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Simple Summary: The development of more translatable orthotopic mouse models is essential
in order to study lung cancer more realistically. However, a major challenge in these orthotopic
mouse models is the monitoring of tumor take, tumor growth and the detection of therapeutic
effects. Therefore, the aim of this study was to train and validate a deep learning algorithm for
fully automatic lung tumor quantification in whole-body mouse µCBCT scans. This deep learning
application enables highly accurate longitudinal evaluation of tumor volume changes in mice with
minimal operator involvement in the data analysis. In addition to longitudinal quantification of
tumor development, the algorithm can also be deployed to optimize the randomization and 3R
animal welfare aspects of the experimental design in preclinical studies.

Abstract: Lung cancer is the leading cause of cancer related deaths worldwide. The development of
orthotopic mouse models of lung cancer, which recapitulates the disease more realistically compared
to the widely used subcutaneous tumor models, is expected to critically aid the development of
novel therapies to battle lung cancer or related comorbidities such as cachexia. However, follow-up
of tumor take, tumor growth and detection of therapeutic effects is difficult, time consuming and
requires a vast number of animals in orthotopic models. Here, we describe a solution for the fully
automatic segmentation and quantification of orthotopic lung tumor volume and mass in whole-body
mouse computed tomography (CT) scans. The goal is to drastically enhance the efficiency of the
research process by replacing time-consuming manual procedures with fast, automated ones. A deep
learning algorithm was trained on 60 unique manually delineated lung tumors and evaluated by four-
fold cross validation. Quantitative performance metrics demonstrated high accuracy and robustness
of the deep learning algorithm for automated tumor volume analyses (mean dice similarity coefficient
of 0.80), and superior processing time (69 times faster) compared to manual segmentation. Moreover,
manual delineations of the tumor volume by three independent annotators was sensitive to bias
in human interpretation while the algorithm was less vulnerable to bias. In addition, we showed
that besides longitudinal quantification of tumor development, the deep learning algorithm can
also be used in parallel with the previously published method for muscle mass quantification and
to optimize the experimental design reducing the number of animals needed in preclinical studies.
In conclusion, we implemented a method for fast and highly accurate tumor quantification with
minimal operator involvement in data analysis. This deep learning algorithm provides a helpful tool
for the noninvasive detection and analysis of tumor take, tumor growth and therapeutic effects in
mouse orthotopic lung cancer models.
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1. Introduction

Lung cancer is the leading cause of cancer deaths worldwide, comprising approxi-
mately 25% of all cancer deaths [1]. Muscle wasting as a component of cancer cachexia is
frequently observed in lung cancer patients and is associated with poor clinical outcome
and decreased overall survival [2–5]. Preclinical research is essential for the development
and evaluation of novel therapies targeting the tumor and the host. One of the greatest
challenges encountered by researchers in preclinical lung cancer (cachexia) research is
the translatability of animal models [6,7]. In order to study lung cancer more realistically,
models in which the tumor grows in its original stroma where it can interact with the
complex microenvironment are needed [8]. Such orthotopic lung cancer models have been
described in mice [9–11], but are not widely used in preclinical research due to a range of
challenges involved. A major challenge is the monitoring of tumor take and growth in
these orthotopic lung tumor models. Unlike subcutaneous xenograft models, the tumors
in orthotopic models are not visible to the eye and accessible for caliper measurements.
Instead, a proxy for tumor progression in orthotopic mouse models is mostly obtained from
histological assessment in terminal experiments ending at sequential time points [12,13].
However, this approach introduces variation and the number of required animals increases
proportionally with each additional time point, which is not consistent with the 3R princi-
ple embedded in national and international legislation and regulations on the protection of
animals used for scientific purposes [14]. A more suitable option is the use of noninvasive
imaging, such as computed tomography (CT), to monitor tumor progression over time.

Micro cone beam CT (µCBCT) imaging plays an increasingly important role in pre-
clinical cancer research. Previously, this imaging modality has been used successfully to
detect tumors in lung cancer mouse models [15–20]. Analysis of the acquired imaging data
by delineating the region of interest (ROI), in this case the lung tumor, allows researchers
to extract quantitative information, such as tumor shape and tumor size. Traditionally,
tumor segmentation is performed manually by delineating the tumor outlines in each
slice of the three-dimensional (3D) CT image. However, this is labor intensive and time
consuming, especially in case of repetitive CT measurements for longitudinal follow-up of
tumor growth. In addition, manual delineation is a challenging task, as it requires great
knowledge in anatomy and CT imaging, and it is susceptible to inter- and intra-observer
variabilities. Semi-automated methods (such as thresholding and region growing) for
the segmentation of lung tumors have been reported in literature already [21–23]. As
such, robust and time-efficient automatic image segmentation methods to quantify tumor
development in preclinical orthotopic models will offer great benefits for the research field.

