0), allowing up to 1 or 2 mismatches in
read segments alignment (--segment-mismatches 1 or 2).
SE, single-end; PE, paired-end; PPV, Positive predictive value.
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simulated data, most of the junctions filtered out in all
data sets were found exclusively by TopHat2 or by
TopHat2 and GSNAP, mainly at low read counts and
short overhangs. Overall, even in real data, FineSplice
proves to effectively identify unreliable junction hits and
achieve greater precision with small loss in sensitivity,
providing robust results and the best trade-off in terms
of detection performance.

DISCUSSION

The computational analysis of AS from RNA-Seq data is
a complex and rapidly evolving field where, despite the
large availability of algorithmic solutions, there is
currently a lack of guidelines and best practices are
often unclear. Here we intended to provide an effective
solution in a common scenario where transcript
information is, at least partially, available but novel
splicing events still need to be identified de novo. We
addressed the problem at its most fundamental level: the
alignment, detection and quantification of exon–exon
junctions from the sequencing data. The objective, in
this respect, is to reliably measure and identify the set of
splice junctions expressed under a given condition. While
ignoring additional layers of interpretation, this intron-
centric perspective allows the problem to be dissected to
its core and for the evaluation of the impact of design and
method in a straightforward manner. An efficient solution
to this problem allows to further identify possible sources
of bias or confusion in downstream analysis, as any
splicing variant must differ by at least one exon
junction. Splice junction discovery and quantification
itself pose numerous, often opposing, challenges in terms
of data analysis and processing, especially when only
partial transcript information is available, as is
commonly the case.
Here we performed a comprehensive assessment of the

performance of different alignment algorithms on
simulated data under variable experimental set-ups and
annotations sets. Based on the results, we propose a
pipeline to fulfil all the desirable prerogatives of an
effective expression analysis at the level of splice sites,
which, predictably, cannot be attained by any alignment
alone. Aside from minor differences related to
experimental design, the relative advantage of each
approach largely depends on the analysis envisaged
because all benchmarked methods exhibit in fact
opposing strengths and drawbacks. In our hands,
TopHat2 proved to achieve superior results in terms of
mapping and quantification accuracy though at the price
of producing many spurious gapped alignments, hence
introducing more false positives. The greatest advantage
of TopHat2 over other aligners is that it makes use of full-
length transcripts in its preliminary alignment step. This
results in significant gains in sensitivity, mapping accuracy
and leads to better quantification results, but at the
expense of transcriptome misalignments (particularly
with low-quality ends and reads spanning multiple splice
sites). On the other hand, false-positive calls are less likely
within more stringent mapping schemes and relying on

splice site annotations (e.g. OLego and STAR) but, at
the same time, this strategy compromises the ability to
allocate a considerable amount of reads. Though requiring
an efficient downstream strategy to solve the detection
problem, relying on a less-conservative alignment
method allows to benefit from higher mapping accuracy
and better expression estimates. TopHat2 already achieves
good standards for mapping and quantification purposes
and, albeit penalized by poor false-positive detection rates,
it offers a solid basis that can lead to better results through
a convenient post-processing of the alignment output.

We therefore propose an integrated workflow that,
starting from TopHat2, aims at optimizing the detection
process by filtering out false positives with minimal loss in
sensitivity, and rescuing multiple mapping reads whereby
a unique location is obtained after filtering. This pipeline
allows to take advantage, with further benefits in terms of
multiread allocation, of the unequalled quantification
accuracy provided by TopHat2, while considerably
enhancing precision. This was achieved by developing a
post-processing scheme as a Python wrapper for
TopHat2, named FineSplice (Figure 5). FineSplice aims
at evaluating the reliability of a junction call from
TopHat2 alignment and identify a confident set of
expressed splice junctions. This is carried out in a semi-
supervised fashion by fitting a logistic regression model on
the set of aligned reads spanning a given junction against a
labelled class of potential false positives.

