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Although several studies have attempted to develop a model for predicting 30-day re-hospitalization,
few attempts have been made for sufficient verification and multi-center expansion for clinical use.

In this study, we developed a model that predicts unplanned hospital readmission within 30 days

of discharge; the model is based on a common data model and considers weather and air quality
factors, and can be easily extended to multiple hospitals. We developed and compared four tree-based
machine learning methods: decision tree, random forest, AdaBoost, and gradient boosting machine
(GBM). Above all, GBM showed the highest AUC performance of 75.1 in the clinical model, while the
clinical and W-score model showed the best performance of 73.9 for musculoskeletal diseases. Further,
PM10, rainfall, and maximum temperature were the weather and air quality variables that most
impacted the model. In addition, external validation has confirmed that the model based on weather
and air quality factors has transportability to adapt to other hospital systems.

Unplanned readmission after discharge is an indicator of quality of care, often suggests problems with patient
care during previous hospitalizations, and is also a key indicator of the adequacy of a patient’s treatment plan.
Broadly defined, a hospital readmission involves the readmission of a patient who had been discharged from a
hospital, to the same or another hospital within a specified time frame. The original hospital stay is often called
the "index admission" and the subsequent hospital stay is called the "readmission."” Different time frames have
been used for research purposes, the most common being 30-day, 90-day, and 1-year readmissions. In the United
States, it has been reported that 20% of Medicare patients are readmitted within 30 days of discharge, and that
unplanned readmissions cost an estimated $17.4 billion. In the United States, as part of the Affordable Care
Act at the national level, institutional mechanisms have been established, such as providing incentives for each
hospital based on the readmissions within 30 days of discharge. Since then, various studies have been conducted
on unplanned hospital readmissions within 30 days, and many countries are using it as an indicator of quality
of care. Considering this, our study also aims to develop a system for predicting readmission within 30 days,
which can be applied to actual clinical practice.

The relationship among climate, human health, and diseases has been established through multiple studies
in the past, and various risk factors for hospital admission have been studied based on demographic, environ-
mental, and clinical factors?. Temperature variation due to global warming has been linked to hospital admis-
sion rates'*!*, Humidity has been noted as another important health factor, while pollutants, including carbon
monoxide and fine air particulates, have been found to be associated with increased admissions for multiple
conditions"*~'°. Further investigation of the association between the ambient climate condition and hospital
admission will help healthcare stakeholders understand the severity of the effect of weather change and imple-
ment healthcare-resource and patient-care plans.

The common data model (CDM) is a healthcare data model based on standard terminology. An example is the
CDM developed by the Observational Medical Outcomes Partnership (OMOP) and maintained by the Observa-
tional Health Data Sciences and Informatics (OHDSI)!'¢"*8. A system developed by converting data into a CDM
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Derived cohorts
Characteristics Readmitted (N=5794) | Non-readmitted (N=56,128) | P value
Age, year, mean (SD) 75.2 (6.8) 74.7 (6.7) 0.000
Male, n (%) 54.8 49.7
Gender
Female, n (%) |45.2 50.3
60s 23.8 26.0
70s 49.7 50.2
Age during hospital visit
80s 23.7 21.4
90s 2.7 24
Spring 254 24.1 0.049
Summer 25.5 26.8
Season during admission
Fall 244 24.8
Winter 24.6 24.3
Average length of stay, mean (SD) 2.5(4.3) 0.2 (0.4)
Charlson comorbidity index, mean 1.11 0.52

Table 1. Basic characteristics of study data for each visit type.

Train/test population

(internal) Valid population (external)
Disease groups Target size (N) | % incidence | Target size (N) | % incidence
Diseases of the circulatory system (100-199) 9357 14.0 87,063 10.3
Mental and behavioral disorders (FO0-F99) 3174 16.3 7228 17.5
ﬁl;;?ses of the musculoskeletal system and connective tissue (M00- 13,564 118 41,015 117
Diseases of the respiratory system (J00-J99) 10,310 15.7 87,604 15.1

Table 2. Number of visits in each disease group and outcome incidence rate in our research cohorts.

is easily applicable through the distribution of the source code of the program without the need for installing the
software on a specific institution’s system'. CDM is a data model based on common standard terms. Therefore,
it guarantees standardized content from the data model and exhibits high extensibility.