Multiple reference atlas-based approaches have been used for automatic segmentation
of organs [24,25]. However, these automatic approaches often do not achieve adequate
segmentation quality for heterogenic ROIs, which typically apply for tumors. The imple-
mentation of artificial intelligence (AI) in medical image processing suggests that convolu-
tional neural networks, such as U-Nets, are an appropriate foundation for automatic ROI
segmentation. Previously, we developed a deep learning algorithm trained to automatically
segment the mouse calf muscle complex on µCBCT images, to derive muscle mass [26].
This algorithm showed a high correlation with the actual muscle wet mass measurements.
More recently, Schoppe et al. open-sourced a deep neural network called AIMOS for
automatic multi-organ segmentation of normal organs in whole-body scans of mice [27].
This model was more than two orders of magnitude faster than the atlas-based approaches,
without compromising on quality. These recent developments suggest that AI will be a
great platform to develop a fully automatic segmentation workflow for the quantification
of lung tumors in CT images.
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Here, we present the development and validation of a deep learning algorithm, based
on existing AI architecture, for automated lung tumor segmentation in whole-body mouse
µCBCT scans. This algorithm will be shown to be more consistent compared to human an-
notators and reduces the analytical workload to determine tumor size notably. In addition
to longitudinal quantification of tumor development, our approach can also be deployed
in parallel with the previously developed algorithm for muscle mass quantification, and to
optimize the randomization and 3R animal welfare aspects of the experimental design in
preclinical studies.

2. Materials and Methods
2.1. Mouse Experimental and Imaging Procedures
2.1.1. Animals

Sixty male mice of 10 weeks (129S2/SvPasCrl, Charles River Laboratories) were socially
housed (n = 3 in GM500 IVC cages (Tecniplast, Buguggiate, Italy) with corn cob bedding
(JRS Lignocel, Rosenberg, Germany)) in a climate-controlled room (12:12 dark-light cycle
with a constant room temperature of 21 ± 1 ◦C). Mice were given ad libitum access to
food (AIN-93M, Bio-Services BV, Uden, NL, USA) and drinking water (autoclaved, softened
and acidified (pH = 2.5)). After 1 week of acclimatization, animals underwent surgery at
a standardized time window during their inactive period of the day. Following surgery,
animals were monitored daily. Data shown were derived from the combination of several
experimental cohorts with identical animal characteristics and experimental procedures. The
CT images of in-total 60 mice were used to create training and validation datasets.

This work was conducted in accordance with institutional guidelines for the care and use
of laboratory animals established by the Ethics Committee for Animal Experimentation of the
Maastricht University, in full compliance to national legislation on animal research following
the European Directive 2010/63/EU for the use of animals for scientific purposes and was
part of a set of experiments to establish an orthotopic model of lung cancer cachexia.

2.1.2. Tumor Model

Murine K-rasG12D; p53R172H∆G lung epithelium-derived adenocarcinoma cells [28],
kindly provided by Dr. J.M. Kurie, were cultured in vitro with Roswell Park Memorial
Institute 1640 medium (Gibco, Rockville, MD, USA), supplemented with 9% fetal bovine
serum (Gibco). Tumor cells were trypsinized in a sub-confluent state and suspended in
growth factor reduced matrix (Matrigel, Corning Inc., New York, NY, USA) at a concentra-
tion 2 × 106 cells/mL. Animals were anesthetized using a mixture of air and isoflurane
(4% induction, 2% maintenance) and placed in a position of right lateral decubitus. Fur
was removed and a 1 cm superficial skin incision was made below the left scapula. Fat
was removed, and underlying muscles (excluding intercostal muscles) were carefully lifted.
While visualizing the lung motion, 10 µL of tumor cells (2× 104 cells in 10 µL) were injected
through the intercostal space into the lung. The muscles were placed back on top of the rib
cage in the correct orientation and the skin was closed using a 5-0 suture. All mice receive
pre-operative analgesia (Carprofen and Buprenorphine) via subcutaneous injection and
post-operative analgesia (Carprofen) in the drinking water.