FineSplice takes as input TopHat2 alignment and
outputs a confident set of expressed junctions along with
their corresponding counts, through an anomaly detection
strategy aiming at the removal of false-positive junctions
arising from artefactual or spurious alignments. In our
approach, junctions are represented by a set of read
overhangs, defined as the shortest segment of a split-
read across the splice site. The systematic occurrence of
mismatches on the shortest overlapping arm of each read
is penalized by trimming all overhangs at the first
mismatching position and ignoring subsequent matches.
Given the inherent difficulty of defining a category of
valid spliced alignments, the main idea is in fact to use
the deviation of overhangs from uniformity assumptions
to discriminate anomalous junctions affected by
systematically shorter overhangs and frequent
mismatches. To do this, a subset of potential false
positives is first defined. Feature vectors are hence
constructed based on the deviation between the observed
number of reads spanning a given position and the
expected counts, computed in terms of log-ratio.
Following logistic regression, posterior probability
estimates are used as proxy variables to compare the
majority of detectable junction alignments (which are
reasonably assumed to be in vast majority proper
mappings) against the designated subset of potential
false positives. Because counts at distant positions are
inherently noisier and not necessarily meaningful to
discriminate spurious junctions, a sparse representation
of the feature vectors is promoted via L1-regularization
on the regression coefficients to select the relevant features
in an agnostic way (48).
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The initial definition of the subset of false positive
examples, though ultimately arbitrary, needs to be strict
enough to designate a representative fraction of extremely
anomalous mappings as a benchmark for fitting the
logistic regression model. Accordingly, a junction is
labelled as a potential false positive exclusively when (i)
no overhang length on either side of the junction is found
to be greater than the first mismatch position and (ii) the
probability of observing, at the given number of reads, a
longer overhang is greater than a given threshold (here
0.99). Only junctions with a single mismatching position
are considered, given that the probability must reflect a
patent violation of the uniformity assumptions rather than
an ambiguous mapping location. A certain
misclassification error is contemplated, as anomalous
hits may arise as a consequence of technical and biological
confounding factors (e.g. low quality ends, low read
counts, polymorphic or repetitive regions) aside from
incorrect alignments. However, the chance will be
substantially lower if a certain amount of false positives
is expected, and minimal compared with the overall
amount of detectable junctions. This makes the loss in
sensitivity eventually negligible compared with the gain
in positive predictive value. After filtering, non-uniquely
mapping reads spanning multiple splice sites are rescued
whenever a unique candidate location is retrieved after
filtering.
Logistic regression is used in both OLego and TrueSight

to prioritize candidate mapping locations within the de
novo splice junction discovery process. An assorted set
of features, e.g. sequence consensus and intron size
(OLego) plus coding potential and mapping-derived
information (TrueSight), is computed for each splice site,
and model predictions are used to guide the discovery of
novel junctions and allocate initially unmapped reads to a
reliable location. This approach allows remarkable
detection precision, but at the expense of sensitivity and
quantification power, and its advantage is questionable
whenever the transcriptome, or part of it, has already
been assembled or can be reconstructed de novo. In
contrast, FineSplice evaluates the reliability of a junction
call considering the overall set of split-reads after the
alignment is performed. This relaxes the constraints over
the mapping process, allowing to place a higher number of
reads while tolerating a certain amount of transcriptome
misalignments. Constraining the detection problem at the
post-processing stage allows better mapping performance
while subsequently getting rid of spurious hits, with a
minimal loss in the percentage of discarded reads and
superior overall quantification power.
In summary, we propose a pipeline to effectively detect

and estimate the set of expressed splice junctions from
RNA-Seq data, in a typical context where transcript
annotations are available but novel isoforms might not
be characterized. This demands for both an efficient
discovery of novel splice sites and an accurate mapping
of known ones, which cannot be easily attained by relying
on the sole alignment output. The suggested scheme takes
advantage of the better mapping and quantification
achievable through transcriptome-first alignment, while
later adjusting for inherent biases and filtering unreliable

junction hits. To do this, we couple TopHat2 to a novel
splice junction detection method, FineSplice, which
discards unreliable gapped alignments allowing for an
up to 10-fold reduction in the number of false positives
and �99% precision in detecting expressed features. Both
in synthetic data sets with sampled transcript annotations
and in real data, FineSplice produces significant gains in
precision at small drops in sensitivity. The combination of
TopHat2 and FineSplice ultimately provides the best
trade-off in terms of mapping, detection and
quantification performance, and a simple and effective
pipeline for a successful analysis of splicing events at the
junction level, that will hopefully ease standard analysis of
AS from RNA-Seq data.
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