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1. Introduction: towards 
a mechanistic theoretical 
understanding of prefrontal functions

1.1. Functional roles of orbitofrontal, 
ventrolateral, and dorsolateral prefrontal 
cortex

The prefrontal cortex (PFC) contributes to many of the higher 
cognitive, emotional, and decision-making processes that define 
human intelligence, while also controlling the release of goal-
oriented actions towards valued goal objects. As noted in the 
Wikipedia article about PFC,

The most typical psychological term for functions carried out 
by the prefrontal cortex area is executive function. Executive 
function relates to abilities to differentiate among conflicting 

thoughts, determine good and bad, better and best, same and 
different, future consequences of current activities, working 
toward a defined goal, prediction of outcomes, expectation 
based on actions, and social ‘control’ (the ability to suppress 
urges that, if not suppressed, could lead to socially unacceptable 
outcomes).
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Elliott et al. (2000) discussed how the PFC contributes to gen-
erating behaviours that are flexible and adaptive, notably in novel 
situations, and to suppressing actions that are no longer appropri-
ate, thereby freeing humans and other primates from being forced 
to respond more reflexively to current sensory inputs. These 
authors also review the various terms that have been used to 
describe PFC functions, including planning (Luria, 1966), memory 
for the future (Ingvar, 1985), executive control (Baddeley, 1986), 
working memory (Goldman-Rakic, 1987), supervisory attention 
(Shallice, 1988), and top-down modulation of bottom-up processes 
(Frith and Dolan, 1997).

Miller and Cohen (2001) reviewed data that are consistent 
with these concepts, noting that these properties result

from the active maintenance of patterns of activity in the 
prefrontal cortex that represent goals and the means to achieve 
them. They provide bias signals to other brain structures whose 
net effect is to guide the flow of activity along neural pathways 
that establish the proper mappings between inputs, internal 
states, and outputs needed to perform a given task. (p. 167)

Said in yet another way, the PFC is involved with predicting 
future outcomes and enabling animals and humans to respond 
adaptively to them.

Wise (2008) espoused a similar view that he vividly summa-
rised as follows: ‘The long list of functions often attributed to 
prefrontal cortex may all contribute to knowing what to do and 
what will happen when rare risks arise or outstanding opportuni-
ties knock’ (p. 599).

Even this brief heuristic summary of some of the multiple 
functions of the PFC illustrates the challenge facing any theorist 
who wishes to model this, or indeed any, part of the brain. The 
challenge is that various functionally distinct parts of the PFC are 
connected to each other in complex ways, in addition to being 
widely connected with multiple other brain regions. Broadly 
speaking, the dorsal PFC is interconnected with brain regions 
involved with attention, cognition, and action (Goldman-Rakic, 
1988), whereas the ventral prefrontal cortex is interconnected 
with brain regions involved with emotion (Price, 1999). These 
facts do not, however, explain how these brain circuits give rise 
to these distinct psychological functions as emergent properties 
that arise from interactions among brain regions that work 
together as functional systems.

A critical question for any theorist of mind and brain is thus: 
How can the divide between brain mechanisms and psychologi-
cal functions be bridged? How can this be done with sufficient 
mechanistic precision to explain and predict challenging interdis-
ciplinary data? Section 1.3 summarises a well-established theo-
retical method whereby the emergent properties of brain 
mechanisms may be linked to the mental functions that they 
control.

Before summarising this theoretical method, Section 1.2 will 
review some of the prefrontal properties that recent experiments 
have reported and that will be explained in later sections using 
this theoretical method. In particular, many prefrontal cortical 
properties can be subsumed under two unifying mechanistic 
themes: cognitive-emotional dynamics and working memory 
dynamics. A macrocircuit of the brain regions that embody these 
processes in a unified predictive Adaptive Resonance Theory 
(pART), a model that herein explains and predicts many prefron-
tal cortical data, is shown in Figure 1.

Section 2 will summarise relevant data and models of cogni-
tive-emotional dynamics and Section 3 will summarise relevant 
data and models of working memory dynamics. Cognitive-
emotional dynamics, and models thereof, include how orbito-
frontal cortex (OFC) interacts with brain regions like temporal 
cortex, amygdala, hippocampus, and cerebellum to regulate pro-
cesses like category learning and adaptively timed motivated 
attention and action to acquire a valued goal. Working memory 
dynamics, and models thereof, include how sequences of events 
are temporarily stored in ventrolateral and dorsolateral prefrontal 
cortex, how these sequences are unitised, or chunked, into cogni-
tive plans, and how interactions of prefrontal regions with other 
brain regions like perirhinal cortex (PRC), parahippocampal cor-
tex (PHC), and basal ganglia (BG) enables predictions and 
actions to be chosen that are most likely to succeed based on 
sequences of previously rewarded experiences.

These sections will also compare and contrast the neural mod-
els that are used herein with other models in the literature and 
will make testable predictions to further clarify the brain mecha-
nisms that underlie these data.

Section 4 will provide concluding remarks that highlight 
some of the article’s main themes.

A unified theoretical explanation with such ambitious goals 
will necessarily be presented in stages. The text will state key 
data, and outline model explanations of them, at the beginning of 
each section to help readers to frame subsequent, more detailed, 
explanations. The text will also attempt to provide a self-con-
tained explanation of all the models that it uses. This explanation 
cannot be exhaustive because the theoretical and experimental 
literatures that fall within the scope of the models are vast. The 
exposition will nonetheless provide enough information for the 
reader to appreciate how the explanations work, and why they are 
compelling.

The exposition will also try to deal with another, even more 
basic, problem: How can any theory penetrate the complexity of a 
behaving brain? Indeed, a few facts, taken alone, can have multi-
ple explanations. They provide insufficient guidance to rule out 
plausible, but incorrect, explanations. In contrast, the current the-
oretical method confronts hundreds of facts about a particular 
behavioural function, taken from the entire experimental literature 
on multiple organisational levels from behavioural to cellular, 
with all known modelling principles, mechanisms, microcircuits, 
and architectures. When this is done properly, every such fact, and 
every modelling hypothesis about it, is put under enormous ‘con-
ceptual pressure’ that typically allows only one possible explana-
tion to survive. The text tries to summarise enough of these 
constraints to clarify how and why the explanations work and to 
motivate readers to pursue further reading about topics that par-
ticularly interest them in related articles.

1.2. Prefrontal desirability, availability, 
credit assignment, and feature-based 
attention

These models help to understand and mechanistically explain 
recent data about the OFC, ventrolateral prefrontal cortex 
(VLPFC), and dorsolateral prefrontal cortex (DLPFC). The text 
will first focus upon a striking conclusion that has arisen about 
roles for OFC and VLPFC that were derived from behavioural 
experiments in monkeys who had experienced excitotoxic lesions 
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of these brain regions. The conclusion is that OFC and VLPFC 
are involved in updating a predicted outcome’s desirability ver-
sus its availability, respectively (Rudebeck et al., 2017). Recent 
data have also claimed that DLPFC neurons encode a solution of 
the credit-assignment problem (Assad et al., 2017). What the 
concepts of desirability, availability, and credit assignment mean 
will be operationally defined in the sections where these data are 
explained.

Some of the results on desirability that are reported by 
Rudebeck et al. (2017) were predicted, indeed simulated, by a 
well-established neural model of cognitive-emotional interac-
tions, notably reinforcement learning and motivated attention, in 
Grossberg et al. (2008). Aspects of the role of VLPFC in updating 
availability are clarified by a well-established neural model of 
cognitive working memory and the learning of predictive cogni-
tive plans, or list chunks (Cohen and Grossberg, 1986, 1987; 
Grossberg, 2017b; Grossberg and Pearson, 2008). This model has 
been further developed in Huang and Grossberg (2010) to quanti-
tatively simulate data about sequential decisions during contextu-
ally cued visual search and in Silver et al. (2011) to simulate 

prefrontal cortical neurophysiological data about sequences of 
eye movement decisions. Data about credit assignment are 
explained by combining the model of cognitive working memory 
and list chunks with the model of reinforcement learning and 
motivated attention to show how chunks that lead to successful 
predictions are amplified, while those that do not are suppressed.

In Sections 2 and 3, the article will first summarise the above 
kinds of data that are explanatory targets of the article, then 
review the models that explain them, and go on to use these mod-
els to provide explanations and predictions of additional interdis-
ciplinary data. It will then extend them in a consistent way to 
mechanistically and functionally explain data about prefrontal 
sources of feature-based attention in monkeys (Bichot et al., 
2015) and humans (Baldauf and Desimone, 2014).

The PFC has been studied with multiple methods. Some arti-
cles have studied the PFC of humans with functional neuroimag-
ing in normal subjects or clinical patients, while others have 
studied monkeys or rats with neurophysiological or anatomical 
methods. Important functional conclusions have also been 
derived by combining selective lesions with behavioural studies 
in monkeys. Recent studies have, however, also shown that dif-
ferent lesion methods can yield quite different results. For exam-
ple, monkeys with selective excitotoxic lesions of the OFC, 
unlike monkeys who have received aspiration OFC lesions, are 
unimpaired in learning and reversing object choices based on 
reward feedback (Rudebeck et al., 2013). Neurotoxic lesions of 
the amygdala (Izquierdo and Murray, 2007) have also led to 
results that challenge earlier demonstrations using aspiration and 
radiofrequency lesions that the amygdala is needed for object 
reversal learning (Aggleton and Passingham, 1981; Jones and 
Mishkin, 1972; Spiegler and Mishkin, 1981).

Why do different lesion methods yield such different results? 
One main reason is that, unlike excitotoxic lesions, other lesion 
methods, including aspiration and radiofrequency lesions, may 
also damage fibres of passage to adjacent cortical areas. The fact 
that OFC activity has been reported during reversal learning 
(Fellows and Farah, 2003; Morrison et al., 2011; Rolls, 2000; 
Rolls et al., 1994) suggests that several neuronal regions and 
pathways may be involved in this behavioural competence.

This picture is complicated further by different definitions 
of the brain areas that constitute OFC and VLPFC. The conclu-
sions above hold if OFC is understood to consist of areas 11, 13, 
and 14. If, however, area 12o is also included, which overlaps 
what Chau et al. (2015) call the lateral OFC (lOFC), then vari-
ous properties of what Rudebeck et al. (2017) would assign to 
VLPFC get attributed to OFC. Herein, the convention will be 
followed that OFC consists of areas 11, 13, and 14. Another 
caveat is that there appear to be species-specific variations. For 
example, unlike old world monkeys, excitotoxic lesions in new 
world monkeys such as marmosets (Roberts, 2006) can impair 
these animals on reversal tasks. These variations will not be 
analysed herein.