2.1.3. Experimental Protocol

Body weight and food intake were measured daily at a standardized time window
during their inactive period of the day. At baseline and weekly after surgery, µCBCT
imaging was performed for all mice to assess lung tumor development and to detect
muscle volume changes over time [26]. At the end of the experiment, when mice reached
cachexia related humane endpoints, mice were scanned and subsequently sacrificed using
intraperitoneal pentobarbital overdose. Lungs and skeletal muscles and other organs were
collected using standardized dissection methods and frozen/fixed for further analysis.
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2.1.4. Animal Imaging

The anesthetized animals were placed in prone position with toes facing the flanks (foot
and tibia angle ± 90◦), and scanned using a µCBCT scanner (X-RAD 225Cx, Precision X-ray
Inc., North Branford, CT, USA) at an X-ray tube potential of 50 kVp, X-ray tube current of
5.6 mA, and an imaging time of 2 min [29]. The imaging dose of 30 cGy was verified using
a PTW TN300012 Farmer-type ionization chamber (PTW, Freiburg, Germany) according to
the AAPM TG-61 protocol [30]. The µCBCT projection data was reconstructed using the Pilot
Feldkamp back projection algorithm with a voxel dimension of 100 × 100 × 100 µm3 [31].

2.1.5. Manual Segmentation

Sixty lung tumor segmentations in the left lung were annotated manually by a scientist
with appropriate anatomical knowledge using the SmART-ATP software (Precision X-ray
Inc. North Branford, CT, USA and SmART Scientific Solutions BV, Maastricht, NL, USA).
The annotated CT data were split randomly in four batches of 15 mice CTs each to conduct
a 4-fold cross-validation. To assess inter- and intra-observer variability, one batch of mice
(n = 15) was manually delineated by two additional annotators. Detailed guidelines on
the annotation of the tumor (See Supplementary Information) were employed to ensure
reproducible annotations from all annotators.

2.2. Automatic Image Segmentation
2.2.1. Deep Learning Algorithm

The automatic tumor segmentation model contains a preprocessing step, a deep learning
algorithm and a post-processing step. The preprocessing step ensures that all µCBCT scans
have a fixed input size. First, air voxels were cropped by thresholding (−800 Hounsfield
Units [HU]) from the original reconstructed µCBCT volume [512 × 512 × Z]. The number
of cranial–caudal slices in the µCBCT reconstruction is denoted as Z. Then, the well-defined
appearance of the lungs in µCBCT images was used to automatically derive the center of
the cropped image volume by means of simple thresholding (−600, −200 HU) to mask
low-density regions. Additionally, morphological operations (erosion and dilation using a
spherical kernel of 5 × 5 × 5) were applied successively to subtract undesired low-density
regions from the binary lung mask (e.g., bowel gas or trachea), and to extract the three-
dimensional position of the lungs. Second, the cropped µCBCT slices around the binary
lung mask (256 × 256 × Z) were resized to a 128 × 128 × Z/2 CT volume with cubic
interpolation to fit the graphics processing unit (GPU) memory. Subsequently, the resized and
original µCBCT volumes were normalized between −400 and 1000 HU. Finally, to improve
generalization of the network, data augmentation was performed on every µCBCT dataset
and its corresponding segmentation, in every epoch. The data augmentation consisted of
randomly sampled rotations (−15◦, 15◦) and shearing (−5, 5) operations.

An in-house developed supervised deep learning algorithm (two-step 3D U-Net) was
trained to automatically segment lung tumors on µCBCT images of mice. The network ar-
chitecture for both steps of the 3D U-Net was similar and consisted of three encoding layers
to analyze the CT dataset, and three decoding layers to produce the tumor segmentation.
Every encoding layer contained two 3 × 3 × 3 convolutions followed by a rectified linear
unit. Subsequently, the spatial resolution was halved in every dimension by applying
2 × 2 × 2 max pooling. The decoding path was symmetrical to the encoding path, with
the exception that max pooling was replaced by bilinear up sampling. The dropout ratio
was set to 0.5, the number of epochs to 350, Adam was used as training optimizer [32],
and the dice similarity coefficient (DSC) was adopted as optimization function to train
our convolutional neural network. An illustration of the two-step 3D U-Net network
architecture is shown in Figure S1.