In the present study, we developed and validated four prediction models for hospital readmission within
30 days of discharge using the OMOP CDM as well as weather and air quality factors. In addition, the model
performance was externally validated to examine its extensibility. To the best of our knowledge, the present
study is the first to create a patient-level prediction model for hospital readmission within 30 days using OMOP
CDM and ambient weather data. A predictive model that combines weather and environmental data with a
patient’s residence information is expected to enhance clinical decision making at the individual patient level.
More specifically, the W-score of an individual patient was obtained by adding up the forecast values for each
weather element for 7 days from the date of discharge, which enabled the use of the weather forecast data of the
Korea Meteorological Administration to predict the re-hospitalization of this patient at the time of discharge. The
model was designed with a view to using the weather forecast data for the next 7 days for the patient’s address
for clinical decision-making.

Results

Of the 61,922 index hospitalizations from the Seoul National University Hospital (SNUH) data included in our
cohort research, 5794 resulted in a 30-day readmission through emergency-room visits (Table 1). The mean age of
the readmitted individuals was 75.2 years, and more than half of the readmitted patients were males. The average
length of stay was 2.5 days for the readmitted group and 0.2 days for the non-readmitted group.

Table 2 presents the number of patient visits and readmission incidence rate in different disease groups. The
internal and external validation results of the proposed readmission prediction models are presented in Table 3,
where we can observe the differences in model performance among different diseases. The external validation
results indicate that the proposed models show significantly improved performance for the musculoskeletal dis-
ease group. The main purpose of external validation is to verify how generalized and interpretable the developed
model can be for performance evaluation of the developed model. In this study, it is expected that the model
performance improved in the external validation experiment due to the difference between the size of the data
used for the external validation and the size of the data for which the model was developed (and internal valida-
tion was performed). Since the results were better in the verification process of the model for larger data, we are
confident that the model created in this study is robust enough for generalization. Furthermore, supplementary
Table S3-S6 shows the top 20 predictors of each model in this study. According to Table 4, PM10, rainfall, and
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Internal validation External validation
Clinical covariates and
Disease groups Prediction models | Clinical covariates only | W-scores Clinical covariates only | Clinical covariates and W-scores|
DT 0.653 0.674 0.664 0.679
Diseases of the circulatory RF 0.693 0.686 0.688 0.681
system ADA 0.698 0.708 0.672 0.67
GBM 0.726* 0.717% 0.704* 0.696*
DT 0.612 0.691 0.706 0.737
Mental and behavioral disorders K 0703 0.692° 0743 0.686"
ADA 0.716 0.654 0.747 0.728
GBM 0.747% 0.676 0.751* 0.727
DT 0.68 0.690° 0.856 0.889"
Diseases of the musculoskeletal | RF 0719 0.734 0.909 0.882
system and connective tissue ADA 0.726° 0.739° 0.917 0.915°
GBM 0.751* 0.725 0.883* 0.9
DT 0.634 0.607 0.651 0.622
Diseases of the respiratory RF 0.653 0.643 0.658 0.638
system ADA 0.663 0.667 0.639 0.655
GBM 0.672° 0.675* 0.669* 0.667*

Table 3. Comparison of disease-specific performance in each model based on the area under the receiver
operating characteristic curve. *Best performances for each disease. "Major improvements in external
validation.

CovariateMean
CovariateMean

Disease groups covariateName covariateValue | CovariateMean WithOutcome | WithNoOutcome

PM10 0.0016 12.59 13.13

Rainfall 0.0011 222 2.32
Diseases of the circulatory Humidity 0.0005 0.29 028
system

Min Temperature | 0.0006 0.65 0.59

Max Temperature | 0.0005 0.85 0.83

PM10 0.0016 12.36 13.24

Rainfall 0.0012 1.95 2.30
Mental and behavioral disorders | Humidity 0.0014 0.41 0.31

Min Temperature | 0.0008 0.67 0.58

Max Temperature | 0.0004 0.71 0.81

PM10 0.0015 12.85 13.18

Rainfall 0.0012 2.24 2.32
Diseases of the mus_cu10§keleta1 Humidity 0.0008 031 030
system and connective tissue

