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Diminished Superoxide Generation Is Associated With
Respiratory Chain Dysfunction and Changes in the
Mitochondrial Proteome of Sensory Neurons From

Diabetic Rats

Eli Akude,"? Elena Zherebitskaya,! Subir K. Roy Chowdhury,' Darrell R. Smith,

Rick T. Dobrowsky,?> and Paul Fernyhough'-?

OBJECTIVE—Impairments in mitochondrial function have
been proposed to play a role in the etiology of diabetic sensory
neuropathy. We tested the hypothesis that mitochondrial dys-
function in axons of sensory neurons in type 1 diabetes is due to
abnormal activity of the respiratory chain and an altered mito-
chondrial proteome.

RESEARCH DESIGN AND METHODS—Proteomic analysis
using stable isotope labeling with amino acids in cell culture
(SILAC) determined expression of proteins in mitochondria from
dorsal root ganglia (DRG) of control, 22-week-old streptozotocin
(STZ)-diabetic rats, and diabetic rats treated with insulin. Rates
of oxygen consumption and complex activities in mitochondria
from DRG were measured. Fluorescence imaging of axons of
cultured sensory neurons determined the effect of diabetes on
mitochondrial polarization status, oxidative stress, and mito-
chondrial matrix-specific reactive oxygen species (ROS).

RESULTS—Proteins associated with mitochondrial dysfunc-
tion, oxidative phosphorylation, ubiquinone biosynthesis, and
the citric acid cycle were downregulated in diabetic samples. For
example, cytochrome ¢ oxidase subunit IV (COX IV; a complex IV
protein) and NADH dehydrogenase Fe-S protein 3 (NDUFS3; a
complex I protein) were reduced by 29 and 36% (P < 0.05),
respectively, in diabetes and confirmed previous Western blot
studies. Respiration and mitochondrial complex activity was
significantly decreased by 15 to 32% compared with control. The
axons of diabetic neurons exhibited oxidative stress and depo-
larized mitochondria, an aberrant adaption to oligomycin-in-
duced mitochondrial membrane hyperpolarization, but reduced
levels of intramitochondrial superoxide compared with control.

CONCLUSIONS—Abnormal mitochondrial function correlated
with a downregulation of mitochondrial proteins, with compo-
nents of the respiratory chain targeted in lumbar DRG in diabe-
tes. The reduced activity of the respiratory chain was associated
with diminished superoxide generation within the mitochondrial
matrix and did not contribute to oxidative stress in axons of
diabetic neurons. Alternative pathways involving polyol pathway
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activity appear to contribute to raised ROS in axons of diabetic
neurons under high glucose concentration. Diabetes 60:288-
297, 2011

nhanced oxidative stress is thought to be a
central pathologic feature in the etiology of
diabetic peripheral neuropathy (1). To develop
more targeted therapeutics toward ameliorating
oxidative stress and the development of diabetic periph-
eral neuropathy, considerable effort has focused on iden-
tifying the cellular source of reactive oxygen species
(ROS) over the past decade. Brownlee et al. (2) suggested
that mitochondrial superoxide generation may be a critical
feature in the onset of diabetic complications. In cultured
endothelial cells, hyperglycemia induced excessive elec-
tron flux through the respiratory chain that promoted
mitochondrial hyperpolarization and elevated ROS pro-
duction (2,3). These investigators proposed that hypergly-
cemia increases mitochondrial NADH levels and that
increased electron availability and/or saturation causes
partial reduction of oxygen to superoxide in the proximal
part of the respiratory chain (2). In support of this
mechanism, epineurial arterioles serving the sciatic nerve
of STZ-diabetic rats show increased levels of mitochon-
drial superoxide that is dependent on complex I activity
(4). On the other hand, studies in diabetic retina suggest
that metabolism of high glucose concentrations does not
operate in a fashion that supports superoxide formation by
the respiratory chain (5). Similarly, in sensory neurons
from STZ-diabetic rats, the mitochondrial membrane po-
tential is depolarized and not hyperpolarized, as observed
in endothelial cells exposed to hyperglycemia (6,7). Fur-
ther, lumbar dorsal root ganglia (DRG) from diabetic rats
exhibit reduced respiratory chain activity that correlate
with the downregulation of select proteins within the
electron transport chain complexes (8). These findings are
aligned with studies in diabetic heart where mitochondrial
respiration and enzymatic activities are reduced (9,10). In
addition, activities of citrate synthase and mitochondrial
respiratory chain are decreased in the skeletal muscle of
patients with type 2 diabetes (11-13).

Therefore, production of mitochondrial superoxide may
exhibit fundamental differences in cells that are targets of
diabetic complications. Indeed, the tissue-specific nature
of mitochondrial remodeling in diabetes is directly under-
scored by results from an unbiased proteomic study that
identified a differential effect of diabetes on the mitochon-
drial protein expression and oxidative capacity. For exam-
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ple, proteins associated with oxidative phosphorylation
were more depressed and respiratory activity decreased in
heart compared with liver mitochondria from diabetic
Akita mice (14). Since DRG sensory neurons are highly
susceptible to glucotoxicity (15), we examined the effect
of diabetes on the mitochondrial proteome, respiratory
capacity, and superoxide production. Our previous work
on sensory neurons in diabetes demonstrated mitochon-
drial depolarization within the perikarya and lowered
respiratory chain capacity (6,8); however, our objective in
the current work was to relate the effects of diabetes on
mitochondrial proteome expression to mitochondrial
physiology and function within the axon where oxidative
stress and degeneration are most clearly defined (16-18).
To this end, we exploited the use of stable isotope labeling
of cells in culture (SILAC) (19) to provide a set of
culture-derived isotope tags (20) to serve as internal
standards for a quantitative proteomic analysis. We dem-
onstrate that in diabetes impaired respiratory chain func-
tion correlates with decreased protein expression, and in
mitochondria of axons, these deficits are associated with
membrane depolarization and reduced respiratory chain-
derived ROS generation. These data support the conclu-
sion that glucose-dependent superoxide production within
the mitochondrial matrix is not a major contributor to
oxidative stress in axons of DRG in long-term diabetes.