The 3D U-Nets were applied successively in TensorFlow. The first step was applied on
a rescaled low-resolution dataset (200 × 200 × 200 µm3) to define a tumor-specific cropped
3D volume-of-interest. In the second step, this position matrix was used on a cropped
full-resolution dataset to segment individual foreground voxels. The two-step network
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was trained, tested, and validated on a NVIDIA Quadro P6000 (24 GB) GPU and made use
of the NVIDIA CUDA® Deep Neural Network library computational kernels.

The post-processing step consisted of a filling process, which was a unity check for
holes in the automatic segmentation. No further post-processing steps such as filtering and
morphological operations were performed.

2.2.2. µCBCT to Mass Density Conversion

For the tumor mass calculation, a µCBCT to mass density conversion (CT2MD) was
utilized to convert HU values from the reconstructed µCBCT scans to 3D density matrices
(g/cm3). The CT2MD calibration curve was calculated based on scanning a cylindrical
30 mm diameter phantom dedicated for preclinical research in small animals (SmART
Scientific Solutions BV, Maastricht, NL, USA). The phantom consists of a solid water
structure enclosing 10 tissue-mimicking materials and 2 air holes with known and ver-
ified corresponding mass densities, e.g., ρsolid-water = 1.02 g/cm3, ρadipose = 0.95 g/cm3,
ρcortical bone = 1.33–1.82 g/cm3. In order to calculate the tumor mass, every voxel in the
reconstructed µCBCT that belongs in the corresponding ROI on the binary output predicted
by the automatic deep learning model was post-processed to obtain the mass density per
voxel. Finally, the voxel dimensions, e.g., pixel spacing and slice thickness, derived by the
µCBCT reconstruction settings were applied to determine the tumor mass.

3. Results
3.1. Quantitative Evaluation of the Segmentation Performance

In order to evaluate the performance of the automatic tumor segmentation algorithm,
a four-fold cross-validation methodology was adopted. The lung tumor, ranging from
1.1 mm3 to 81.6 mm3, was manually delineated in 60 mice. The dataset was randomly
partitioned into four equal sized batches (Batch 1–4) consisting of 15 mice each. One batch
was retained as the test dataset to evaluate the model on unseen data, and the remaining
three batches were used as training/test dataset. This cross-validation process was repeated
four times, with each of the batches used once as the test dataset. High overlap in the
tumor volumes was observed comparing the manual segmentations vs. the automatic seg-
mentations (Batch 1: 10.19 ± 10.89 mm3 vs. 12.3 ± 11.69 mm3; Batch 2: 44.79 ± 26.28 mm3

vs. 46.76 ± 30.12 mm3; Batch 3: 27.14 ± 16.17 mm3 vs. 26.25 ± 15.53 mm3; and Batch 4:
26.25 ± 17.34 mm3 vs. 25.10 ± 15.72 mm3) (Figure 1A). Subsequently, three quantitative
performance metrics (dice similarity coefficient (DSC), 95th percentile Hausdorff distance
(95HD), and center of mass displacement (∆COM)) were calculated for each batch, which
allowed quantitative evaluation of the performance of the automatic lung tumor segmenta-
tion algorithm (Figure 1B–D). The average DSC (±1 SD) of the four batches was equal to
0.80 ± 0.10, the average HD (±1 SD) was equal to 0.74 ± 0.48 mm and the average ∆COM
(±1 SD) was equal to 0.30 ± 0.46 mm.
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body scan of a mouse is substantially shorter compared to manual segmentation. For the 
automatic tumor segmentation algorithm, the first step of the two-step 3D U-Net was 
trained in 7 h and 18 min., and the second step was trained in 8 h and 6 min., resulting in 
a total duration of 15 h and 24 min. The automatic volumetric segmentation was 69 times 
faster: analysis of the tumor of one whole-body µCBCT took the deep learning algorithm 
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rect anatomical location and closely overlapped with the manual delineations of the train-
ing dataset (Figure 2). However, as indicated by the quantitative performance metrics, in 
certain cases, there was a marginal deviation from the training dataset. To understand the 
origin of the deviation, we further examined automatic tumor segmentations in which the 
DSC was more than two standard deviations lower compared to the overall mean DSC 
(0.80; Figure 2A). Only 6.6% of the cases had a DSC less than 0.60. In all these cases, the 
tumor volume was less than 9 mm3. Several automatically segmented tumor volumes had 
a minor overlap with the manually delineated tumor volume, resulting in a low DSC (Fig-
ure 2B, row 2). In addition, in other cases, the automatic segmentation appeared correct, 
despite being different from the manually delineated training dataset (Figure 2B, row 3). 