1.3. A theoretical method for linking brain 
to mind: method of minimal anatomies

One successful method for linking brain mechanisms to behav-
ioural functions has been developed and applied during the past 
60 years. This method has led to neural models that often antici-
pated psychological and neurobiological data about the PFC, 

Figure 1. Macrocircuit of the main brain regions, and connections 
between them, that are modelled in the unified predictive Adaptive 
Resonance Theory (pART) of cognitive-emotional and working memory 
dynamics that is described in this article. Abbreviations in red 
denote brain regions used in cognitive-emotional dynamics, whereas 
abbreviations in green denote brain regions used in working memory 
dynamics. Black abbreviations refer to brain regions that process 
visual data during visual perception and are used to learn visual object 
categories. Arrows denote non-adaptive excitatory synapses. Hemidiscs 
denote adaptive excitatory synapses. Many adaptive synapses are 
bidirectional, thereby supporting synchronous resonant dynamics among 
multiple cortical regions. The output signals from the basal ganglia 
that regulate reinforcement learning and gating of multiple cortical 
areas are not shown. Also not shown are output signals from cortical 
areas to motor responses. V1: striate, or primary, visual cortex; V2 and 
V4: areas of prestriate visual cortex; MT: middle temporal cortex; MST: 
medial superior temporal area; ITp: posterior inferotemporal cortex; 
ITa: anterior inferotemporal cortex; PPC: posterior parietal cortex; LIP: 
lateral intraparietal area; VPA: ventral prearcuate gyrus; FEF: frontal eye 
fields; PHC: parahippocampal cortex; DLPFC: dorsolateral hippocampal 
cortex; HIPPO: hippocampus; LH: lateral hypothalamus; BG: basal 
ganglia; AMGY: amygdala; OFC: orbitofrontal cortex; PRC: perirhinal 
cortex; VPS: ventral bank of the principal sulcus; VLPFC: ventrolateral 
prefrontal cortex. See text for further details.
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among other brain regions. It continues to do so, as this article 
will illustrate.

A key theme of this theoretical ‘method of minimal anato-
mies’ is that one cannot derive a theory of an entire brain in one 
step. Rather, one does so incrementally in stages. This incremen-
tal theoretical method embodies a kind of design evolution 
whereby each model embodies a certain set of design principles 
and mechanisms that the evolutionary process has discovered 
whereby to cope with a given set of environmental challenges. 
Then, the model is refined, or unlumped, to embody an even 
larger set of design principles and mechanisms and thereby 
expands its explanatory and predictive power. This process of 
evolutionary unlumping continues unabated, leading to current 
models that can individually explain psychological, anatomical, 
neurophysiological, biophysical, and biochemical data about a 
given faculty of biological intelligence.

Using this method, the pART theory of cognitive-emotional 
and working memory dynamics has been discovered and incre-
mentally elaborated over the past 60 years (Figure 1). The current 
exposition will emulate the theoretical method by first summaris-
ing the simplest models that can explain nontrivial amounts of 
prefrontal data, before unlumping them to explain even more 
data. Although, for expository reasons, multiple models will be 
mentioned, it needs to be understood that there is just one unified 
theory behind all the explanations that joins together cognitive-
emotional dynamics and working memory dynamics.

The theoretical derivation always begins with behavioural 
data because brain evolution needs to achieve behavioural suc-
cess. Starting with behavioural data enables models to be derived 
whose brain mechanisms have been shaped during evolution by 
behavioural success. Starting with a large database helps to rule 
out incorrect, but otherwise seemingly plausible, answers.

Such a derivation leads to the discovery of novel design prin-
ciples and mechanisms with which to explain how an individual, 
behaving in real time, can generate the behavioural data as emer-
gent properties. This conceptual leap from data to design is the 
art of modelling. Once derived, despite being based on psycho-
logical constraints, the minimal mathematical model that realises 
the behavioural design principles has always been interpretable 
in terms of brain mechanisms. Sixty years of modelling have 
hereby supported the hypothesis that brains look the way that 
they do because they embody computational designs whereby 
individuals autonomously adapt to changing environments in 
real time. The link from behaviour-to-principle-to-model-to-
brain has, in addition, often disclosed unexpected functional 
roles of the derived brain mechanisms that are not clear from 
neural data alone.

A ‘minimal’ model is one for which if any of the model’s 
mechanisms is removed, then the surviving model can no longer 
explain a key set of previously explained data. Once a connection 
is made top-down from behaviour to brain by such a minimal 
model, mathematical and computational analysis discloses what 
data the minimal model, and its variations, can and cannot 
explain. Such an analysis focuses attention upon design princi-
ples that the current model does not yet embody. These new 
design principles and their mechanistic realisations are then con-
sistently incorporated into the model by unlumping it to generate 
a more realistic model. If the model cannot be refined in this way, 
then that is strong evidence that the current model contains a seri-
ous error and must be discarded. The unified pART model that is 

discussed herein, which explains key functional processes in the 
brain regions depicted in Figure 1, has withstood multiple stages 
of unlumping.

2. Cognitive-emotional dynamics and 
the OFC

2.1. Orbitofrontal coding of desirability as 
probed by selective satiation

This section of the article summarises an explanation of how the 
desirability of an outcome is computed in our brains. The rele-
vant data will first be reviewed before the model that can explain, 
indeed anticipated, them is summarised, along with other data 
explanations and predictions. An outline of the model’s explana-
tion of desirability will first be given to frame the subsequent 
exposition of the model mechanisms that accomplish this.

As noted above, the experiments of Rudebeck et al. (2017) 
support the hypothesis that the OFC, but not the VLPFC, plays a 
necessary role in choices that are based on outcome desirability. 
In contrast, the VLPFC, but not the OFC, plays a necessary role 
in choices that are based on outcome availability. What desirabil-
ity means is explained operationally by an experiment (their 
Experiment 2) that manipulates the subjective value of different 
food rewards with a stimulus-based reinforcer devaluation, or 
satiation, procedure that was earlier used by Málková et al. 
(1997), while keep the probability and magnitude of reward sta-
ble. The monkeys in this experiment were trained with some con-
ditioned stimulus (CS) objects that were associated with Food 1, 
and others associated with Food 2. The two foods acted like 
unconditioned stimuli (US) in the experiment. Following the 
selective satiation procedure, monkeys were presented with pairs 
of objects, one object associated with Food 1 and the other with 
Food 2. The effects of devaluation were measured by calculating 
how much monkeys shifted their choices towards objects associ-
ated with a higher value food, relative to baseline choices.

Both unoperated control monkeys and monkeys with excito-
toxic VLPFC lesions could update and use the current value of 
food reward to guide their choices. In contrast, monkeys with 
excitotoxic OFC lesions chose stimuli that were associated with 
the sated food at a much higher rate. Various tests led unambigu-
ously to the conclusion that this deficit in monkeys with OFC 
lesions arose from their inability to link objects with the current 
value of the food in guiding their choices.

Málková et al. (1997) had earlier used the same devaluation 
procedure in rhesus monkeys to test whether excitotoxic basolat-
eral amygdala (AMYG) lesions lead to an inability to shift deci-
sions based upon current food value. Their experiments followed 
up earlier work of Hatfield et al. (1996) and Holland and Straub 
(1979) in rats. The results on desirability that are reported by 
Rudebeck et al. (2017) on OFC lesions were earlier predicted and 
simulated by the MOTIVATOR (Matching Objects To Internal 
VAlues Triggers Option Revaluations) neural model in Grossberg 
et al. (2008) as part of an explanation of the Málková et al. (1997) 
results.

In particular, Grossberg et al. (2008) wrote the following 
as part of the caption of their Figure 8 that shows data and 
simulations about reaction time, choice behaviour, and reward 
value:
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Choices made between the two CSs reflect preferences 
between the different food rewards. Devaluation of a US by 
food-specific satiety (FSS) shifts the choices of the animal 
away from cues associated with the devalued rewards 
(reprinted with permission from Málková et al., 1997). 
Málková et al. (1997) report the effects of basolateral 
amygdala lesions using a difference score. The difference 
score is calculated by measuring the percent of the trials in 
which the to-be-devalued food is chosen over other foods, 
before and after FSS. The ‘difference score’ reflects the 
difference between these two percentages … Using FEF 
activity to determine cue choice, the intact model (CTL) 
shows a similar shift in CS preference when the US associated 
with it is devalued by FSS. Food-specific satiety is 
implemented by lowering selected DRIVE inputs to the LH 
… The automatic shifting of visual cue preference when an 
associated US is devalued by FSS is lost after AMYG lesions 
(AX) and ORBl lesions (OX). [italics mine]

The devaluation procedure that was used by Málková et al. 
(1997) and Rudebeck et al. (2017) fed monkeys a lot of Food 1 
before testing their choice between Food 1 and an alternative 
food, Food 2, that has not be devalued. The MOTIVATOR 
model explains how devaluing Food 1 reduces the drive input 
(Figure 2(a)) from the lateral hypothalamus (LH) that is needed 
to activate its value category in the amygdala (AMYG), thereby 
reducing its ability to compete with the value category of Food 
2. The value category of Food 2 can hereby win the competition 
between value categories, and release an incentive motivational 
signal to the OFC, which enables the OFC to choose Food 2 
with increased probability. Either AMYG or OFC lesions elimi-
nate this pathway to motivated choice of Food 2.

In order to better understand how this decision process is pro-
posed to work, the subsequent text will review three model prop-
erties: (1) how the brain can learn different value categories that 
can be selectively activated by different foods; (2) how internal 
drive inputs, notably satiety signals, interact with conditioned or 
unconditioned reinforcing sensory inputs before such sensory-
drive combinations compete to determine an incentive motiva-
tional output; and (3) how conditioned reinforcer pathways can 
habituate due to frequent activation by a particular food and thus 
create progressively smaller inputs to their value categories. The 
loss of these factors due to an amygdala lesion may prevent an 

Figure 2. (a) CogEM (Cognitive-Emotional-Motor) neural model circuits 
and their anatomical interpretation. CogEM models how invariant 
object categories in sensory cortex can activate value categories, also 
called drive representations, in the amygdala and hypothalamus, and 
object-value categories in the orbitofrontal cortex. Converging output 
signals from an object category and its value category are needed to 
vigorously fire the corresponding object-value category. Achieving such 
convergence from the amygdala requires prior conditioned reinforcer 
learning and incentive motivational learning. Activation of a value 
category also requires converging signals: from its object category 
and its internal drive input. When an object-value category fires, it 
can send positive feedback to its object category and attentionally 
enhance it with value-modulated activation. The motivationally 
enhanced object category can then better compete with other object 
categories via a recurrent competitive network (not shown) and draw 
attention to itself. Closing the feedback loop between object, value, 
and object-value categories causes a cognitive-emotional resonance 
that can induce a conscious percept of having a particular emotion, 
or feeling, towards the attended object, as well as knowing what it is. 
As this resonance develops, the object-value category can generate 
output signals that can activate cognitive expectations and action 
commands through other brain circuits. Adapted with permission 
from Grossberg and Seidman (2006). (b) The neurotrophic Spectrally 
Timed Adaptive Resonance Theory, or nSTART, model macrocircuit 
is a further development of the START model in which parallel and 
interconnected networks support both delay and trace conditioning. 
Connectivity from both the thalamus and the sensory cortex occurs to 
the amygdala and hippocampus. Sensory cortex interacts reciprocally 
with prefrontal cortex, specifically orbitofrontal cortex. Multiple types 
of learning and neurotrophic mechanisms of memory consolidation 
cooperate in these circuits to generate adaptively timed responses. 
Connections from the sensory cortex to the orbitofrontal cortex support 
category learning. Reciprocal connections from orbitofrontal cortex to 
sensory cortex support motivated attention. Habituative transmitter 

gates modulate excitatory conductances at all processing stages. 
Connections from sensory cortex to amygdala support conditioned 
reinforcer learning. Connections from amygdala to orbitofrontal cortex 
support incentive motivation learning. Hippocampal adaptively timed 
learning and brain-derived neurotrophic factor (BDNF) bridge temporal 
delays between CS offset and US onset during trace conditioning 
acquisition. BDNF also supports long-term memory consolidation within 
sensory cortex to hippocampal pathways and from hippocampal to 
orbitofrontal pathways. The pontine nuclei serve as a final common 
pathway for reading-out conditioned responses. Cerebellar dynamics 
are not simulated in nSTART. Arrowhead: excitatory synapse; hemidisc: 
adaptive weight; square: habituative transmitter gate; square followed 
by a hemidisc: habituative transmitter gate followed by an adaptive 
weight. Reprinted with permission from Franklin and Grossberg (2017).