RESEARCH DESIGN AND METHODS

Induction, treatment, and confirmation of type 1 diabetes. Male Sprague
Dawley rats were made diabetic with a single intraperitoneal injection of 75
mg/kg STZ (Sigma, St Louis, MO). Insulin implants (two Linplant implants;
Linshin Canada, Toronto, ON, Canada) were placed subcutaneously into
STZ-diabetic rats after 18 weeks of diabetes and kept in place for 4 weeks.
Animals were killed and tissue collected after 22 weeks of diabetes. Animal
procedures followed the guidelines of the University of Manitoba Animal Care
Committee using the Canadian Council of Animal Care rules.

Preparation of isolated mitochondria from DRG and isotopically la-
beled SC16 cells. Mitochondrial preparations from DRG were isolated as
described (8,21). Immortalized SC16 Schwann cells were cultured in low
glucose Dulbecco’s modified Eagle’s medium containing 125 mg/l **C-lysine
(K6) and 84 mg/1 **C,'"N -arginine (R10) (Cambridge Isotopes, Andover, MA),
10% dialyzed FCS (Atlas Biologicals, Fort Collins, CO), and antibiotics (22).
Crude mitochondria from labeled cells were obtained by differential centrif-
ugation and purified through a discontinuous Nycodenz gradient (23). For
quantitative analysis of the DRG mitochondrial proteome, the K6R10-labeled
mitochondria were used as a source of culture-derived isotope tags to serve as
internal standards (20). After assessing the protein concentration of the
preparations, the unlabeled mitochondrial protein (KOR0) obtained from each
of the control (n = 4), diabetic (n = 3), and diabetic + insulin (n = 4)
treatments were mixed in a 2:1 ratio with K6R10 labeled mitochondria. Total
protein (60-70 ng) was subjected to SDS-PAGE, the gel was stained with
colloidal Coomassie blue, and lanes were cut into 5 X 1 cm pieces.
RP-HPLC/LTQ-FT MS/MS and protein identification and quantification
criteria. A detailed description of these parameters is provided in supple-
mentary Table 1 in the online appendix 2 at http://diabetes.diabetesjournals.
org/cgi/content/full/db10-0818/DC1. See Fig. 1 for an overview of the SILAC
approach.

Adult rat DRG sensory neuron culture. Lumbar DRG sensory neurons
from adult male Sprague-Dawley rats were isolated and dissociated as
described (6,16). Rats were either age-matched control or 22-week STZ-
diabetic. Cells were plated onto poly-d-L-ornithine hydrobromide and laminin-
coated 25-mm glass cover slips (German glass #1, Electron Microscopy
Sciences, Hatfield, PA). Neurons were grown in defined Hams F-12 medium
with N2 additives (no insulin), supplemented with neurotrophic factors: 0.1
ng/ml nerve growth factor, 1.0 ng/ml glial cell line-derived neurotrophic factor,
and 0.1 ng/ml neurotrophin-3 (all obtained from Sigma). Neurons from control
rats were cultured with 10 mmol/l p-glucose and 10 nmol/] insulin and neurons
from diabetic rats were plated with 25 mmol/l p-glucose and no insulin for 1
to 3 days.

Determination of oxidative stress in axons. Cultured neurons from
control or diabetic rats were either 1) imaged in real time for intracellular ROS
by loading with 1.2 pmol/l 5-(and-6)-chloromethyl-2'7’-dichlorodihydrofluo-
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TABLE 1
Body weights, plasma glucose, and glycated hemoglobin (HbA,.
of treatment groups

Body weight Blood glucose

® (mmol/l) HbA,. (%)
n 10-13 10-13 9-10
Control 770.9 = 57.9% 8.24 + (0.89* 4.39 * 0.28*
Diabetic 415.8 + 33.9%  30.95 = 2.71**  11.69 * 0.97**
Diabetic +
insulin 519.1 = 42.0 14.81 = 4.95 859 + 1.17

Values are means = SD. Starting weights for the groups were 293 *=
8.8 g (mean = SD; n = 38). Nonfasting blood sugar concentration
was measured using the Accu-Chek Compact Plus glucometer
(Roche, Laval, Quebec City, Canada) and blood glycated hemoglobin
(HbA,,) levels by the A1CNow + system (Bayer Healthcare, Sunny-
vale, CA). *P < 0.001 vs. other groups; **P < 0.001 vs. diabetic +
insulin (one-way ANOVA with Tukey'’s test).

rescein diacetate acetyl ester (CM-H,DCFDA), or 2) fixed and stained for
adducts of 4-hydroxy-2-nonenal (4-HNE) (a product of lipid peroxidation), as
previously described (16). To study the role of polyol pathway in ROS
production, cultures were treated acutely with the specific sorbitol dehydro-
genase (SDH) inhibitor, SDI-158 (24) (10 pwmol/l; a gift from Dr. Nigel Calcutt,
University of California San Diego).