Figure 1. Quantitative performance metrics of deep learning algorithm. (A) Box plots showing the
distribution of the tumor volumes in mm3 per cross-validation batch (n = 15), determined by manual
and automatic segmentation. (B–D) Box plots of (B) the dice similarity coefficient, (C) 95th percentile
Hausdorff Distance (in mm), and (D) the center of mass displacement (in mm), calculated for each of
the batches.

Deep learning algorithms are generally known to be fast methods for micro-CT image
segmentation. Although the training of the deep learning algorithm (two-step 3D U-Net)
requires an initial time investment, the processing time to segment one 3D whole-body scan
of a mouse is substantially shorter compared to manual segmentation. For the automatic
tumor segmentation algorithm, the first step of the two-step 3D U-Net was trained in 7 h
and 18 min., and the second step was trained in 8 h and 6 min., resulting in a total duration
of 15 h and 24 min. The automatic volumetric segmentation was 69 times faster: analysis of
the tumor of one whole-body µCBCT took the deep learning algorithm only 9 s, whereas
the manual tumor segmentation time for one mouse was approximately 8 min.

3.2. Qualitative Evaluation of the Segmentation Performance

Visual evaluation confirmed that the automatic tumor segmentations were in the
correct anatomical location and closely overlapped with the manual delineations of the
training dataset (Figure 2). However, as indicated by the quantitative performance metrics,
in certain cases, there was a marginal deviation from the training dataset. To understand
the origin of the deviation, we further examined automatic tumor segmentations in which
the DSC was more than two standard deviations lower compared to the overall mean DSC
(0.80; Figure 2A). Only 6.6% of the cases had a DSC less than 0.60. In all these cases, the
tumor volume was less than 9 mm3. Several automatically segmented tumor volumes
had a minor overlap with the manually delineated tumor volume, resulting in a low DSC
(Figure 2B, row 2). In addition, in other cases, the automatic segmentation appeared correct,
despite being different from the manually delineated training dataset (Figure 2B, row 3).
This type of deviation is sometimes observed when the tumor is located in close proximity
to the bronchi and/or pleura.
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the manual delineations of a second and a third independent annotator on a subset of 15 
µCBCT scans. In addition, we compared the segmented tumor volumes of all three anno-
tators with the automatic segmentations of the deep learning algorithm (trained on man-
ual delineations of annotator 1), using the Bland and Altman method. A significant corre-
lation was observed comparing the manually segmented tumor volumes between anno-
tators (Table 1, Figure S2A). However, a significant difference between the tumor volumes 
of annotator 1 vs. annotator 2 and annotator 1 vs. annotator 3 was observed, indicative of 
proportional bias or disagreement (Table 1, Figure S2B). This bias was absent when com-
paring the tumor volumes of annotator 2 vs. annotator 3 (Table 1, Figure S2B). Subse-
quently, three quantitative performance metrics (DSC, 95HD and ΔCOM) were calculated 

Figure 2. Qualitative evaluation of the algorithm performance. (A) Scatterplot of the DSC versus
tumor volume (n = 60). The mean DSC is indicated with a horizontal red line. The ±1SD and ±2SD
are indicated with blue dotted lines. (B) Axial µCBCT images showing (from left to the right) an
unsegmented scan, the manual tumor segmentation, the automatic tumor segmentation, and the
overlay of the manual and automatic segmentations. The first row shows an illustrative case with a
high overlap, the second row shows a case with minimal overlap, and the third row depicts a case
with medium overlap. The corresponding DSCs of each row in (B) are indicated in the scatterplot of
(A) by the green, red and yellow markers.