(Figure 2. Continued)
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animal from shifting its visual cue preference away from a deval-
ued food.

2.2. Reinforcement learning, motivated 
attention, resonance, and directed action

The Rudebeck et al. (2017) concept of desirability of predicted 
outcomes is related to earlier concepts such as the ‘somatic 
marker hypothesis’ which proposes that decision-making is a 
process that depends upon emotion (Bechara et al., 1999). The 
Cognitive-Emotional-Motor, or CogEM, model (Figure 2(a)) that 
will be described in this section, in several incrementally 
unlumped versions that include the MOTIVATOR model, pro-
vides a mechanistic neural explanation of some aspects of emo-
tionally modulated decision-making by describing different 
properties of, and interactions between, sensory cortex, amyg-
dala, and OFC in making these decisions (Baxter et al., 2000; 
Bechara et al., 1999; Schoenbaum et al., 2003; Tremblay and 
Schultz, 1999). CogEM also clarifies how the OFC contributes in 
this circuit to the expression of the incentive value of rewards and 
their sensitivity to reward devaluation (Gallagher et al., 1999), 
and how acquired value in OFC depends on input from basolat-
eral amygdala (Schoenbaum et al., 2003).

These properties of the CogEM model arise as emergent, or 
interactive, properties of the neural mechanisms that regulate 
reinforcement learning among the sensory cortex, amygdala/
hypothalamus, and OFC; the allocation of motivated attention to 
chosen options in the sensory and orbitofrontal cortices as a 
result of this learning; and the release of motivated actions by the 
OFC to acquire valued goal objects that can realise these options 
(Grossberg, 1971, 1972a, 1972b, 1982, 2000b; Grossberg and 
Levine, 1987; Grossberg and Schmajuk, 1987; Grossberg and 
Seidman, 2006).

In particular, as summarised in Figure 2(a), the CogEM model 
explains how invariant object categories, in sensory cortical 
regions like the anterior inferotemporal cortex (ITa), and object-
value categories, in cortical regions like the OFC, interact with 
value categories, in subcortical emotional centres like amygdala 
and hypothalamus. These brain regions are linked by a feedback 
loop which, when activated for sufficiently long time, can gener-
ate a cognitive-emotional resonance. Such a resonance can sup-
port conscious feelings while conditioned reinforcer learning 
pathways (from sensory cortex to amygdala; Gore et al., 2015) 
and incentive motivational learning pathways (from amygdala to 
OFC; Arana et al., 2003) focus motivated attention upon valued 
object and object-value representations. These attended object-
value representations can, in turn, release commands to perform 
actions that are compatible with these feelings.

It needs immediately to be noted, however, that the CogEM 
circuit in Figure 2(a) cannot, by itself, maintain motivated atten-
tion during an adaptively timed interval that is sufficiently long 
to enable reinforcement learning to effectively occur in para-
digms where rewards are delayed in time, as happens during 
trace conditioning and delayed match-to-sample, and to enable a 
conscious ‘feeling of what happens’ to emerge (Damasio, 1999). 
The hippocampus is needed to support both of these properties 
(Figure 2(b)), as sections 2.5 and 2.8 will further discuss.

The next Sections say more about these several types of cat-
egories and the learned interactions between them.

2.3. Object, value, and object-value 
categories

Three different types of learned representations are included in 
the CogEM circuit of Figure 2(a): invariant object categories 
respond selectively to objects that are seen from multiple views, 
positions, and distances from an observer. They are learned by 
inferotemporal (IT) cortical interactions between anterior IT 
(ITa), posterior IT (ITp), and prestriate cortical areas like V4 
(Figure 1; Desimone, 1998; Gochin et al., 1991; Harries and 
Perrett, 1991; Mishkin, 1982; Mishkin et al., 1983; Seger and 
Miller, 2010; Ungerleider and Mishkin, 1982). How such invar-
iant object categories may be learned as the eyes scan a scene is 
modelled by the ARTSCAN Search neural model that is dis-
cussed in Sections 3.28 and 3.29 (Cao et al., 2011; Chang et al., 
2014; Fazl et al., 2009).

Value categories are sites of reinforcement learning that control 
different emotions and incentive motivational output signals. They 
occur in amygdala and hypothalamus in cells where reinforcing and 
homeostatic, or internal drive, inputs converge to generate emotional 
reactions and motivational decisions (Aggleton, 1993; Aggleton and 
Saunders, 2000; Barbas, 1995, 2007; Bower, 1981; Davis, 1994; 
Gloor et al., 1982; Halgren et al., 1978; LeDoux, 1993).

Object-value categories respond to converging signals from 
object categories and value categories. They are proposed to 
occur in OFC. The properties of object-value categories will be 
particularly discussed in this exposition. How they interact with 
representations in other brain regions is also an essential part of 
such an analysis.

Finally, motor representations (M) control discrete adaptive 
responses. They include multiple brain regions, including motor 
cortex and cerebellum (Evarts, 1973; Ito, 1984; Kalaska et al., 
1989; Thompson, 1988). More complete models of the internal 
structure of motor representations and how they generate move-
ment trajectories are described elsewhere (e.g. Bullock et al., 1998; 
Bullock and Grossberg, 1988; Cisek et al., 1998; Contreras-Vidal 
et al., 1997; Fiala et al., 1996; Gancarz and Grossberg, 1998, 1999) 
and can readily be incorporated into CogEM model extensions.

2.4. Conditioned reinforcer, incentive 
motivational, and motor learning: wanting

Three types of learning are shown in Figure 2(a) between these 
representations: conditioned reinforcer learning strengthens the 
pathway from an invariant object category to a value category. 
Incentive motivational learning strengthens the pathway from a 
value category to an object-value category. Motor learning enables 
the performance of an act aimed at acquiring a valued goal object.

Reinforcement learning, such as classical, or Pavlovian, con-
ditioning (Kamin, 1968, 1969; Pavlov, 1927), occurs within con-
ditioned reinforcer pathways (Figure 2(a)). A neutral event is 
called a CS when it is paired with an emotion-inducing, reflex-
triggering event that is called an unconditioned stimulus (US). A 
CS can become a conditioned reinforcer when its object category 
is activated sufficiently often just before the value category is 
activated by an US. As a result of conditioned reinforcer learning, 
a CS can, on its own, subsequently activate a value category via 
this learned pathway. When this happens, the CS is called a con-
ditioned reinforcer because it can trigger many of the same rein-
forcing and emotional effects as an US.
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During classical conditioning, incentive motivational learn-
ing also occurs from the activated value category to the object-
value category that corresponds to the CS, incentive motivational 
learning enables an active value category to prime, or modulate, 
the object-value categories of all CSs that have consistently been 
correlated with it. It is the kind of learning that primes an indi-
vidual to think about places to eat when feeling hungry.

Motor, or habit, learning enables the sensorimotor maps, vec-
tors, and gains that are involved in sensory-motor control to be 
adaptively calibrated, thereby enabling a CS to read out correctly 
calibrated movements via its object-value category.

These conclusions about the CogEM model also hold for oper-
ant, or instrumental, conditioning, where rewards or punishments 
are delivered that are contingent upon particular behaviours 
(Skinner, 1938). In fact, the CogEM model was introduced to 
explain data about operant conditioning (Grossberg, 1971). Many 
reinforcement learning and motivated attentional mechanisms 
exploit shared neural circuits, even though the experimental para-
digms and behaviours that activate these circuits may differ.

The incentive motivational and motor learning pathways con-
tribute to the process that various researchers call wanting. As 
Berridge et al. (2009) note, ‘By “wanting” we mean incentive 
salience, a type of incentive motivation that promotes approach 
towards and consumption of rewards’ (p. 67). See also Smith 
et al. (2011) for a further discussion of the different brain sub-
strates of pleasure and incentive salience.

2.5. Category learning and memory 
consolidation: effects of lesions

A fourth kind of learning, category learning, adapts the connections 
from thalamus to an object category in sensory cortex, and/or from 
an object category to an object-value category in OFC. This category 
learning process enables external objects and events in the world to 
selectively activate object and object-value categories. Category 
learning was not simulated in the original CogEM model (Figure 
2(a)), which focused on reinforcement learning, motivated attention, 
and the release of actions towards valued goal objects. Category 
learning does play a key role in extensions of CogEM, such as the 
neurotrophic Spectrally Timed Adaptive Resonance Theory, or 
nSTART, model (Figure 2(b)) of Franklin and Grossberg (2017). 
nSTART augments CogEM to include category learning, as well as 
adaptively timed learning in the hippocampus that can bridge 
between CS and US stimuli that are separated in time by an interval 
that can be hundreds of milliseconds in duration, as can occur during 
trace conditioning and delayed non-match to sample. Interactions 
between these two processes, augmented by all the other processes 
of CogEM, enable nSTART to explain and simulate how memory 
consolidation of recognition categories may occur after conditioning 
ends. nSTART supports this explanation by mechanistically explain-
ing and simulating data about the complex pattern of disruptions of 
memory consolidation that occur in response to early versus late 
lesions of thalamus, amygdala, hippocampus, and OFC.