Assessment of mitochondrial membrane potential in cultured neurons.
Cultured DRG neurons were loaded with 3.0 nmol/l tetramethyl rhodamine
methyl ester (TMRM; Molecular Probes, Eugene, OR) for 1 h and the
fluorescence signal in the axons detected with a Carl Zeiss LSM510 confocal
inverted microscope (X100 objective; excitation at 540 nm and emission >560
nm). The TMRM was used in subquench mode—in which decreased fluores-
cence intensity indicates reduced mitochondrial inner membrane potential
(25). Antimycin A and oligomycin (Sigma) were injected into the culture
media to a final concentration of 10 pmol/1 and 1 pmol/l, respectively, at 1 min
after baseline fluorescence measurements. All axons in each field were
assessed as the average of fluorescence pixel intensity per axon length using
the Carl Zeiss software package (16).

Intramitochondrial ROS measurement. Intramitochondrial ROS genera-
tion, mainly superoxide, was detected using the fluorescent MitoSOX red dye
(Molecular Probes, catalog #M36008). Lumbar DRG neurons were loaded with
400 nmol/l of MitoSOX red (in 100% anhydrous DMSO; Molecular Probes) for
15 min with or without 1.0 pmol/l oligomycin at 37°C, and then washed three
times with F-12 and excited at 514 nm and emission >560 nm.

Respiratory chain function. Oxygen consumption was determined at 37°C
using the OROBOROS Oxygraph-2K (OROBOROS Instruments GmbH, Inns-
bruck, Austria) (8). Mitochondria from freshly isolated and intact lumbar DRG
were resuspended in KCl medium (80 mmol/l KCl, 10 mmol/l1 Tris-HCl, 3.0
mmol/l MgCl,, 1.0 mmol/l EDTA, 5.0 mmol/l potassium phosphate, pH 7.4).
Various substrates and inhibitors of the mitochondrial respiratory chain
complexes were used as described (8). Enzymatic activities in lumbar DRG
mitochondrial preparations were performed spectrophotometrically as previ-
ously described (8).

Statistical analysis. When appropriate, data were subjected to one-way
ANOVA with post hoc comparison using the Tukey test or regression analysis
with a one-phase exponential decay parametric test with the Fisher parameter
(GraphPad Prism 4, GraphPad Software, San Diego, CA). In all other cases,
two-tailed Student ¢ tests were performed. To determine the threshold for
statistical significance for the proteomic data, proteins showing at least a 20
or 25% increase or decrease were grouped and compared with the entire
dataset using a Kruskal-Wallis nonparametric ANOVA and the Dunn multiple
comparison test. This analysis indicated that a minimum difference of 25% was
necessary for a value to be considered statistically different from the dataset.

RESULTS

STZ-diabetic rats did not suffer weight loss during the
study, but they showed reduced weight gain after 22
weeks of STZ-diabetes compared with age-matched con-
trols (Table 1). Persistence of diabetes was indicated by
elevated nonfasting blood glucose and glycated hemoglo-
bin levels (Table 1). STZ-diabetic rats that received insulin
supplementation for the final 4 weeks of a 22-week period
of diabetes showed a partial, but statistically significant,
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recovery of body weight, blood glucose, and glycated
hemoglobin levels.

To quantitatively assess the effect of diabetes and insu-
lin therapy on the mitochondrial proteome of lumbar DRG,
we labeled SC16 immortalized Schwann cells with isotopic
forms of lysine (K6) and arginine (R10) and isolated
labeled mitochondria to serve as internal standards (Fig.
1A). We examined the quantitative accuracy of this ap-
proach by mixing the K6R10:KOR0 mitochondria in ratios
of 0.75:1, 1.5:1, and 3:1. The K6/KO or R10/R0 ratios for
individual peptides were obtained from MaxQuant analy-
sis, and a linear response was observed after plotting the
average peptide ratio obtained from each mixture against
the known mixing ratio (supplementary Fig. 1 in online
appendix 1). A 25% decrease in protein expression was
quantifiable. Unlabeled (KOR0O) DRG mitochondria from
the three treatments were then individually mixed in a 2:1
ratio with the K6R10 mitochondria prior to SDS-PAGE and
LTQ-FT MS/MS analysis. From more than 43,600 identified
peptides, 12,785 SILAC pairs were sequenced and ~60%
identified. After culling out contaminants (n = 30), re-
verse-decoy hits (n = 13), and proteins identified by only
a single unique peptide, we identified 672 proteins, of
which 334 (49.6%) were quantified by at least one unique
peptide identified in samples from at least two animals
(supplementary online Table 1). The median number of
quantified ratios for the three treatments was: control (n =
5), diabetic (n = 8), and diabetic + insulin (n = 7). Of the
total proteins identified, 206 (30%) were annotated as
mitochondrial/glycolytic and 151 were quantified (73%).

To provide a global view of the effect of diabetes and
insulin therapy on protein expression, the expression
ratios were binned and a frequency distribution assessed
(Fig. 1B). In general, diabetes had a more pronounced
effect on decreasing protein expression. Insulin therapy
induced a rightward shift toward normalizing expression
and promoted a significant increase in protein expression.
Pathway analysis found that the proteins associated with
mitochondrial dysfunction, oxidative phosphorylation,
and ubiquinone biosynthesis (primarily complex I pro-
teins) were the most significantly over-represented and
showed the greatest percentage of proteins that under-
went significant downregulation (Table 2). Consistent with
the diabetic phenotype, proteins associated with ketone
body biology were also over-represented and diabetes
increased the expression of succinyl-CoA:3-ketoacid-CoA
transferase one (SCOT), which is critical in acetoacetate
clearance.