Min Temperature | 0.0007 0.63 0.55

Max Temperature | 0.0007 0.86 0.84

PM10 0.0038 12.86 13.01

Rainfall 0.0032 2.30 2.29
Diseases of the respiratory Humidity 0.0005 031 0.29
system

Min Temperature | 0.0012 0.60 0.54

Max Temperature | 0.0036 1.01 0.97

Table 4. Weather and air quality predictors in W-score.

maximum temperature were the weather and air quality variables that most impacted the model among the
disease groups.
Table 5 shows the details of the hyperparameter values used in this study.
The receiver operating characteristic curves in Fig. 1 reflect the predictive model performances for the internal
and external validation of the models based on clinical covariates and W-score in patients with diseases of the
musculoskeletal system and connective tissue, respectively. The clinical covariate and W-score model exhibited
the greatest AUC for both the internal and external validations in the musculoskeletal disease group.
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Models | Parameters Values Parameter mean
classWeight “Balance” or “None”
maxDepth 10 The maximum depth of the tree
DT minImpuritySplit | 107 ;lt'hizeasllleo;? for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise
minSamplesLeaf | 10 The minimum number of samples per leaf
minSamplesSplit | 2 The minimum samples per split
Max depth 4,10,17 Max levels in a tree
RF mtries —1=square root of total features, 5,20 | Number of features in each tree
ntrees 500 Number of trees
Learni Learning rate shrinks the contribution of each classifier by learning_rate. There is a trade-off between
ADA earning rate ! learningRate and nEstimators
n estimators 4 The maximum number of estimators at which boosting is terminated
Learning rate 0.005, 0.01, 0.1 The boosting learn rate
earlyStopRound 25 Stopping after rounds without improvement
GBM Max depth 4,6,17 Max levels in a tree
minRows 2 Min data points in a node
ntrees 100, 1000 Number of trees

Table 5. Summary of parameter values in each model.

Discussion

We developed a 30-day unplanned hospital readmission prediction model based on OMOP-CDM transformed
patient medical records and meteorological public data. We also obtained the weather and air quality records for
the patients’ residence localities. Furthermore, we established a W-score for individual visits based on the Korean
weather warning issuance criteria. In addition, we developed a model that can predict patient readmission when
discharged by using weather forecast data directly from the clinical setting.

Many epidemiological studies have established an association between environmental factors and hospital
readmissions'"!>?%21, However, few studies have examined the impact of environmental factors, such as ambient
air pollution or climate, on hospital readmissions and the result of the health outcome using predictive analysis.

We developed a model to predict hospital readmission at the time of discharge based on patient-level clini-
cal diagnosis and drug prescription data before discharge as well as the weather and air quality records for the
patient’s residence locality. The variables used in the proposed model were designed based on diagnosis and drug
information to make the model extensible, considering the standard term mapping issues that may arise in the
process of converting electronic health record (EHR) data to OMOP CDM. This is because diagnostic and drug
terminology do not differ significantly from the terminology used by most many hospitals.

The Korea Meteorological Administration (KMA) provides weather forecast information for a period from
3 to 10 days from the forecast date. If the KMA weather forecast and the hospital system are linked in the future,
so if short-term weather forecast data for 7 days from the patient’s discharge date are input to the developed
readmission prediction model, the actual patient’s readmission forecast information will be used for clinical
decision making.

The performance of the proposed model for the respiratory disease cohort was lower than expected. Moreover,
the performance of the proposed model for the musculoskeletal disease cohort demonstrated good scalability.
These results are presumed to be due to the occurrence of readmission for acute events that require post-operative
management, rather than hospitalization due to the occurrence of chronic diseases in tertiary hospitals. Many
patients who needed trauma management after surgery were not hospitalized for a sufficient period. The results
of a disease-specific predictive model can be observed in further studies based on our research.

We could not externally validate the proposed model across multiple organizations. However, the proposed
model can be easily reintegrated when migrating to a different EHR, either as an embedded frame in the EHR
or as a standalone CDM application. Furthermore, the proposed model can perform better using a sophisticated
weather data function approach. Our research provides a basis for future applications of the proposed model to
clinical settings, to manage visiting patients based on clinical and weather data.