2.6. Polyvalent constraints and competition 
interact to choose the most valued options

Both the CogEM and nSTART circuits in Figure 2 need to have two 
successive sensory processing stages, an invariant object category 

stage in the temporal cortex, and an object-value category stage in 
OFC, in order to ensure that the object-value category can release 
motivated behaviour most vigorously if both sensory inputs from 
temporal cortex and motivational inputs from the amygdala are 
simultaneously delivered to the object-value category. A polyvalent 
constraint on an object-value category means that it fires most vig-
orously when it receives input from its invariant object category 
and from a value category. In other words, an object-value category 
is amplified when the action that it controls is valued at that time. 
Only when an object-value category wins a competition with other 
object-value categories can it trigger an action. After learning 
occurs, a conditioned reinforcer can, by itself, satisfy this polyva-
lent constraint by sending a signal from its object category directly 
to its object-value category, and indirectly via the (conditioned 
reinforcer)-(incentive motivational) pathway (Figure 2). 
Converging pathways from sensory cortical areas and amygdala to 
OFC are well known anatomically (e.g. Barbas, 1995).

The firing of each value category in the amygdala/hypothala-
mus is also regulated by a combination of polyvalent constraints 
and competition. Here, the polyvalent constraint (Figure 2(a)) is 
realised by two converging inputs to each value category: a rein-
forcing input from an US or conditioned reinforcer CS via a con-
ditioned reinforcer pathway and a sufficiently large internal drive 
input (e.g. hunger, satiety). Each value category can only become 
active enough to reliably win the competition with other value 
categories when it receives sufficiently big converging inputs, 
and only a winning value category can generate large incentive 
motivational signals to object-value categories. In particular, 
even if visual cues such as a familiar food generate a strong con-
ditioned reinforcer inputs to a value category, it cannot fire if its 
internal drive input is reduced by eating a lot, since then the hun-
ger drive input will decrease and the satiety drive input will 
increase, thereby preventing its value category from winning the 
competition.

Because both the value categories and the object-value cate-
gories obey polyvalent constraints and compete to determine 
either incentive motivational or motor outputs, a CogEM circuit 
tends to choose options for action that are currently the most 
desired ones. These CogEM dynamics hereby clarify necessary 
conditions for the computation of desirability by the OFC.

Many issues need to be discussed to better understand how 
these circuits work in practice. These issues include the follow-
ing: Why is the amygdala called a value category? How does a 
value category differ from just an internal drive such as hunger? 
In particular, can value categories represent specific hungers that 
can be selectively devalued by eating a lot of a particular food? 
How is the hypothalamus involved in learning a value category? 
Finally, are there also pathways for expressing valued goals that 
do not require the amygdala? Such issues will be discussed as the 
exposition proceeds.

2.7. Predicting what happens next in a 
changing world: blocking and unblocking

In the real world, a foraging animal may be confronted with mul-
tiple possible sensory cues that predict different kinds of availa-
ble foods. The case of choosing Food 1 or Food 2 in response to 
different CSs is a special case of this situation. To more com-
pletely understand how a choice of one option over another 
occurs, along with how its desirability is computed, requires an 
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understanding of how attentional blocking and unblocking occur 
(Kamin, 1968, 1969; Pavlov, 1927). Blocking and unblocking 
experiments also clarify how humans and other animals discover 
what combinations of cues are causal and which are predictively 
irrelevant. Causal feature combinations tend to be attended and 
used to control subsequent actions. The following explanation of 
how this happens can be used to design ecologically more realis-
tic neurobiological studies of desirability.

Blocking and unblocking experiments show that the discov-
ery of true environmental causes is an incremental process. 
Unless sufficiently many actions based upon unblocked cue com-
binations are made, and their consequences used to match and 
mismatch learned expectations, an irrelevant cue can be errone-
ously thought to be predictive, much as superstitious behaviours 
may be learned and maintained (Skinner, 1948). Predictive errors 
hereby play a crucial role in shaping the learning of environmen-
tal causes, as popular recent books have noted; for example, 
Schulz (2010). Section 2.14 discusses how unblocking works in 
greater detail.

A food’s desirability in the real world, where there may be 
multiple possible food options to choose from, can only be com-
puted if it is not blocked. For example, suppose that a buzzer 
sound (CS1) is paired with a food reinforcer (US1) until an animal 
salivates to this sound in anticipation of eating the food. On sub-
sequent learning trials, suppose that, before the food occurs, the 
buzzer sounds at the same time that a perceptually equally salient 
light flashes (CS2). Under these circumstances, the flashing light 
does not become a source of conditioned salivation because it 
does not predict, indeed does not cause, any consequence that the 
buzzer sound alone did not already predict. In other words, the 
flashing light is predictively irrelevant and is thus attentionally 
blocked.

On the other hand, suppose that, whenever the flashing light 
occurs with the buzzer sound, the amount of subsequent food 
(US2) is much greater than when the buzzer sound occurred 
alone. Then, the animal does learn to anticipate food in response 
to the flashing light, with the usual salivation and expectation of 
subsequent food, because it causally predicts an increase in food. 
If, instead, the amount of food that is presented when the flashing 
light and buzzer occur together is much less than when the buzzer 
sound occurred alone, then a wave of frustration (Amsel, 1962, 
1992), which is a negative reinforcer, may be experienced, even 
though some food, which is a positive reinforcer, has been pre-
sented. The process whereby the CS2 becomes predictively rele-
vant is called attentional unblocking, and it may become a source 
of either a conditioned appetitive response or conditioned frustra-
tion, depending on whether the amount of food is more or less 
ample after the simultaneous cues than in response to the buzzer 
alone. Unexpected consequences can hereby lead to the discov-
ery of new cue combinations that cause valued consequences. 
Attention can then be focused on the unblocked cues, which can 
then be associated with appropriate new responses.

Blocking and unblocking experiments show that humans and 
many other animals behave like minimal adaptive predictors who 
can learn to focus their attention upon events that causally predict 
important affective consequences, while ignoring other events, at 
least until an unexpected consequence occurs.

The same CogEM dynamics that enable the OFC to release 
actions aimed at acquiring desirable goal objects also carry out 
blocking. Blocking can be understood in the CogEM model as a 

result of how a cognitive-emotional resonance using the feed-
back pathways between temporal cortex, amygdala, and OFC 
(Figure 2) triggers competition among the representations in each 
of these brain regions to choose, and thereby attend to, the object 
that has the most salient combination of sensory input and moti-
vational feedback from its value category.

For blocking to work properly, the cells in sensory cortex and 
OFC need to obey the membrane equations of neurophysiology, 
also called shunting interactions, and to compete with each other 
using recurrent, or feedback, inhibitory interactions. Such recur-
rent shunting on-centre off-surround networks tend to conserve, 
or normalise, the total activity that is shared among their active 
cells (Grossberg, 1973, 1980, 2013b). Thus, if the activity of one 
object category gets most amplified by a favourable combination 
of feedforward and feedback signalling, then the activities of the 
object categories with which it is competing will be inhibited, 
leading to attentional blocking. Grossberg and Levine (1987) 
simulated attentional blocking using these CogEM interactions. 
An explanation of unblocking requires additional mechanisms 
that will be described in Section 2.14.

It should be noted that blocking and unblocking experiments 
share some properties with the Asaad et al. (2017) experiments on 
credit assignment. Section 3.19 clarifies why this is so.

2.8. Cognitive-emotional resonances, feeling 
of what happens, and somatic markers

Previous articles review additional psychological and neurobio-
logical data that the CogEM model has explained and predicted, 
and how it compares with other models of cognitive-emotional 
dynamics; for example, Grossberg (2013a, 2017b). All of these 
data explanations are relevant, moreover, to the computation of 
desirability.

One such comparison relates to the ability of the CogEM 
model to explain and predict clinical data. Damasio (1999) has 
derived from clinical data a heuristic version of the CogEM 
model and used it to describe cognitive-emotional resonances 
that support ‘the feeling of what happens’. Each processing stage 
in Damasio’s model (see his Figure 6.1) corresponds to a pro-
cessing stage in the CogEM circuit of Figure 2(a). In particular, 
Damasio’s ‘map of object X’ corresponds to the sensory cortical 
stage where invariant object categories are represented. His ‘map 
of the proto-self’ becomes the value category and its multiple 
interactions. His ‘second-order map’ becomes the object-value 
category. And his ‘map of object X enhanced’ becomes the object 
category as it is attentively amplified by feedback from the 
object-value category. Feedback from an object-value category 
to its object category closes an excitatory feedback loop between 
object, value, and object-value categories. Persistent activity 
through this loop – maintained long enough with the help of 
adaptively timed feedback from sensory cortex to OFC via the 
hippocampus (Figure 2(b)) – enables the attended object to 
achieve emotional and motivational significance and to drive the 
choice of motivated decisions that can trigger context-appropri-
ate actions towards valued goals.

Such sustained activation through a positive feedback loop 
gives rise to a resonant brain state. In the present instance, it is 
called a cognitive-emotional resonance because it binds cogni-
tive information in the object category to emotional information 
in the value category. A resonance is a dynamical state during 
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which neuronal firings across a brain network are amplified and 
synchronised when they interact via excitatory feedback signals 
during a matching process that occurs between bottom-up and 
top-down pathways. Grossberg (2013a, 2017b) explains in detail 
how resonating cell activities focus attention upon a subset of 
cells, and how the brain can become conscious of attended events 
during a resonant state. It is called an adaptive resonance because 
the resonant state can trigger learning within the adaptive 
weights, or long-term memory (LTM) traces, that exist at the syn-
apses of these pathways. In a cognitive-emotional resonance, 
these adaptive weights occur in conditioned reinforcer and incen-
tive motivational pathways, among others. Several different 
types of adaptive resonances will be described below.

CogEM hereby embodies and anticipated key concepts of the 
‘somatic marker hypothesis’ which proposes that decision-mak-
ing is a process that depends upon emotion, while also providing 
a mechanistic neural explanation and simulations (e.g. Grossberg 
et al., 2008) of various different properties of amygdala and OFC 
in making these decisions (Baxter et al., 2000; Bechara et al., 
1999; Schoenbaum et al., 2003).

CogEM has also proposed explanations of additional clini-
cal data, such as the data about memory consolidation that 

were mentioned above (Franklin and Grossberg, 2017); data 
about Fragile X syndrome and some types of repetitive behav-
iours that are found in individuals with autism (Grossberg and 
Kishnan, 2018); and data about emotional, attentional, and 
executive deficits that are found in individuals with autism or 
schizophrenia (Grossberg, 2000b; Grossberg and Seidman, 
2006).