To determine if diabetes and insulin therapy had a
distinct effect on mitochondrial versus nonmitochondrial
proteins, the expression ratios for each protein were
plotted against each treatment (Fig. 1C). This analysis
indicated that diabetes has little effect on the majority of
mitochondrial and nonmitochondrial proteins that were
quantified (the region between solid and dotted lines).
With rare exception, insulin therapy did not decrease
protein expression, but led to a significant increase in the
expression of numerous nonmitochondrial proteins (green
shading). Enrichment analysis of proteins in this region
using the Biological Networks Gene Ontology (BiNGO)
plugin of Cytoscape found that the cluster frequency for
proteins annotated to the biologic process of translation
was 36.1%, a sevenfold enrichment. We also noted a small
group of proteins that were significantly increased by
diabetes but whose expression was unchanged by insulin
(blue shading). BiNGO analysis of this subset of proteins
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FIG. 1. A: Schematic for use of culture-derived isotope tags for
quantitative proteomics. Unlabeled (KORO) mitochondrial fractions
were prepared from the lumbar DRGs obtained from each animal in the
three treatment groups. Each KORO mitochondrial fraction was mixed
in a 2:1 ratio with K6R10-labeled mitochondria obtained from SC16
cells that had been metabolically labeled with *C4 lysine (K6) and
13C,,'°N, arginine (R10) for 10 days. The proteins were resolved by
SDS-PAGE, digested with trypsin, and analyzed by RP-HPLC/LTQ-FT
MS/MS. For each protein, the ratio of KOR0O to K6R10 quantifies the
endogenous protein relative to the internal standard. Dividing the
protein ratios obtained in the diabetic or diabetic + insulin treatment
by those obtained from control animals cancels out the K6R10 internal
standard and provides the fold control value. B: Effect of diabetes and
insulin therapy on mitochondrial protein expression. The protein
expression ratios from the diabetic and diabetic + insulin treatments
were binned and the number of proteins per bin counted. C: To
determine the effect of diabetes and insulin therapy on mitochondrial
versus nonmitochondrial proteins, the expression ratio for each pro-
tein was plotted against each treatment. Solid and dotted lines demar-
cate the threshold necessary for proteins to show a significant change
in the diabetic and diabetic + insulin treatments, respectively. Pro-
teins in between dotted and solid lines did not change with either
treatment. Yellow shading indicates proteins that were significantly
up- or downregulated by diabetes and normalized by insulin therapy.
Blue shading indicates proteins that were increased by diabetes but
not normalized by insulin therapy. Green shading indicates proteins
not affected by diabetes but increased by insulin therapy.
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TABLE 2
Over-represented canonical pathways identified in the proteomic
analysis

Total

Canonical pathways Significance Ratio, %  genes
Mitochondrial dysfunction  3.16 X 10~ ! 7.2 171
Oxidative phosphorylation ~ 3.98 X 107 5.4 166
Ubiquinone biosynthesis 7.94 X 1076 5.0 119
Methane metabolism 1.25 x 1074 4.0 66
Breast cancer regulation

by stathminl 1.59 x 1074 4.6 199
Integrin signaling 1.99 x 104 3.5 200
Butanoate metabolism 6.31 x 107 3.0 132
14-3-3-mediated signaling 6.31 X 10~ * 44 114
Propanoate metabolism 7.94 X 107 3.1 130
Citrate cycle 7.94 X 1074 5.2 58
Valine, leucine and

isoleucine degradation 1.00 x 1073 3.6 111
Fatty acid metabolism 1.25 X 1073 2.6 192
Phenylalanine metabolism 1.25 X 1073 2.8 109
Ketone body biology 2.51 X 1073 10.5 19
Fatty acid elongation 5.01 X 1073 4.4 45
Induction of apoptosis by

HIV1 6.31 X 1073 4.6 65

Significance provides the confidence of the association as identified
by the P value of the Fisher exact test. The ratio provides the
percentage of proteins associated with the pathway that underwent
a significant change. The total genes column refers to all known
genes to be linked to the pathway (not necessarily identified by the
proteomic screen).

indicated that small G protein signaling and protein trans-
port were the enriched processes.

Diabetes caused a statistically relevant change in 27% of
quantified mitochondrial proteins, and insulin therapy had

an ameliorative effect that, in general, normalized this
decrease (Fig. 1C, yellow shading). Consistent with an-
other proteomic study of heart mitochondria (14), bioin-
formatic analysis found that proteins associated with
canonical pathways of mitochondrial dysfunction and
oxidative phosphorylation were over-represented and
mainly decreased in expression (Table 3). Representative
examples from a diabetic animal show a 51% decrease in
the complex I protein, NADH dehydrogenase Fe-S protein
3 (NDUFS3) and a 29% decline of Mn superoxide dis-
mutase (Mn-SOD) (Fig. 2A and B). However, insulin ther-
apy improved the deficits in NDUFS3 and Mn-SOD
expression (Fig. 2C) as previously characterized using
Western blotting (8,16). On the other hand, diabetes did
not alter the expression of ATP synthase « (supplementary
Fig. 2 in supplementary online appendix 1).