In summary, providing a clinical basis for a patient’s future risk of readmission at the time of discharge will
assist hospitals in developing a patient care plan in advance. We developed a model for predicting hospital read-
mission based on environmental factors. External verification of the model demonstrated that a high-accuracy
model can be developed based on weather and air quality factors. Improving the accuracy of the readmission pre-
diction model will help in establishing patient care plans and making clinical decisions at the time of discharge.

Methods

Study population and clinical data description. Our retrospective cohort study was conducted using
OMOP-CDM-converted EHR data between January 1, 2017 and December 31, 2018 from SNUH and the Seoul
National University Bundang Hospital (SNUBH) in the Seoul metropolitan area, South Korea. These hospitals
have converted the EHR data over a 15-year period into the OMOP CDM.
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Figure 1. ROC curves for the validation of the Adaboost and decision tree models.
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Patients admitted to Seoul National
University Hospital or visited the
emergency room more than once
(N =2841,844)

Patients with missing residence
information

Patients who died during the study period
Exclude | ¢ Patients who planned the hospital visit in

"| advance(procedure/diagnosis/psychiatric/re
habilitation/cancer treatment)

Patients who visited the hospital to
participate in clinical trials

Patient visits from 2017 to 2018
(N =1250,303)

Patients who are currently hospitalized
Patients admitted to the hospital for more
Exclude than 30 days

>| + Patients who live in regions other than
Seoul or Gyeonggi
Patients under 65 who were hospitalized
without an emergency room visit

Final cohorts:
* Target population: n = 61,922
* Outcome cohort: n = 5,794

Figure 2. Study cohort design.

We considered consecutive hospitalizations among adults over 65 years who were discharged alive and under-
went at least one hospitalization or emergency-room visit during our study period. We focused on patients living
in the Seoul metropolitan area, including the Gyeonggi Province in South Korea, to create prediction models
that consider weather and environmental variables during the study period.

In addition, we categorized patients into subgroups based on weather- and environment-related diseases
studied previously?>**-?’. Patients diagnosed with mental and behavioral disorders (F00-F99), circulatory system
diseases (I00-199), respiratory diseases (J00-J99), and musculoskeletal system and connective tissue-related
diseases (M00-M99) at discharge were included together in subgroups based on the International Classification
of Diseases, 10th Revision.

The primary outcome of this study was 30-day unplanned hospital readmission. We referred to the Hospital-
Wide All-Cause Unplanned Readmission (HWR) measure from Centers for Medicare & Medicaid Services
(CMS)*. According to the HWR measure, CMS classified the planned readmissions into planned disease or
treatment groups, including chemotherapy, organ transplant, and rehabilitation. All admissions other than the
scheduled admissions were considered to be unscheduled visits.

Figure 2 illustrates the study cohort design derived using SNUH data, which are mainly used as the training
dataset in our research. Figure 3 shows the overall study process in this research.

Clinical features, such as the gender of the patient, age of the subject on the index date, diagnosis condi-
tions, drug exposures for patient medications, and the Charlson comorbidity index (Romano adaptation), were
obtained using all conditions prior to the end of the readmission interval.

Diagnosis and drug prescription were used as clinical variables for individual patients. Moreover, each vari-
able was extracted from the standardized CONDITION_ERA and DRUG_ERA in the CDM table as a higher
concept of individual diagnosis and drugs. In OMOP CDM, a CONDITON_ERA data table is defined as the
duration in which the patient is assumed to have a given condition*. The CONDITION_ERA table provided a
chronological period of diagnosis. DRUG_ERA is defined as the duration in which the patient is assumed to be
exposed to a particular active drug ingredient. The DRUG_ERA table provided successive periods of individual
drug prescriptions combined following certain rules to produce continuous eras.