3.3. Assessment of Subjectivity and Bias in Human Interpretation

In order to assess the subjectivity and bias in tumor volumes based on human inter-
pretation, we compared the manual delineations of the training dataset (annotator 1) with
the manual delineations of a second and a third independent annotator on a subset of
15 µCBCT scans. In addition, we compared the segmented tumor volumes of all three anno-
tators with the automatic segmentations of the deep learning algorithm (trained on manual
delineations of annotator 1), using the Bland and Altman method. A significant correlation
was observed comparing the manually segmented tumor volumes between annotators
(Table 1, Figure S2A). However, a significant difference between the tumor volumes of
annotator 1 vs. annotator 2 and annotator 1 vs. annotator 3 was observed, indicative of pro-
portional bias or disagreement (Table 1, Figure S2B). This bias was absent when comparing
the tumor volumes of annotator 2 vs. annotator 3 (Table 1, Figure S2B). Subsequently, three
quantitative performance metrics (DSC, 95HD and ∆COM) were calculated for each of the
comparisons (Table 1, Figure S2C). The proportion of specific agreement (DSC) was similar
comparing the segmented tumor volumes of all three annotators, respectively 0.76 ± 0.13
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(annotator 1 vs. annotator 2), 0.76 ± 0.13 (annotator 1 vs. annotator 3) and 0.75 ± 0.13
(annotator 2 vs. annotator 3).

Table 1. Subjectivity and bias in human interpretation.

Segmented Tumor Volume Quantitative Performance Metrics
Correlation (R2) * Agreement ** DSC 95HD (mm) ∆COM (mm)

Annotator 1 vs. Annotator 2 0.79 (p < 0.001) No (p = 0.005) 0.76 ± 0.13 0.84 ± 0.63 0.51 ± 0.41
Annotator 1 vs. Annotator 3 0.88 (p < 0.001) No (p = 0.011) 0.76 ± 0.13 0.82 ± 0.55 0.41 ± 0.54
Annotator 2 vs. Annotator 3 0.77 (p < 0.001) Yes (p = 0.251) 0.75 ± 0.13 0.66 ± 0.47 0.39 ± 0.36

Annotator 1 vs. Deep learning 0.93 (p < 0.001) Yes (p = 0.365) 0.81 ± 0.09 0.78 ± 0.53 0.30 ± 0.23
Annotator 2 vs. Deep learning 0.87 (p < 0.001) No (p = 0.001) 0.74 ± 0.12 0.82 ± 0.41 0.51 ± 0.37
Annotator 3 vs. Deep learning 0.92 (p < 0.001) No (p = 0.007) 0.76 ± 0.10 0.77 ± 0.39 0.45 ± 0.45

DSC: dice similarity coefficient, 95HD: 95th percentile Hausdorff distance, ∆COM: center of mass displacement. * Linear regression.
** Agreement: One sample t test on the difference between annotators. Quantitative performance metrics are presented as mean ± SD.

Comparing the manually segmented tumor volumes of all three annotators with the
automatic segmentations of the deep leaning algorithm, consistently higher correlations
were observed than between annotators (Table 1, Figure S2A). However, no agreement was
observed between the tumor volumes of annotator 2 vs. deep learning and annotator 3
and deep learning algorithm (Table 1, Figure S2B). Importantly, good agreement between
annotator 1 vs. the deep learning algorithm was achieved (which was trained on annotator
1′s contours). The DSC comparing the segmented tumor volumes of annotator 2 vs. deep
learning and annotator 3 vs. deep learning were similar, respectively 0.74 ± 0.12 and
0.76 ± 0.10 (Table 1, Figure S2C). Although not significant, the DSC comparing annotator 1
vs. deep learning was higher (DSC = 0.81 ± 0.09).

With these analyses, we show that manual delineations of the tumor volume are
sensitive to bias in human interpretation and that the algorithm learns according to the
interpretations of the annotator of a training set.

3.4. Longitudinal Assessment of Tumor Volume

To study lung tumor development and treatments effects, longitudinal evaluation
of tumor volume is essential. To evaluate automated follow-up capabilities of the deep
learning algorithm, lung tumor volumes were assessed for serial µCBCT images of indi-
vidual animals during the study. The volumes of the automatically segmented tumors
were compared qualitatively and quantitatively to the volumes of the manually delineated
tumors. Data of a representative series of µCBCT images is shown in Figure 3. The au-
tomatic segmentations closely overlap with the manual segmentations, and the average
DSC (±1 SD) was equal to 0.88 ± 0.02. The total segmentation time of the deep learning
algorithm was 1 min. compared to 1 h for the human annotator. These results show that
the algorithm can be applied for the longitudinal follow-up of tumor development.
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3.5. Simultaneous Quantification of Tumor Volume and Muscle Mass