Lumbar DRG from age-matched control and 22-week-
old STZ-diabetic rats were analyzed for rates of oxygen
consumption as shown in Fig. 3A. Respiratory chain
activity, whether coupled or uncoupled, was significantly
depressed in diabetic samples. In agreement with the
proteomic data and oxygen consumption results, the en-
zymatic activities of rotenone-sensitive NADH-cytochrome
¢ reductase (complex I) and cytochrome ¢ oxidase (COX;
complex IV), as well as the Krebs cycle enzyme, citrate
synthase, were significantly decreased in STZ-diabetic rats
compared with control (supplementary Table 2).

Adult sensory neurons were cultured for 1 day from
age-matched controls and 22-week-old STZ-diabetic rats
and loaded with TMRM. This dye was used at a subquench
concentration where a decrease in fluorescence signal
intensity indicated reduced mitochondrial inner mem-
brane potential (25). The live neurons were exposed to a
combination of antimycin A (inhibitor of complex III) and

TABLE 3
Effect of diabetes and insulin therapy on representative proteins annotated to oxidative phosphorylation and mitochondrial
dysfunction

_Fold Control
Symbol Protein description Diabetic Diabetic + insulin % Change
ATP5C1 ATP synthase, F1 complex, y 0.90 1.29% 143
ATP5D ATP synthase, F1 complex, A subunit 0.69* 0.92 133
ATP5F1 ATP synthase, FO complex, subunit B1 0.92 1.31* 142
ATP5I ATP synthase, FO complex, subunit E 0.75% 0.81 108
COX2 Cytochrome c oxidase subunit 2 0.82 1.06 129
COX4I1 Cytochrome c oxidase subunit IV isoform 19 0.71* 0.89 125
COX5A Cytochrome c oxidase subunit Va 0.83 1.28* 154
CPT1A Carnitine palmitoyltransferase 1A (liver) 0.561* 0.77 172
CYCS Cytochrome c, somatic 0.56%* 0.9 160
HSD17B10 Hydroxysteroid (17-8) dehydrogenase 10 0.71% 1.14 160
ND4 NADH dehydrogenase, subunit 4 (complex I) 0.43* 0.56* 130
NDUFA10 NADH dehydrogenase 1 o subcomplex 10§ 0.73* 0.79 108
NDUFA13 NADH dehydrogenase 1 o subcomplex, 13 0.35% 0.569* 168
NDUFB10 NADH dehydrogenase 1 B subcomplex, 10 0.94 1.4%* 148
NDUFS1 NADH dehydrogenase Fe-S protein 1 0.78 0.91 116
NDUFS2 NADH dehydrogenase Fe-S protein 2 0.48* 0.54 113
NDUFS3 NADH dehydrogenase Fe-S protein 39 0.64* 0.84 131
NDUFS8 NADH dehydrogenase Fe-S protein 8 0.91 1.34%* 147
PRDX3 Peroxiredoxin 3 0.87 1.26* 145
PRDX5 Peroxiredoxin 5 0.74* 0.86 116
SOD2 Superoxide dismutase 2, mitochondrial{ 0.73* 1.08 148
UQCRC1 Ubiquinol-cytochrome c reductase I 0.87 1.26* 145

Values shown are the mean and the asterisk (*) indicates proteins that showed a significant change in expression. Percent change represents
effect of insulin treatment on the protein expression ratio measured from diabetic rats. Please see online supplementary Table 1 for more
complete information. §Confirming references (8,16); §Confirming reference (29).
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oligomycin (inhibitor of ATP synthase), and the fluores-
cence signal in axons detected by confocal microscopy.
Antimycin A blocks electron transfer leading to mitochon-
drial depolarization, whereas oligomycin inhibits the
ATPase and prevents reverse pumping of protons and
associated generation of a proton gradient. Therefore, the
mitochondrial membrane potential (and associated proton
gradient) is completely dissipated in the presence of both
these drugs. In the presence of antimycin A + oligomycin,
the rate of mitochondrial depolarization was more rapid in
axons of normal neurons compared with diabetic neurons
(Fig. 3B-D). This suggests that prior to the addition of
antimycin A + oligomycin, the axonal mitochondria were
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FIG. 2. Representative peptide mass spectra showing the effect of
diabetes and insulin therapy on NDUFS3 and MnSOD. A: The upper
spectrum shows the doubly-charged ion of the unlabeled (m/z 743.90)
and R10 labeled (m/z 748.90) VVAEPVELAQEFR peptide of NDUFS3
from a control animal. Since the peptide is doubly charged, the mass
difference is 5 atomic mass units; and the other peaks represent the
isotopic envelope of the monoisotopic peak. The lower spectrum
shows the doubly-charged ion of the unlabeled (m/z 720.91) and K6
labeled (m/z 723.91) GDVITQVALQPALK peptide of Mn-SOD from a
control animal. Since the peptide is doubly charged, the mass differ-
ence is 3 atomic mass units; and the other peaks represent the
isotopic envelope of the monoisotopic peak. The R0O/R10 and K0/K6
ratios for these peptides are indicated. B: Upper and lower spectra
show the same NDUFS3 and Mn-SOD peptides, but from a diabetic
animal. The KORO/K6R10 ratios for each peptide are indicated and the
Diab/Control ratio were obtained after dividing by the control ratios
from panel A. C: Upper and lower spectra show the same NDUFS3 and
Mn-SOD peptide, but from a diabetic + insulin-treated animal. The
KORO/K6R10 ratios for each peptide are indicated and the Diab/
Control ratio were obtained after dividing by the control ratios from
panel A. Note that the intensity of the K6 and R10 peptides are very
similar between the treatments (A-C), indicating that the changes in
protein expression are minimally influenced by the internal standard.