Weather and air quality data. Weather and air quality data were derived from KMA’s weather data open
portal (https://data.kma.go.kr) and the official website of the Korean Ministry Of Environment (MOE) (https://
www.airkorea.or.kr/eng) 3!,

Records of daily mean temperature (°C), daily mean relative humidity (RH) percentage (%), and daily rainfall
(mm) during the study period were obtained from the KMA website. The daily mean concentration of ambient
particulate matter (PM in pug/m?), sulfur dioxide (SO, in pug/m?), nitrogen dioxide (NO, in pg/m?), and ozone
(O; in pg/m?) from all general monitoring stations were collected from the Air Korea website for the study
period. The daily median was averaged across the data for any missing record on a particular day. KMA and Air
Korea data needed to be preprocessed into postal zip codes owing to the varying levels of location information
granularity. LOCATION_ ID in CDM DB has an address identifier based on the postal code address system. For
example, LOCATION_ ID for Jongno-gu, Seoul does not match SNUH LOCATION_ ID and SNUBH LOCA-
TION_ ID value. Therefore, it is necessary to first check the details of the LOCATION table of each institution
CDM DB. Meteorological data of KMA and air environment data of Air Korea are recorded at each measuring
station across the country. KMA data is divided into cities/metropolitan cities/provinces, and Air Korea data is
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Figure 3. Overall methodology of the study.

based on a smaller unit, that is, the street address. Therefore, we first integrated KMA data and Air Korea data
with the same granularity, and performed preprocessing by finding the postal code for the integrated address
and matching it with the patient’s residence address.

W-score: weather and air quality scores for individual visits. We calculated a patient-level W-score
based on weather and air quality data for each patient visit based on the patient’s residence locality. The score was
derived using the KMA’s standards for special weather reports®. A special weather report refers to a forecast that
calls attention to or warns against a serious disaster that is expected to occur because of a weather phenomenon.
An “advisory” is issued if a disaster is expected because of a specific weather phenomenon, and a “warning” is
issued if significant damage is expected. KMA issues weather reports on strong winds, wind waves, heavy rains,
heavy snow, dry weather, storm tidal waves, earthquakes, cold waves, typhoons, yellow dust, and heat waves
(Supplementary Table S1 and S2). Data such as the daily average particulate matter (PM10), maximum tem-
perature, minimum temperature, relative humidity, and precipitation were used. Only PM10 was used among
various atmospheric data, such as PM10, PM2.5, SO2, NO2, and O3, for calculating the W-score because there
are many missing values of PM2.5 in the source data, and PM10 and PM2.5 have a multicollinear relationship.

W-scores of individual patient visits were calculated using weather conditions, such as fine dust warning,
heat wave, cold wave, dryness, and heavy rain. The meteorological warning issuance criteria of the KMA were
used for calculating W-scores for each element. We obtained the W-score by calculating the sum of the weather
element-specific forecast values for 7 days from the discharge date so that the weather forecast data from KMA
can be utilized at the time of patient discharge. Since its purpose is to predict readmission for this patient at the
time of discharge, it is designed considering that weather forecast data for the next 7 days will be input and used
for clinical decision-making.

Model development. The prediction model for re-admission within 30 days was developed to reflect vari-
ables such as clinical diagnosis and drug prescription prior to patient discharge date as well as to predict the
occurrence of re-admission of the patient by considering the W-score for the weather forecast at the patient’s
residence location after the discharge date (Fig. 4).

We developed tree-based machine learning models, namely, DT, random forest (RF), ADA, and gradient
boosting machine (GBM)-based classifiers, based on the weather and air quality feature set using the patient-
level prediction R package developed by OHDSI'". Models were trained and tested on SNUH data. All possible
combinations of the hyper-parameters are included in a grid search using cross-validation on the training set.
Ten-fold cross-validation is used to select the optimal hyper-parameter and internal validation. The hyper-
parameters that lead to the best cross-validation performance will then be chosen for the final model. For our
problem, we choose to build tree-based classifiers with several hyper-parameter values, as described in Table 5.
Moreover, the models were externally validated using the SNUBH dataset. Each model performance was evalu-
ated using the area under the receiver operating characteristic curve.

Approval and consent waiver statement. This study was performed in accordance with the relevant
guidelines and regulations of SNUH and SNUBH Institutional Review Board. As the data source was de-iden-
tified, this study was approved based on waivers of informed consent or exemptions by SNUH and SNUBH
Institutional Review Board (SNUH IRB No: B-1504-296-302, SNUBH IRB No: X-1908-559-901).
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