2.9. MOTIVATOR: amygdala and basal ganglia 
dynamics during conditioning

In order to mechanistically explain how devaluation works, and 
to answer the questions posed at the end of Section 2.6, the 
MOTIVATOR model, which unlumps the CogEM model, is 
needed (Dranias et al., 2008; Grossberg et al., 2008; Figure 3(a)). 
The MOTIVATOR model combines the CogEM model with a 
model of how the basal ganglia (BG) learns to respond to 
expected and unexpected rewards (Figure 4(a)–(c); Brown et al., 
1999). Thus, in addition to clarifying how value categories are 
learned, the MOTIVATOR model begins to explain how the 
amygdala and the BG interact with one another and with the 

Figure 3. (a) The MOTIVATOR neural model explains and simulates key computationally complementary functions of the amygdala and basal ganglia 
(SNc) during conditioning and learned performance. The basal ganglia generate Now Print signals in response to unexpected rewards. These signals 
modulate learning of new associations in many brain regions. The amygdala supports motivated attention to trigger actions that are expected 
to occur in response to conditioned or unconditioned stimuli. Object Categories represent visual or gustatory inputs in anterior inferotemporal 
(ITA) and rhinal (RHIN) cortices, respectively. Value Categories represent the value of anticipated outcomes on the basis of hunger and satiety 
inputs, in amygdala (AMYG) and lateral hypothalamus (LH). Object-Value Categories resolve the value of competing perceptual stimuli in medial 
(MORB) and lateral (ORB) orbitofrontal cortex. The Reward Expectation Filter detects the omission or delivery of rewards using a circuit that 
spans ventral striatum (VS), ventral pallidum (VP), striosomal delay (SD) cells in the ventral striatum, the pedunculopontine nucleus (PPTN) and 
midbrain dopaminergic neurons of the substantia nigra pars compacta/ventral tegmental area (SNc/VTA). The circuit that processes CS-related visual 
information (ITA, AMYG, ORB) operates in parallel with a circuit that processes US-related visual and gustatory information (RHIN, AMYG, MORB). 
(b) Reciprocal adaptive connections between lateral hypothalamus and amygdala enable amygdala cells to become learned value categories. The 
bottom region represents hypothalamic cells, which receive converging taste and metabolite inputs whereby they become taste-drive cells. Bottom-
up signals from activity patterns across these cells activate competing value category, or US Value Representations, in the amygdala. A winning 
value category learns to respond selectively to specific combinations of taste-drive activity patterns and sends adaptive top-down priming signals 
back to the taste-drive cells that activated it. CS-activated conditioned reinforcer signals are also associatively linked to value categories. Adaptive 
connections end in (approximate) hemidiscs. See text for details.
Source: Adapted with permission from Dranias et al. (2008).
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temporal and orbitofrontal cortices to focus motivated attention 
and trigger choices aimed at acquiring valued goal objects.

The BG need to be discussed along with the amygdala because 
it plays an important role in both the cognitive-emotional and 

Figure 4. (a) Model circuit for the control of dopaminergic Now Print signals in response to unexpected rewards. Cortical inputs (Ii), activated by 
conditioned stimuli, learn to excite the SNc via a multi-stage pathway from the ventral striatum (S) to the ventral pallidum and then on to the 
PPTN (P) and the SNc (D). The inputs Ii excite the ventral striatum via adaptive weights WiS, and the ventral striatum excites the PPTN via double 
inhibition through the ventral pallidum, with strength WSP. When the PPTN activity exceeds a threshold GP, it excites the SNc with strength WPD. 
The striosomes, which contain an adaptive spectral timing mechanism (xij, Gij, Yij, Zij), learn to generate adaptively timed signals that inhibit 
reward-related activation of the SNc. Primary reward signals (IR) from the lateral hypothalamus both excite the PPTN directly (with strength WRP) 
and act as training signals to the ventral striatum S (with strength WRS) that trains the weights WiS. Arrowheads denote excitatory pathways, circles 
denote inhibitory pathways, and hemidiscs denote synapses at which learning occurs. Thick pathways denote dopaminergic signals. Reprinted with 
permission from Brown et al. (1999). (b) Dopamine cell firing patterns: Left: data. Right: model simulation, showing model spikes and underlying 
membrane potential. (A) In naive monkeys, the dopamine cells fire a phasic burst when unpredicted primary reward R occurs, such as if the monkey 
unexpectedly receives a burst of apple juice. (B) As the animal learns to expect the apple juice that reliably follows a sensory cue (conditioned 
stimulus, CS) that precedes it by a fixed time interval, then the phasic dopamine burst disappears at the expected time of reward, and a new burst 
appears at the time of the reward-predicting CS. (C) After learning, if the animal fails to receive reward at the expected time, a phasic depression, 
or dip, in dopamine cell firing occurs. Thus, these cells reflect an adaptively timed expectation of reward that cancels the expected reward at the 
expected time. The data are reprinted with permission from Schultz et al. (1997). The model simulations are reprinted with permission from Brown 
et al. (1999). (c) Dopamine cell firing patterns: Left: data. Right: model simulation, showing model spikes and underlying membrane potential. (A) 
The dopamine cells learn to fire in response to the earliest consistent predictor of reward. When CS2 (instruction) consistently precedes the original 
CS (trigger) by a fixed interval, the dopamine cells learn to fire only in response to CS2. Data reprinted with permission from Schultz et al. (1993). 
(B) During training, the cell fires weakly in response to both the CS and reward. Data reprinted with permission from Ljungberg et al. (1992). 
(C) Temporal variability in reward occurrence: When reward is received later than predicted, a depression occurs at the time of predicted reward, 
followed by a phasic burst at the time of actual reward. (D) If reward occurs earlier than predicted, a phasic burst occurs at the time of actual 
reward. No depression follows since the CS is released from working memory. Data in C and D reprinted with permission from Hollerman and Schultz 
(1998). (E) When there is random variability in the timing of primary reward across trials (e.g. when the reward depends on an operant response to 
the CS), the striosomal cells produce a Mexican Hat depression on either side of the dopamine spike. Data reprinted with permission from Schultz 
et al. (1993). Model simulation reprinted with permission from Brown et al. (1999).
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working memory learning that are relevant to this article’s 
explanatory goals (Figure 1). Indeed, the amygdala and BG seem 
to play computationally complementary roles (Grossberg, 
2000a), with the BG triggering Now Print learning signals in 
response to unexpected rewards, and the amygdala learning to 
activate incentive motivational signals with which to help acquire 
expected rewards. A Now Print learning signal is a signal that is 
broadcast broadly to many brain regions where it can modulate 
learning at all of its recipient neurons (Grossberg, 1974; Harley, 
2004; Livingston, 1967; McGaugh, 2003).

As in CogEM, the model amygdala and LH interact to calcu-
late the expected current value of the subjective outcome that the 
CS predicts, constrained by the current state of deprivation or 
satiation. The amygdala then relays the expected value informa-
tion to orbitofrontal cells (ORB in Figure 3(a) and OFC in Figure 
1) that receive visual inputs from anterior inferotemporal cells 
(ITA; Amaral and Price, 1984; Ghashghaei and Barbas, 2002; 
Öngür and Price, 2000; Reep et al., 1996) and to medial orbito-
frontal cells (MORB in Figure 3(a)) that receive gustatory inputs 
from rhinal cortex (RHIN) (Barbas, 1993, 2000; Barbas et al. 
1999; Reep et al., 1996). The activations of these orbitofrontal 
cells code the expected subjective values of objects. These values 
guide behavioural choices.

The review of Levy and Glimcher (2012) discusses the OFC 
computation of expected subjective value from the perspective of 
neuroeconomic theory. Also of neuroeconomic interest is the 
Grossberg and Gutowski (1987) exposition of how the CogEM 
model explains and simulates data of Kahneman and Tversky 
(1979) about decision-making under risk, thereby explaining 
Prospect Theory axioms using neural designs that are essential 
for survival, as well as data that Prospect Theory cannot explain, 
such as data about preference reversals.

The model BG, or Reward Expectation Filter (Figures 3(a) 
and 4(a)), detects errors in CS-specific predictions of the value 
and timing of rewards (Ljungberg et al., 1992; Schultz, 1998; 
Schultz et al., 1992, 1993, 1995, 1997). Excitatory primary 
rewarding inputs from the LH reach the substantia nigra pars 
compacta (SNc), via the pedunculopontine nucleus (PPTN). The 
SNc also receives adaptively timed inhibitory inputs from model 
striosomes in the ventral striatum. Mismatches between these 
signals can trigger widespread dopaminergic burst and dip Now 
Print signals from cells in SNc (Figure 4(a)) and the ventral teg-
mental area (VTA in Figure 3(a)). Learning in cortical and striatal 
regions is strongly modulated by these Now Print signals, with 
dopamine bursts strengthening conditioned links and dopamine 
dips weakening them. In particular, such a dopaminergic Now 
Print signal modulates learning in the two pathways that are acti-
vated by a CS in Figure 4(a). After learning occurs, one pathway, 
via the ventral striatum to the SNc, enables the CS to activate the 
SNc and generate its own Now Print signals. The other pathway, 
via the striosomes to the SNc, enables the CS to inhibit responses 
to an expected US from the LH. This SNc circuit will be impor-
tant in considering the kinds of reinforcement learning that are 
spared when amgydala and/or OFC are lesioned.

MOTIVATOR was used to explain and simulate psychologi-
cal and neurobiological data from tasks that examine food-spe-
cific satiety, Pavlovian conditioning, reinforcer devaluation, and 
simultaneous visual discrimination, while retaining the ability to 
simulate neurophysiological data about SNc. Model simulations 
successfully reproduced the neurophysiologically recorded 

dynamics of hypothalamic cell types, including signals that pre-
dict saccadic reaction times and CS-dependent changes in sys-
tolic blood pressure.

In order to more fully understand how food-specific satiation 
occurs, more needs to be said about how value categories in the 
amygdala are learned as a result of adaptive feedback interactions 
with the LH, and why, in order to properly regulate reinforcement 
learning and affective prediction, some of these pathways need to 
receive internal drive inputs and/or habituative reinforcing 
inputs. This explanation will be given in Section 2.11.

2.10. Temporal difference models of BG 
responses to unexpected rewards

The Reward Expectation Filter of the MOTIVATOR model was 
first published in Brown et al. (1999) who used it to explain and 
simulate many experiments about how SNc reacts to rewards 
whose amplitude or timing is unexpected. Several other models 
have attempted to describe the SNc cell behaviour using a tempo-
ral difference (TD) algorithm (Montague et al., 1996; Schultz 
et al., 1997; Suri and Schultz, 1998). These models suggest that 
the dopaminergic SNc cells compute a temporal derivative of 
predicted reward. In other words, they fire in response to the sum 
of the time-derivative of reward prediction and the actual reward 
received. These models have not been linked to structures in the 
brain that might compute the required signals. As Brown et al. 
(1999) have noted, the Suri and Schultz (1998) model has simu-
lated some of the known dopamine cell data. However, their 
model can only learn a single fixed interstimulus interval (ISI) 
that corresponds to the longest-duration timed signal (xlm(t) in 
their model). If the ISI is shorter than this, dopamine bursts will 
strengthen all of the active stimulus representations predicting 
reward at the time of the dopamine burst or later. Thus, their 
model generates inhibitory reward predictions beyond the pri-
mary reward time, and predicts a lasting depression of dopamine 
firing subsequent to primary reward, which is not found in the 
data, data that the Brown et al. (1999) model explains.