more highly polarized in the normal neurons compared
with the diabetic neurons. Mitochondrial physiology was
further investigated by treating cultured neurons from
control and diabetic rats with oligomycin alone. Blockade
of the ATPase results in a buildup of the transmembrane
proton gradient and induces hyperpolarization of the
mitochondrial inner membrane, as indicated by elevated
TMRM fluorescence (Fig. 4A) (26). In normal neurons, a
transient hyperpolarization was observed, followed by a
recovery due to adaption of the respiratory chain. For
example, uncoupling proteins become active and dissipate
the proton gradient under a high inner membrane potential
(27). Diabetic neurons exhibited a significantly greater
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FIG. 3. The mitochondria of DRG sensory neurons exhibited lower
respiratory chain activity. A: Oxygen consumption was assessed in
freshly isolated mitochondria from lumbar DRG of age-matched control
and 22-week-old diabetic rats using an OROBOROS oxygraph 2k.
Coupled respiration rates were measured in the presence of pyruvate
(P) (10 mmol/1), malate (M) (5.0 mmol/1), and ADP (2.0 mmol/1). The
addition of FCCP (0.5 pmol/l) permits a measure of uncoupled respi-
ratory chain activity. Addition of ascorbate (Asc) (5.0 mmol/1) and
TMPD (0.5 mmol/1) permit an analysis of complex IV activity that was
verified by specific inhibitors. Values are mean = SEM; n = 5. *P < 0.05
vs. controls; **P < 0.001 vs. controls. B: Images of fluorescence
confocal microscopy using TMRM in live cultures of DRG neurons
isolated from control adult rats showing effect of antimycin A and
oligomycin. C: Trace of TMRM fluorescence signal in the axons of
cultured DRG neurons isolated from age-matched controls and STZ-
diabetic rats. D: Shows the area under the TMRM fluorescence trace
(area under the curve) for control (open bar) and diabetic (filled bar)
neurons. The area under the curve was estimated from the baseline (at
the point of injection) to a fluorescence level of 0.2 and between time
points 1.0 min and 6 min using sums of squares (shown by dotted line).
Values are the means + SEM, n = 65-80 axons; *P < 0.001 compared
with control, ¢ test. The TMRM trace was characterized by nonlinear
regression (one phase exponential decay). The rate constant of decay
(K) = 0.013 £ 0.0004 (control) and 0.006 = 0.0001 (diabetic). Half-life
of decay = 54.19 s (control) and 108.7 s (diabetic). The Fisher
parametric (F) ratio = 409.5, P < 0.0001, control vs. diabetic. The F
ratio compares the goodness-of-fit of the two curves. The red arrow
indicates point of injection of antimycin A + oligomycin. (A high-
quality digital representation of this figure is available in the online
issue.)
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level of hyperpolarization upon oligomycin application
and the adaptive response was impaired.

We determined if the respiratory chain was contributing
to oxidative stress in diabetic neurons by loading cells
with the mitochondrially-targeted ROS detector, MitoSOX
red. A subset of diabetic neurons was pretreated with
oligomycin to hyperpolarize the inner mitochondrial mem-
brane and maximize loading of MitoSOX red into the
mitochondrial matrix. Neurons were treated with the
uncoupler, carbonylcyanide-p-trifluoromethoxyphenylhy-
drazone (FCCP), to dissipate the transmembrane electro-
chemical gradient and enhance the rate of electron
transfer. Increased respiratory chain activity leads to
augmented electron leakage and associated generation of
ROS, primarily superoxide. In normal neurons this was
demonstrated with elevated FCCP-induced MitoSOX red
fluorescence (Fig. 4F and G). Diabetic neurons, with or
without prior oligomycin treatment, exhibited lower Mi-
toSOX red fluorescence intensities indicative of reduced
levels of superoxide being generated by the respiratory
chain.

Parallel cultures demonstrated elevated oxidative stress
in axons of diabetic neurons under 25 mmol/l glucose
versus control neurons as exhibited by raised dichlorodi-
hydrofluorescein (DCF) fluorescence and enhanced stain-
ing for adducts of 4-HNE (Fig. 5A-F). Subsets of these
cultures were treated acutely with the specific SDH inhib-
itor, SDI-158, to investigate the role of the polyol pathway
in ROS production. Figure 5G and H shows that blockade
of high glucose-dependent sorbitol production results in
reduced ROS generation in axons of diabetic neurons.

DISCUSSION

The results show that respiratory chain components of the
mitochondrial proteome are downregulated in DRG in
diabetes and this phenotypic alteration was associated
with impairment in respiratory chain activity. In addition,
for the first time, this study demonstrates that altered
mitochondrial proteome expression is linked to altered
mitochondrial physiology in axons of diabetic neurons.
And finally, although oxidative stress was present in axons
of diabetic neurons, the results show that polyol pathway
activity, not aberrant respiratory chain function, contrib-
utes to generation of ROS.