Muscle wasting as part of cachexia is often observed in lung cancer. Previously, we devel-
oped a highly accurate (R2 = 0.92, DSC = 0.93) deep learning algorithm for the quantification of
hind limb muscle mass in mice [26]. Consequently, the muscle and lung tumor segmentation
algorithm were executed sequentially to evaluate the feasibility of assessing both tumor and
muscle mass longitudinally on serial µCBCT images (Figure 4). Experts visually verified the
automatically segmented muscle and tumor volumes in the whole-body µCBCT scans. The
automatic segmentation time was 13 s for both muscle and tumor. This equates to 1 min. and
31 s for an entire time series of µCBCT images of one mouse compared to 2 h and 47 min.
of manual segmentation. Collectively, these data demonstrate the efficacy and feasibility of
automated segmentation algorithms for the quantification of ROIs in preclinical research.
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Figure 4. Longitudinal follow-up of tumor volume and muscle mass. (A) A 3D image of a whole-
body mouse µCBCT scan indicating the region of the axial slices selected for (B). (B) A series of axial
slices of µCBCT images illustrating the automatic lung tumor segmentations (light blue) and lower
hind limb muscle complex segmentations (orange). The µCBCT images represent one mouse at seven
different time points. The quantified tumor volumes (light blue) and muscle masses (orange) are
presented over time in the line graph.
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4. Discussion

Manual delineation of orthotopic lung tumors visualized by CT is not only a time-
consuming task, but also requires knowledge of anatomy and CT-image analysis. Addi-
tionally, this task is susceptible to human error and bias. In this paper, we introduce a deep
learning algorithm for automatic tumor volume segmentation in whole-body µCBCT im-
ages. With minimal reliance on operator involvement, our deep learning method performs
fast and accurate volume-mass quantifications of orthotopically growing lung tumors in
mouse models.

For the development of the automatic lung tumor segmentation algorithm, we ap-
plied and optimized a two-step 3D U-Net architecture. Since its introduction in 2015 by
Ronneberger et al. [33], the 2D U-Net architecture is one of the most commonly used
methods in biomedical image segmentation. Shortly after the introduction of the 2D U-Net,
the network architecture was modified by Milletari et al. to a 3D U-Net architecture (or
V-Net) for biomedical images that have a spatial relationship in all three dimensions [34].
Medical CT, CBCT, or MRI images are a great example of imaging modalities that benefit
from a 3D architecture. Previously, the 3D U-Net architecture has been shown to be a
proper method for organ [35] and tumor [36,37] segmentation in medical images. However,
due to the increased number of 3D convolutions performed on a large medical imaging
dataset, the GPUs available on the market today are still too limited in terms of memory.
Therefore, we adopted a two-step 3D U-Net architecture. The first step was applied on a
downsized dataset to find the approximate tumor location, and in the second step, this
position matrix was used on a cropped normal sized dataset to segment the tumor on the
highest resolution.

The newly trained deep learning algorithm for automatic tumor segmentation per-
forms 69 times faster compared to manual segmentation, saving major amounts of time in
operator involvement and data analysis. Following development of the model, the algo-
rithm’s performance was assessed using specific quantitative metrics (e.g., DSC, 95HD and
∆COM) for comparison with the manual segmentations of the training dataset. The deep
learning algorithm achieves good average performance scores (DSC = 0.80, HD = 0.74 mm
and ∆COM = 0.24 mm). The performance scores of the lung tumor segmentation algorithm
are slightly lower compared to the performance scores of the previously published muscle
segmentation algorithm and AIMOS for normal tissue auto-segmentation [26,27]. This is
not surprising, as there is wide variation in the size, shape and location of lung tumors in
contrast to the muscle and other normal organs. Clearly, the low performance scores (mean
DSC−2 SD) are restricted to tumors with a volume smaller than 9 mm3, particularly in
small tumors located in close proximity to the bronchi or the pleura. In these scenarios, the
acquired imaging data may contain insufficient information to distinguish between tissues,
resulting in variation in the consistency of interpretation between the training dataset and
the deep learning algorithm. Therefore, we recommend that for small tumors a human
operator checks the results.