In contrast to TD models that compute time derivatives imme-
diately prior to dopamine cells, our model uses two distinct path-
ways: the ventral striatum and PPTN for initial excitatory reward 
prediction, and the striosomal cells for timed, inhibitory reward 
prediction. The fast excitation and delayed inhibition are hereby 
computed by separate structures within the brain, rather than by a 
single temporal differentiator. This separation avoids the problem 
of the Suri and Schultz (1998) model by allowing transient rather 
than sustained signals to cancel the primary reward signal, 
thereby enabling precisely timed reward-cancelling signals to be 
trained, and preventing spurious sustained inhibitory signals to 
the dopamine cells.

2.11. Learning value categories for specific 
foods and effects of their removal

Figure 3(b) diagrams how the MOTIVATOR model conceptual-
ises the learning of a value category as a result of reciprocal adap-
tive interactions between the LH and the amygdala (AMYG). 
This figure summarises how the model embodies a network that 
calculates the drive-modulated affective value of a food US 
(Cardinal et al., 2002); notably, how selective responses to 
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different foods can be acquired. Animals have specific hungers 
that vary inversely with blood levels of metabolites such as sugar, 
salt, protein, and fat (Davidson et al., 1997). Similarly, the gusta-
tory system has chemical sensitivities to tastes such as sweet, 
salty, umami, and fatty (Kondoh et al., 2000; Rolls et al., 1999). 
An AMYG value category (top level in Figure 3(b)) learns to 
respond to particular LH combinations of these metabolites and 
tastes (bottom level in Figure 3(b)) in a selective fashion, hence 
can represent specific hungers.

MOTIVATOR begins its computation of food-specific selec-
tivity with the lower layer of the model’s LH cells in Figure 3(b). 
These cells perform pairwise multiplications, each involving a 
taste and its corresponding drive level. They are therefore called 
taste-drive cells. LH neurons such as glucose-sensitive neurons 
provide examples of LH cells that are both chemical- and taste-
sensitive. Indeed, glucose-sensitive neurons are excited by low 
glucose levels, inhibited by high glucose levels, and respond to 
the taste of glucose with excitation (Karadi et al., 1992; Shimizu 
et al., 1984).

The activation pattern across all these taste-drive cells is pro-
jected via converging adaptive pathways to a higher cell layer 
and summed there by an AMYG value category cell that repre-
sents the current value of the specific food US. These cells are 
therefore also called US-value cells. Such food selective US-value 
representations can be learned from a competitive learning pro-
cess (Grossberg, 1976a, 1978a) that associates distributed activa-
tion patterns at the taste-drive cells with compressed 
representations at the US-value cells that survive the competition 
at the AMYG processing level. The resulting US-value cells in 
the AMYG help to explain data about neurons in the AMYG that 
respond selectively to specific foods or associated stimuli in a 
manner that reflects the expected consumption value of the food 
(e.g. Nishijo et al., 1988a, 1988b).

Figure 3(a) and (b) illustrates the hypothesis that a visual CS 
becomes a conditioned reinforcer by learning to activate a 
US-value representation in the AMYG during CS-US pairing 
protocols. Despite the fact the CS generates no gustatory inputs 
to the taste-drive cells and is not actually consumed, the model 
can use this CS-US association to compute the prospective value 
of the US, given current drives, during the period between CS 
onset and the delivery of the food US. The model can do this if 
the CS-activated US-value representation in the AMYG can, in 
turn, activate the taste-drive cells in the LH that have activated it 
in the past, when the US was being consumed.

This is accomplished, as depicted in Figure 3(a) and (b), by 
adaptive top-down pathways, or learned expectations, from the 
US-value cells in the AMYG to the taste-drive cells in the LH. 
The resultant bidirectional adaptive signalling between taste-
drive LH cells and integrative US-value AMYG cells can prime 
the taste-value combinations that are expected in response to the 
conditioned reinforcer CS. Such reciprocal adaptive interactions 
have also been shown, as part of Adaptive Resonance Theory 
(ART), to be capable of stabilising category learning and mem-
ory, in whatever brain systems they occur (see Section 2.12; 
Carpenter and Grossberg, 1987, 1991; Grossberg, 1980, 2013a, 
2017b). An ART circuit complements the bottom-up adaptive fil-
ter of a competitive learning model with adaptive top-down 
expectation signals, among other extensions. ART was intro-
duced to overcome the catastrophic forgetting that occurs when 
only bottom-up learning occurs (Grossberg, 1976a, 1976b). 

Without top-down expectations to dynamically stabilise the 
learning of value categories, memory instability could become as 
great a problem in LH-AMYG dynamics as it would be in the 
learning of invariant object categories by the inferotemporal cor-
tex (Figures 2 and 3).

These properties of AMYG value categories help to explain 
how an animal’s behaving changes when its AMYG is lesioned. 
When the AMYG is lesioned, the ability to selectively respond to 
specific foods is eliminated. The reduced drive inputs of a sati-
ated food will then not be able to cause a smaller activation of its 
AMYG value category. Also lost will be the competition among 
value categories that would determine the choice of a non-sati-
ated food in a normal animal.

If a food was visually presented to a normal animal in order to 
satiate it, then both reduced internal drive and external cue inputs 
could contribute to the choice of a non-satiated food (Figures 2 
and 3). In particular, as above, eating a lot of food would lead to 
shrinking appetitive inputs and growing satiety drive inputs to 
the LH. Seeing the food repeatedly during each eating event 
could also habituate the conditioned reinforcer inputs that acti-
vate the corresponding AMYG value category.

It should immediately be noted that not all responsiveness to 
reinforcing cues is eliminated by lesions of the AMYG. The BG 
can still be fully functional. As illustrated by Figure 4(a), LH 
inputs can still regulate learning of dopaminergic Now Print sig-
nals from the SNc to large parts of the brain, including the PFC, 
in response to unexpected rewards. As will be discussed in  
Section 3, these Now Print signals can support learning of repre-
sentations that are sensitive to the probability of reward over a 
series of previous trials.

2.12. Another mismatch mechanism for 
correcting disconfirmed behaviour: ART

This BG mechanism for processing an unexpected reinforcing 
event is not the only way that unexpected events are processed by 
the brain. Another fundamental process is also at work in percep-
tual and cognitive processes that greatly influences how the PFC 
makes predictions that are sensitive to the probability of reward 
over a series of previous trials. This process enables humans and 
other primates to rapidly learn new facts without being forced to 
just as rapidly forget what they already know, even if no one tells 
them how the rules of each environment differ or change through 
time. When such forgetting does occur, it is often called cata-
strophic forgetting.

Grossberg (1980) called the problem whereby the brain learns 
quickly and stably without catastrophically forgetting its past 
knowledge the stability-plasticity dilemma. ART was introduced 
to explain how brains solve the stability-plasticity dilemma. 
Since its introduction in Grossberg (1976a, 1976b), ART has 
been incrementally developed into a cognitive and neural theory 
of how the brain autonomously learns to attend, recognise, and 
predict objects and events in a changing world, without experi-
encing catastrophic forgetting. ART currently has the broadest 
explanatory and predictive range of available cognitive and neu-
ral theories. See Grossberg (2013a, 2017b) for reviews.

ART prevents catastrophic forgetting by proposing how top-
down expectations focus attention on salient combinations of 
cues, called critical feature patterns. When a good enough match 
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occurs between a bottom-up input pattern and a top-down expec-
tation, a synchronous resonant state emerges that embodies an 

attentional focus. Such a resonance is capable of driving fast 
learning that incorporates the attended critical feature pattern into 

Figure 5. ART search and learning cycle. This figure summarises how ART searches for and learns a new recognition category using cycles of match-
induced resonance and mismatch-induced reset due to interactions of an attentional system and an orienting system. (a) Input pattern I is instated 
across feature detectors at level F1 of the attentional system as an activity pattern X, at the same time that it generates excitatory signals to the 
orienting system A with a gain ρ that is called the vigilance parameter. The activity pattern X is represented by a shaded region in (a) and (d). Activity 
pattern X generates inhibitory signals to the orienting system A as it generates a bottom-up input pattern S to the category level F2. A dynamic balance 
within A between excitatory inputs from I and inhibitory inputs from S keeps A quiet. The bottom-up signals in S are multiplied by learned adaptive 
weights to form the input pattern T to F2. The inputs T are contrast-enhanced and normalised within F2 by recurrent lateral inhibitory signals that 
obey the membrane equations of neurophysiology, otherwise called shunting interactions (see section 3.15). This competition leads to selection and 
activation of a small number of cells within F2 that receive the largest inputs. The chosen cells represent the category Y that codes for the feature 
pattern at F1. In this figure, a winner-take-all category is chosen, represented by a single cell (population). (b) The category activity Y generates top-
down signals U that are multiplied by adaptive weights to form a prototype, or critical feature pattern, V that encodes the expectation that the active 
F2 category has learned for what feature pattern to expect at F1. This top-down expectation input V is added at F1 cells using the ART Matching Rule, 
whereby object attention activates a top-down, modulatory on-centre, off-surround network. If V mismatches I at F1, then a new STM activity pattern 
X* (the grey pattern in (b) and (c); white regions represent inhibited cells) is selected at cells where the patterns match well enough. In other words, 
X* is active at I features that are confirmed by V. Mismatched features (white area) are inhibited. When X changes to X*, total inhibition decreases 
from F1 to A. (c) If inhibition decreases sufficiently, the orienting system A releases a nonspecific arousal burst to F2; that is, ‘novel events are arousing’. 
Within the orienting system A, a vigilance parameter ρ determines how bad a match will be tolerated before a burst of nonspecific arousal is triggered. 
This arousal burst triggers a memory search for a better-matching category, as follows: arousal resets F2 by inhibiting Y. (d) After Y is inhibited, X 
is reinstated and Y stays inhibited as X activates a different winner-take-all category Y*, at F2. Search continues until a better matching, or novel, 
category is selected. When search ends, a feature-category resonance triggers learning of the attended data in adaptive weights within both the bottom-
up and top-down pathways, at the same time that it supports conscious recognition of the attended object (Grossberg, 2013a, 2017b). As learning 
stabilises, inputs I can activate their globally best-matching categories directly through the adaptive filter, without activating the orienting system.
Source: Adapted with permission from Carpenter and Grossberg (1987).
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the bottom-up adaptive filters that activate recognition catego-
ries, and the top-down expectations that are read out by them – 
hence the name adaptive resonance – while suppressing outliers 
that could have caused catastrophic forgetting.

In contrast, when a bottom-up input pattern represents an 
unexpected event, it can cause a big mismatch with the currently 
active top-down expectation. As illustrated in Figure 5, such a 
mismatch, or disconfirmed expectation, can trigger a burst of 
nonspecific arousal (‘novel events are arousing’). It is called non-
specific arousal because it affects all category representations 
equally, since the orienting system that triggers such an arousal 
burst has no information about which active categories caused 
the mismatch, and thus must be reset (Figure 5(c)). A nonspecific 
arousal burst can reset whatever categories caused the mismatch 
(Figure 5(d)) and initiate a search for a more predictive category. 
In this way, rapid reset of an object category can occur when it 
leads to disconfirmed behaviours, and a more predictive category 
can automatically be chosen in its stead.