We used SILAC to provide a set of culture-derived
isotope tags (20) to serve as internal standards for quan-
tifying the effect of diabetes on the composition of the
mitochondrial proteome from DRG. One advantage of
culture-derived isotope tags is the quantitative accuracy
that can be achieved relative to label-free approaches (28),
especially for low abundant proteins. Despite our small
sample size, a 25% change in expression was sufficient to
reach statistical significance, and the number of mitochon-
drial proteins that exceeded this threshold was similar to
that previously reported in mitochondria isolated from
heart tissue of diabetic Akita mice (14). Further, the
results of our unbiased quantification were in close agree-
ment with those obtained by targeted immunoblot analy-
ses for COX subunit IV, NDUFS3, ATP synthase, and
Mn-SOD in two prior studies (8,16).

Similar to a previous gene array study delineating alter-
ations in mRNA expression in DRG from diabetic rats (29),
the magnitude of changes observed in the mitochondrial
proteins were rather modest and averaged 0.44 * (.16-fold
in either direction. Interestingly, the gene array study
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FIG. 4. Impaired respiratory function is associated with reduced ROS generation in the mitochondrial matrix of cultured neurons isolated from
STZ-diabetic rats. A: TMRM fluorescence trace of oligomycin-induced mitochondrial inner membrane hyperpolarization in the axons of control
and diabetic neurons. Values are mean + SEM, n = 65-85 axons. Inset shows the area under the TMRM fluorescence trace (AUC) for control
(open bar) and diabetic (filled bar) neurons. The AUC was estimated from the baseline (at the point of injection, dotted line), and between time
points of 1.0 min and 4 min using sums of squares. Values are mean = SEM, n = 65-80 axons,*P < 0.01 compared with control, ¢ test. The red
arrow indicates point of injection of oligomycin. B-E: Images of MitoSOX red fluorescence in cultures of DRG neurons showing the effect of 5.0
pmol/l FCCP. F: Quantification of real-time MitoSOX red fluorescence levels in the axons of cultured DRG neurons after 5.0 pmol/l1 FCCP
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FIG. 5. Axons of sensory neurons from STZ-diabetic rats exhibit elevated oxidative stress that is ameliorated by the blockade of SDH. Images of
ROS levels in axons at 24 h in adult DRG neuron culture from (A) control and (B) STZ-diabetic rats. Cultures were stained for ROS using
CM-H,DCFDA dye (DCF is the fluorescent product resulting from oxidation). E: Quantification of ROS accumulation in axons. Values are
means * SEM, n = 44-57 axons, *P < 0.05 by t test. Inmunofluorescent images of accumulation of adducts of 4-HNE in axons in sensory neuron
cultures after 3 days; (C) is control and (D) is diabetic culture. F: Level of accumulation of puncta of adducts of 4-HNE in axons. Values are
means = SEM, n = 19-27 axons, **P < 0.01 by ¢ test. G: Trace of DCF-fluorescence signal in the axons of cultured DRG neurons isolated from
age-matched controls and STZ-diabetic rats and treated acutely with 10 pmol/1 SDI-158. DCF fluorescence trace was characterized by nonlinear
regression (one phase exponential decay). K = 0.09 = 0.02 (control) and 0.13 = 0.009 (diabetic). Half-life of decay = 7.5 min (control) and 5.5
min (diabetic). F ratio = 50.33, P < 0.0001, control versus diabetic. The red arrow indicates point of injection of SDI-158. H shows the area under
the DCF fluorescence trace (AUC) for control (open bar) and diabetic (filled bar) neurons. The AUC was estimated from 0.2 to 1.6 on
fluorescence axis and between time points 0 to 22 min using sums of squares (dotted lines show upper and lower limits). Values are means + SEM,
n = 42-51 axons; **P < 0.01 compared with control by ¢ test. (A high-quality digital representation of this figure is available in the online issue.)

reported that after 2 months of diabetes, no modification
occurred in gene expression of enzymes associated with
the tricarboxylic acid cycle. We also observed no changes
in pyruvate dehydrogenase and in six of eight of the
tricarboxylic acid cycle enzymes at the protein level, the
exceptions being fumarate hydratase and succinyl Co-A
ligase. Similarly, with the exception of hexokinase 1, the
remaining glycolytic enzymes were not altered, in agree-
ment with mRNA expression studies at 2 months of
diabetes (29). We previously reported that hexokinase 1
localizes to mitochondria of DRG (30) and this protein was

reproducibly detected in the heavy mitochondrial fraction
of all animals. Interestingly, although the hexokinase gene
and protein expression were not modified after 2-3
months of diabetes in two studies (29-30), expression was
decreased after 22 weeks of diabetes in the present study.
Since this was the only glycolytic enzyme that significantly
changed, it is tempting to speculate that its lowered
expression also has a function separate from glucose
metabolism. In this regard, sensory neurons from diabetic
adult animals have an impaired ability to support neurite

treatment. MitoSOX trace was characterized by nonlinear regression. F ratio = 32.48, P < 0.0001 (control vs. diabetic with or without oligomycin
by one-way ANOVA). Values are mean = SEM, n = 18-73 axons. G: Area under the curve for MitoSOX red fluorescence intensity levels. Values
are mean = SEM, n = 35-73 axons; **P < 0.001 compared with diabetic or diabetic + oligomycin-treated cells by one-way ANOVA. (A high-quality
digital representation of this figure is available in the online issue.)
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development (16) and directly inhibiting hexokinase activ-
ity blocks neurotrophin-induced neuritogenesis (31).