In accordance with previous studies [27,38,39], we found that manual annotations are
sensitive to human bias in interpretation. Despite the use of detailed annotation guidelines,
we showed that annotators recurrently disagree in the manual segmentations of the tumor
volume. When the tumor is located in the middle of the lung free from other tissues,
high agreement in the interpretation is observed. The variation in the interpretation is
mainly caused by tumors located in close proximity to the bronchi. Where one annotator
includes the bronchi as part of tumors the other exclude it from the delineation. Based
on a relatively small dataset of only 60 manual segmentations, the agreement between
the deep learning algorithm and the training dataset (annotator 1) is greater compared to
human annotators. This may be due to the more consistent way in which the algorithm
handles uncertainties compared to human annotators. These findings highlight the value
of implementing AI in experimental preclinical and medical image segmentation. The
bias in interpretation may also have an impact on the quantitative performance metrics
of the algorithm if only manual segmentations of one annotator are used to create the
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trainings dataset. Although it is common practice in preclinical research to create training
datasets generated by only one annotator [24,26,40,41], a training dataset based on two
or more annotators will further increase the robustness of the model. Although it may
not be necessary for the quantification of tumor volumes, this may be more important if
the automatic tumor segmentations model is used for image guided high precision tumor
irradiation [42,43]. Conversely, for irradiation, substantial geometrical margins are used to
avoid under-irradiation.

This deep learning algorithm for lung tumor segmentation provides researchers with a
helpful tool that enables fast, unbiased and interpretable quantifications of CT images. Several
orthotopic mouse models have been described to study lung cancer [9–11]. What emerges
unambiguously in these studies is that a tumor take of 100% is never achieved. In addition,
without in vivo CT imaging, it is impossible to verify whether the tumor development is local-
ized in the appropriate anatomical location, i.e., the lung parenchyma in our model, or if there
is pleural seeding leading to the development of intra-pleural tumor growth. The automatic
tumor segmentation algorithm overcomes these limitations and offers great benefits for the
quality and consistency of the research. First, it detects if a tumor grows in lung parenchyma.
If the algorithm does not detect a tumor (volume = 0 mm3), and this is confirmed by visual
evaluation, mice can be excluded from an experiment reducing unnecessary distress for these
animals. Then, the algorithm measures the tumor volume accurately, and subsequently, the
mass of the lung tumor within one week following tumor inoculation. The tumor volumes
can, for example, be used to randomize the animals into treatment groups prior to initiation
of interventions, reducing variation and eventually the number of animals. In addition, we
showed that the algorithm is capable of detecting changes in tumor mass over time. This is
instrumental for the algorithm to be deployed as a valuable tool for preclinical lung cancer
(treatment) research.

Finally, we showed that the automatic tumor segmentation algorithm can be used
in combination with our previously developed algorithm for automated muscle mass
determination [26]. Cancer cachexia, or muscle wasting, is a serious comorbidity and
frequently occurs at advanced stage lung cancer [2]. Longitudinal assessment of both
muscle mass and tumor volume will greatly aid in better understanding of the underlying
mechanisms and interplay between tumor growth and muscle loss and allows studying
the efficacy of therapeutic interventions on both phenomena in time.

5. Limitations

Despite the qualitatively high performance of the fully automatic AI-based lung
tumor segmentation tool described here, limitations apply. Due to limited availability of
µCBCT images, only 60 cases, the used dataset is small for deep learning applications.
The deep learning algorithm is trained on the manual annotations of only one annotator.
Furthermore, in this study, the deep learning algorithm was trained on a µCBCT image
dataset collected at a single center and was acquired with one specific imaging protocol
at an X-ray tube potential of 50 kVp, which can cause bias. Prior to implementation of
the algorithm in other settings, further research is required to investigate whether the
algorithm is valid on imaging datasets that were acquired at different X-ray tube potential
settings, or on imaging datasets that were acquired with different spectral filtrations [31].
Finally, our training dataset was entirely based on 129S2/SvPasCrl mice. Nevertheless,
we anticipate that the proposed algorithm is capable of segmenting tumor volumes in
a variety of animals, as long as the study set-up (i.e., X-ray acquisition protocols and
reconstruction settings) and animal characteristics are consistent. If the differences in the
imaging parameters are too large, transfer learning can be applied, which will reuse the
knowledge from the current model to facilitate the process of retraining the model on new
datasets [44].
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6. Conclusions

A deep learning algorithm was developed and validated to automatically segment
orthotopic lung tumors in mice. It provides fast and highly accurate tumor segmentations
with minimal operator involvement in data analysis. This deep learning algorithm is a
helpful tool for the non-invasive detection and analysis of tumor take, tumor growth and
therapeutic effects, and can be deployed to optimize the randomization and 3R animal
welfare aspects of the experimental design.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13184585/s1, supplementary information: Manual annotation instructions. Figure S1:
The two-step 3D U-Net network architecture implemented in TensorFlow. Figure S2: Subjectivity
and bias in human interpretation.
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