Figure 5 illustrates the limiting case in which the category 
level makes a winner-take-all choice of a single winning cell, or 
cell population. In general, the category level compresses the dis-
tributed patterns on the feature level, but does not necessarily 
chose winner-take-all categories; for example, Carpenter (1997). 
The two processing levels in Figure 5 schematise a kind of 
dynamics that may be repeated in multiple brain regions within 
the What cortical stream. Figure 18 below illustrates how this can 
happen in the laminar circuits of neocortex.

How do brain circuits selectively respond to a nonspecific 
arousal burst in order to inhibit unpredictive categories and trig-
ger a memory search? One mechanism is by causing antagonistic 
rebounds in opponent processing circuits. Such rebounds can 
occur in perceptual, cognitive, and affective brain circuits. They 
will now be explained for the special case of LH-AMYG interac-
tions that are needed to explain how devaluation and reversal 
learning work.

2.13. Opponent processing by gated dipoles 
in object and value categories

The LH-AMYG pathways in Figures 2 and 3 include circuits that 
control opponent emotional and motivational states, such as fear 
versus relief, and hunger versus satiety. These opponent circuits 
can trigger an antagonistic rebound in response to two kinds of 
input changes: changes in the amount of reward or punishment, 
such as a sudden increase or reduction in the amount of food or 
shock level; or to an unexpected event, such as the non-occur-
rence of an expected shock. The rebound that is caused by the 
non-occurrence of an expected event is triggered by a burst of 
nonspecific arousal to the dipole (Figure 6(a)) due to a mismatch 
with the expectation of the non-occurring event (Figure 5(c)). 
These rebounds can rapidly reset a currently active value cate-
gory, and the amount of incentive motivation with which it was 
supporting an ongoing valued behaviour, while simultaneously 
helping to choose more predictive representations with which to 
learn and perform the new environmental contingency.

These opponent circuits are modelled by gated dipoles (Dranias 
et al., 2008; Grossberg, 1972a, 1972b, 1980, 1984a, 2000b; 
Grossberg et al., 2008; Grossberg and Seidman, 2006). The sim-
plest gated dipole circuit is depicted in Figure 6(a) (Grossberg, 
1972b). It has non-recurrent, or feedforward, ON and OFF chan-
nels, or pathways. ON and OFF cells within the opponent pathways 

of a gated dipole can represent an opponent pair of emotional and 
motivational states. Gated dipoles have helped to explain many data 
about both classical and operant conditioning, including condi-
tioned extinction, learned escape and avoidance, attentional 
unblocking, partial reinforcement acquisition effect, gambling 
behaviours, and self-punitive behaviours – behavioural properties 
that currently seem to have no other mechanistic neural explana-
tions. Simple mechanisms, occurring in a prescribed order, enable 
gated dipoles to cause antagonistic rebounds either in response to 
changes in reinforcer amplitude or to disconfirmations of cognitive 
expectations of reward. As explained by ART, disconfirmation of a 
cognitive expectation can cause a nonspecific arousal burst that is 
broadcast throughout the brain (Figure 5(c)). When such an arousal 
burst is received by a hypothalamic gated dipole, it can cause an 
antagonistic rebound. The caption of Figure 6(a) explains how an 
antagonistic rebound occurs.

Neurophysiological data from hypothalamic ‘opposite cells’ 
match affective gated dipole properties, including their opponent 
and rebound properties (Nakamura et al., 1987; Nakamura and 
Ono, 1986; Ono et al., 1986). These hypothalamic properties 
have been simulated by the MOTIVATOR model (Figure 3(a); 
Dranias et al., 2008; Grossberg et al., 2008). The ON and OFF 
channels within a gated dipole in the LH of the MOTIVATOR 
model delivers inputs to the AMYG value categories which, in 
turn, provide incentive motivational signals to OFC object-value 
categories, and thereby influences what actions are taken to 
achieve valued goals. Animals with an intact AMYG and OFC 
can hereby use hypothalamic rebounds to flexibly choose value 
and object-value categories that can track changing reinforce-
ment contingencies, and thereby update an option’s desirability. 
Indeed, the primate AMYG contains separate cell populations 
that respond to positively and negatively valued visual stimuli 
(Paton et al., 2006), can carry out moment-by-moment tracking 
of state value (Belova et al., 2008; Morrison and Salzman, 2010), 
and are modulated by unexpected events (Belova et al., 2007).

Opponent processing circuits with gated dipole rebound prop-
erties also occur in perceptual and cognitive brain regions, and 
reflect the ability of these representations to be rapidly reset, and 
indeed reversed, when stimulus conditions change. For percep-
tual examples of how a change in stimulus level can cause a 
rebound, consider negative aftereffects: Offset of sustained view-
ing of intersecting radial lines leads to an opponent MacKay 
negative aftereffect of concentric circles. Offset of sustained 
viewing of a red surface leads to an opponent green surface after-
effect. Offset of sustained viewing of a video of water flowing 
downwards leads to an opponent waterfall aftereffect of motion 
upwards. See Francis and Grossberg (1996) for a model of 
boundary grouping and surface filling-in that explains and simu-
lates such perceptual aftereffects.

Rebounds also help to carry out tasks in response to changes 
in perceptual cues. As one example, consider the task for humans 
of pushing a buzzer, or for pigeons of pecking a key, as fast as 
possible when a red light shuts off. If the only thing that hap-
pened in the brain when the light shuts off was the termination of 
activity within a category that codes for red (among other fea-
tures), then there would be no internal signal at stimulus offset to 
activate the buzzer press. If, however, offset of the ON cell (pop-
ulation) that codes for red triggers an antagonistic rebound in an 
associated OFF cell (population), then activation of the OFF cell 
can learn to be associated with the buzzer press, or key peck, 
command.
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Figure 6. (a) A gated dipole opponent process can generate habituative ON responses and transient OFF rebounds in response to the phasic onset and 
offset, respectively, of an input to the ON channel. These mechanisms are a phasic input to the ON channel that is turned on and off through time (input 
J), nonspecific arousal that is delivered equally to the ON and OFF pathways (input I), cell activities at each of the three processing stages in the ON and 
OFF pathways (variables xi for the six cells that are labelled with indices i = 1–6), activity-dependent habituative transmitters for the ON and OFF pathways 
(variables zi with i = 1 and 2, and denoted by the square synapses), competition across the ON and OFF pathways (pathways with plus and minus signs), and 
output thresholds that rectify the ON and OFF pathway output signals. The antagonistic rebound in response to offset of a phasic input, such as a fear-
inducing shock to the ON pathway (variable J), is the transient OFF-response (e.g. relief) at the output stage of the OFF pathway. This rebound is energised 
by the tonic input I that equally arouses both the ON and the OFF pathways, even after the phasic input shuts off. The activities at the dipole’s several 
processing stages react to the phasic and tonic inputs in the following way: the ON and OFF cell activities x1 and x2 respond to the sum of tonic-plus-phasic 
ON pathway input I + J, and the tonic OFF pathway input I, respectively, before they generate output signals f(x1) and f(x2) to the next processing stage. 
Before they reach the next processing stage, these signals are multiplied, or gated, by the habituative transmitters z1 and z2, respectively. The gated output 
signals f(x1)z1 and f(x2)z2 excite the ON and OFF cell activities x3 and x4, respectively, at the next processing stage. The habituative transmitters convert the 
step-plus-baseline activity pattern x1 in the ON channel into the overshoot-habituation-undershoot-habituation pattern at activity x3. The baseline activity 
pattern x2 in the OFF channel is converted into the habituated baseline activity x4. Next, opponent competition occurs across the ON and OFF channels. 
As a result, the habituated baseline activity x4 in the OFF channel is subtracted from the ON activity x3 to yield x5. The overshoot and undershoot in x5 are 
now shifted down until they lie above and below the equilibrium activity zero, respectively, of x5. Then, activity x5 is thresholded to generate an ON output 
signal. This output signal has an initial overshoot of activity, followed by habituation. The negative activity in the undershoot of x5 is inhibited to zero 
by the output threshold. When the signs of excitation and inhibition are reversed in the OFF channel, the activity x6 is caused. Activity x6 is simply the 
flipped, or mirror, image of x5 with respect to the zero equilibrium activity. Positive (negative) activities in x5 become negative (positive) activities in x6. 
Thresholding x6 again cuts off negative activities, thereby allowing only the flipped undershoot to generate the OFF channel output. This rectified output is 
the transient antagonistic rebound. Grossberg (1972b) mathematically proved that a sudden increment in arousal can also trigger an antagonistic rebound. 
Since ‘novel events are arousing’, this property enables an unexpected event to trigger an antagonistic rebound. See Grossberg and Seidman (2006, Appendix 
A) for a review of this proof. In summary, an antagonistic rebound is due to interactions between a phasic input, tonic arousal, habituative transmitter 
gating, competition, and thresholding. (b) A READ (REcurrent Associative Dipole) circuit is a gated dipole with excitatory feedback, or recurrent, pathways 
between activities x7 and x1, and activities x8 and x2. Feedback enables the READ circuit to maintain a stable motivational baseline to support an ongoing 
motivated behaviour. A sensory representation Sk sends conditionable signals to the READ circuit that are multiplied, or gated, by conditioned reinforcer 
adaptive weights, or long-term memory (LTM) traces, wk7 and wk8 to the ON and OFF channels, respectively. Read-out of previously learned adaptive weights 
is dissociated from read-in of new values of the learned weights. This dissociation allows new weight learning to be generated by teaching signals from the 
ON or OFF channel that wins the opponent competition. The combination of recurrent feedback and associative dissociation enables the adaptive weights to 
avoid learning baseline noise, while they maintain in short-term memory the relative balance of ON and OFF channel conditioning during a motivated act, 
and preserve their learned conditioned reinforcer associations until they are disconfirmed by predictive mismatches if and when new learning contingencies 
are experienced. Reprinted with permission from Grossberg and Schmajuk (1987). (c) Gated dipole opponent processes exhibit an Inverted-U behavioural 
response as a function of arousal level, as explained in the text. Reprinted with permission from Grossberg and Seidman (2006).
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2.14. Affective antagonistic rebounds, 
unblocking, and reversal learning

Antagonistic rebounds facilitate tracking and learning about 
changing reinforcement contingencies in many other types of 
situations, including the learning of escape behaviours, atten-
tional unblocking (Section 2.7), and reversal learning. For exam-
ple, either a sudden reduction of a fearful shock, or the 
non-occurrence of an expected shock, can cause a relief rebound 
(Denny, 1971; Masterson, 1970; Reynierse and Rizley, 1970) that 
can be used to motivate new conditioned responses. The unex-
pected non-occurrence of food can, in contrast, cause a frustra-
tive rebound (Amsel, 1962, 1992) that can be used to suppress 
unsuccessful responses. Thus, rebounds can occur from negative 
to positive affects, such as from fear to relief, or from positive to 
negative affects, such as from hunger to frustration. These antag-
onistic rebounds enable the brain to learn responses that quickly 
adapt to changing reinforcement contingencies.