In the cardiac system, diminished mitochondrial respi-
ratory function caused by diabetes has also been identified
by proteomic and gene array techniques (14,32). These
broad changes in gene expression could be triggered by
altered activity of key upstream regulators. For example,
in human skeletal muscle in type 2 diabetes, the transcrip-
tional regulator NRF-1 and the transcriptional coactivator
peroxisome proliferator-activated receptor-y coactivator 1
a (PGC-1a) were downregulated and corresponded with
reduced expression of proteins that regulate cellular en-
ergy metabolism, including mitochondrial biogenesis and
oxidative phosphorylation (33,34). In fact, our preliminary
data demonstrated a significant reduction in activity of
AMP kinase, a regulator of PGCl-a, in DRG in type 1
diabetic rodents (manuscript in preparation).

Initial exposure to high glucose concentration over 1 to
4 weeks in DRG in diabetic rats is linked to upregulation of
glycolytic pathway expression (mRNA) (29). Studies in
endothelial or Schwann cells demonstrate that acute ex-
posure to glucose elevates ROS and respiratory chain
activity, respectively (2,23). Therefore, in the short term,
hyperglycemia triggers enhanced glycolysis and associ-
ated respiratory chain activity (and possibly ROS). How-
ever, in the longer term, the high intracellular glucose
concentration provides an ample supply of ATP via several
nonmitochondrial-dependent pathways. Consequently, the
metabolic phenotype of the cell adapts and functions in
the absence of a dependence on the tricarboxylic acid
cycle and oxidative phosphorylation for ATP production,
possibly by initiating a process homologous to the
“Crabtree effect” (35). Thus, rates of electron donation to
the respiratory chain are suboptimal in neurons in long-
term diabetic rats and may predispose to lower rates of
mitochondrial respiratory chain activity and oxidative
phosphorylation. Key metabolic activity sensors and/or
regulators such as AMPK and NRF-1 are putative candi-
dates for this modulation, although it is unlikely that
subsequently adapted metabolism of glucose is channeled
through glycolysis in isolation. In this regard, elevated
glucose flux through the aldehyde and aldose reductase
pathway could be critical (24,36). For example, studies in
lens (37), retina (5), and cardiac tissue (38) in medium- to
long-term animal models of type 1 diabetes show that
parts of the glycolytic pathway function are depressed.

ROS production linked to enhanced electron leakage
from the respiratory chain induced by uncoupling, and
theoretically comprising superoxide, was lower in the
axons of neurons from diabetic rats (Fig. 4B—FE), confirm-
ing our mitochondrial physiology and proteomics work.
This was also in spite of generally elevated ROS levels in
axons (Fig. bA-F). The studies in Figs. 4 and 5G provide
preliminary evidence that the sources of ROS in axons of
diabetic neurons are not from aberrant respiratory chain
function, but in part from polyol pathway activity. The
latter pathway has been proposed as a source of ROS
through a putative sorbitol accumulation-dependent
NADPH oxidase route in previous studies (24,36). Down-
regulation of the respiratory chain machinery would be
predicted to lead to depolarization of the mitochondrial
membrane (Fig. 3B-D), reduced rates of respiratory chain
activity (8) (Fig. 3A and supplementary Table 2), and
associated diminished electron leakage. The lower rate of
loss of polarization status subsequent to uncoupling in Fig.
3C was not the result of resistance to uncoupling in the
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diabetic neurons since complementary measures of respi-
ratory chain activity show lower rates of electron transfer
in diabetic neurons; also, see Fig. 1 in Chowdhury et al. (8).
These findings differ from those in cultured endothelial
cells where high glucose concentration enhanced mito-
chondrial membrane potential and induced elevated ROS
(2-3). Figure 4A reveals that oligomycin treatment caused
a greater level of mitochondrial inner membrane hyperpo-
larization above baseline in diabetic neurons compared
with normal neurons, further highlighting that adult sen-
sory neurons with a history of diabetes and under high
glucose concentration behave differently to endothelial
cells. The adaption of mitochondria in normal neurons to
hyperpolarization was not observed in diabetic neurons,
again stressing the aberrant phenotype of mitochondrial
physiology. Uncoupling proteins such as adenine nucleo-
tide transporters (ANT1/2) contribute to the dissipation of
a high mitochondrial membrane potential (27) and expres-
sion was depressed in diabetic mitochondria (supplemen-
tary Table 1).

In conclusion, our proteomics data reveal a range of
altered expression profiles in the mitochondrial proteome
of DRG from diabetic rats. This modified expression
pattern was associated with aberrant mitochondrial respi-
ratory chain physiology and function. Under high glucose
concentration, the neuron cell body perceives that mito-
chondrial function can be downgraded; however, this may
ignore the unique high-energy requirements of the nerve
ending and contribute to distal axon degeneration. For
example, growth cone motility that underpins axonal
plasticity and regeneration in the skin has an exceedingly
high demand for ATP because of significant levels of actin
treadmilling (39). Impaired respiratory chain function did
not elevate ROS generation, even though oxidative stress
was observed in axons. In fact, the lower rates of respira-
tory chain activity were linked to mitochondrial mem-
brane depolarization, improper adaption to oligomycin-
induced membrane hyperpolarization, and reduced levels
of superoxide derived from electron leakage during elec-
tron transport. In axons of neurons from long-term dia-
betic rats, sites of ROS production colocalize with the
mitochondrial compartment (16,40). Therefore, alternative
mitochondrial-related sources of ROS should be consid-
ered. For example, NADPH oxidase has been localized to
the mitochondrial compartment of kidney cortex and
mesanglial cells and mediates elevated ROS under high
glucose concentration (41).
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