For example, suppose that an animal who is experiencing a 
shocked Skinner box floor accidentally pushes a red button that 
causes the shock to stop and opens a door whereby to escape 
from the Skinner box. The sudden termination of shock causes a 
relief rebound within its value category. The object category that 
is activated by the red button can then be associated with the 
relief-activated value category, leading to new conditioned rein-
forcer learning, incentive motivational learning, and motor learn-
ing (Figure 2(a)). In this way, conditioned relief can be used to 
motivate the learned escape behaviour in the future. In the oppo-
site direction, the frustrative rebound that occurs after expected 
food does not occur can drive forgetting, or extinction, of motiva-
tional support for the consummatory actions that no longer lead 
to food, thereby releasing exploratory behaviours to search for 
more productive sources of food.

Using the same mechanisms, the unexpected change in rein-
forcer amplitude in an unblocking experiment, or an unexpected 
change in reward schedule in a reversal experiment, can cause 
antagonistic rebounds that immediately modify the net incentive 
motivation that is controlling ongoing behaviour, while also trig-
gering rapid relearning, via the newly activated value categories, 
of the conditioned reinforcer, and incentive motivational, and 
motor learning pathways that will control subsequent motivated 
choices. These hypothalamic rebounds can also help reversal 
learning to occur in circuits that do not involve AMYG and OFC, 
such as the hypothalamic pathway via the SNc that causes Now 
Print signals to be broadcast to multiple brain regions, including 
PFC (Figures 3(a) and 4(a)).

In an unblocking experiment, at least two kinds of events, one 
cognitive and one cognitive-emotional, occur in parallel. The 
cognitive-emotional event is due to the antagonistic rebounds 
that have just been described. They cause activation of a new 
combination of value categories. The cognitive event enables a 
more predictive set of perceptual features and object categories to 
be attended, including those that would have remained blocked if 
there was no change in the expected reinforcer (see Section 2.7). 
Unblocking happens when a burst of nonspecific arousal is trig-
gered by the unexpected reinforcer and causes new features and 
categories to be selected and attended (Figure 5(c) and (d)). 
Then, the new features and categories can be associated with the 
newly activated value categories to cause new conditioned rein-
forcer, incentive motivational, and motor learning that can, for 
example, lead to escape from the shocked Skinner box floor.

When a shock is unexpectedly reduced, it can cause a 
rebound in the relief channel that can more than cancel the direct 
effect of the reduced shock input to the fear channel. In this way, 
an unexpectedly small shock can act as a positive reinforcer, 
despite the fact that shock is a negative US (Grossberg, 1972b; 
Section 6). Sudden flips of affective sign can occur in other 
ways as well in a gated dipole opponent processing circuit. One 
such effect is called by Robinson and Berridge (2013) an ‘instant 
transformation of learned repulsion into motivational “want-
ing”’ (p. 282). In this kind of experiment, a lever is associated 
with an intensely unpleasant concentration of salty water. The 
ensuing aversive behaviours after presentation of the lever can 
be immediately transformed into positive ‘wanting’ responses 
by injections of deoxycorticosterone and furosemide that mimic 
sodium deficiency.

Wanting can also be increased in hyperdopaminergic mutant 
mice who embody a dopamine transporter (DAT) knockdown 
mutant (Zhuang et al., 2001) that causes 70% higher extracellular 
dopamine levels in the striatum (Peciña et al., 2003). One way 
that wanting can be increased in these mice is that larger dopa-
minergic Now Print signals (Figures 3(a) and 4(a)) during learn-
ing may strengthen the conditioned reinforcer, incentive 
motivation, and motor learning pathways that support stronger 
‘wanting’ responses.

2.15. READ circuits: feedback enables stable 
motivation and secondary conditioning

Once rebound mechanisms of a gated dipole are understood, it is 
then possible to explain how rebounds can lead to new reinforce-
ment learning, including reversal learning and changes in object 
desirability. To fully achieve these properties, the non-recurrent 
dipole of Figure 6(a) needs to be replaced by a recurrent dipole, 
with positive feedback pathways within the ON and OFF oppo-
nent channels. The recurrent gated dipole in Figure 6(b) is called 
a READ circuit, for REcurrent Associative Dipole (Grossberg 
and Schmajuk, 1987). READ circuits model the hypothalamic 
gated dipoles in the MOTIVATOR model. They are omitted in 
Figure 3(a) for simplicity.

Due to recurrent feedback in both the ON and OFF channels 
of a READ circuit, activity x7 reactivates x1 in the ON channel, 
while activity x8 reactivates x2 in the OFF channel. As in Figure 
6(a), there are also habituative transmitter gates z1 and z2 in the 
ON and OFF channels, respectively. In addition, adaptive 
weights, or LTM traces, wk7 and wk8, within the black hemidisc 
synapses, sample the ON and OFF channels, respectively, in 
response to sampling signals Sk that are activated by different 
CSs. These CSs become conditioned reinforcers when they are 
associated with reinforcing US inputs at the gated dipole (input J 
in Figure 6(b)). Any number k of sampling signals, that are acti-
vated by different CS signals Sk, can converge on a single READ 
circuit. In this way, multiple CSs, with different levels of desira-
bility, can all benefit from the same emotional and motivational 
hypothalamic circuits.

Properties of reversal learning and changes in object desira-
bility build upon the ability of a READ circuit to simulate data 
about primary and secondary excitatory and inhibitory condition-
ing, among other important properties. The utility of a recurrent 
anatomy is vividly illustrated by the case of secondary inhibitory 
conditioning. Suppose that CS1 is associated with a US shock 
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input J until it becomes a source of conditioned fear. For this to 
happen, the adaptive weights of CS1 must occur after the position 
in the ON channel where the US input J is registered, so that they 
can sample the activity caused by the US. After CS1 has become 
a source of conditioned fear, suppose that onset of a different CS2 
is associated with the offset of CS1 so that it can sample the antag-
onistic rebound in the relief channel, and thereby learn how to 
become a source of conditioned relief. For this to happen, CS1 
must deliver its input before the habituative gates, so that its off-
set can cause the rebound in the OFF channel. In contrast, CS2 
must occur after the habituative gates, where it can sample the 
rebound, and thereby achieve secondary inhibitory conditioning.

What does this have to do with recurrent connections? The 
following sleight of hand makes this clear: this experiment could 
have been done with any CS1 and CS2. If we now interchange the 
cues that are used as CS1 and CS2, then by the above argument, 
each CS must occur both before and after the habituative gates. 
This can only happen if the network has recurrent connections 
within the ON and OFF channels.

A READ circuit exhibits several other basic functional prop-
erties that enable it to learn and perform motivated behaviours in 
a naturalistic environment. These properties were demonstrated 
with computer simulations in Grossberg and Schmajuk (1987). 
First, it can maintain steady motivation while a behaviour is 
being performed, even during sufficiently small environmental 
distractions. This happens because the READ circuit is a special-
ised recurrent on-centre off-surround network that is capable of 
storing activity patterns in short-term memory (STM). Section 
3.15 explains how storage occurs.

Second, a READ circuit can rapidly switch to support a new 
behaviour with a different motivation if the distraction, or change 
in reinforcement contingency, is big enough. This is just a reset of 
STM in response to external inputs that change enough to over-
come the hysteresis caused by the recurrent excitatory feedback.

Third, a READ circuit enables affective learning to remain 
sensitive to any number of reinforcing events throughout the lifes-
pan; its LTM traces do not saturate. In other words, if conditioning 
continued to occur over many trials, one could imagine all the 
LTM traces reaching their maximum values, after which no future 
conditioning would be possible. LTM saturation is prevented from 
happening in a READ circuit in the following way: the LTM 
traces sample dendritic activities (the thick black bars in Figure 
6(b)) of cells with activities x7 and x8. These dendrites receive 
teaching signals in the form of retrograde calcium spikes from the 
cell bodies (Grossberg, 1975; Magee and Johnston, 1997; 
Markram et al., 1995, 1997). These teaching signals occur after 
the ON and OFF channels have undergone opponent competition. 
Due to opponent competition, if both ON and OFF channels had 
the same activity, their teaching signals would be inhibited to 
zero, so that the LTM traces that sample them would also approach 
zero. When the ON and OFF channels have different activities, 
the competition computes teaching signals that are normalised net 
activities because the activities in such a recurrent on-centre off-
surround network are normalised. The LTM traces can continue to 
learn these net values throughout life, without ever saturating.

Fourth, a READ circuit enables affective memories to be pre-
served for a long time, even years, until reward or punishment 
schedules change, or cognitive expectations are disconfirmed. 
Such stable memories help to explain the persistence of instru-
mental avoidance behaviours and why Pavlovian conditioned 
inhibitors do not extinguish, among other conditioning data 

(Grossberg, 1972a; Grossberg and Schmajuk, 1987; Kamin et al., 
1963; Lysle and Fowler, 1985; Maier et al., 1969; Miller and 
Schachtman, 1985; Owren and Kaplan, 1981; Solomon et al., 
1953; Witcher, 1978; Zimmer-Hart and Rescorla, 1974). The sta-
ble affective memory happens because, when LTM traces are 
read into STM by gating the signal from a recall probe Sk in 
Figure 6(b), they instate in STM the normalised net pattern that 
they have learned. The sampled LTM traces then, in turn, sample 
this STM pattern and thereby ensure their stability under recall.

2.16. Inverted-U: emotional depression in 
mental disorders

Gated dipoles have other properties without which reinforcement 
learning and motivated attention would not be possible. These 
properties would profitably be more deeply probed by modern 
neurophysiological methods.

A property of major importance is that the activity of a gated 
dipole circuit exhibits an Inverted-U as a function of its arousal 
level (Figure 6(c)). The Inverted-U is a consequence of the same 
mechanisms that enable a gated dipole to trigger antagonistic 
rebounds and to thereby quickly adapt to changing reinforcement 
contingencies. The Inverted-U can be traced to how the state of 
habituation in the dipole’s transmitter gates (square synapses in 
Figure 6(a) and (b)) divide the effects of signals through the dipole. 
This division creates a Weber Law of dipole responsiveness.

In particular, a gated dipole can support normal behavioural 
dynamics if its tonic arousal level, as distinct from phasic arousal 
bursts in response to unexpected events, remains within an opti-
mal range that causes peak values of the Inverted-U to occur 
(Figure 6(c)). These intermediate arousal input sizes generate a 
Golden Mean of responding that enables sufficient activation of 
AMYG value categories to occur. Maintaining this optimal range 
during waking hours is a major achievement of the affective brain. 
Future experiments are needed to probe how this example of 
homeostatic plasticity is maintained. Failure to do so is reflected 
in behavioural symptoms of several mental disorders, including 
autism and schizophrenia (Grossberg, 2000b; Grossberg and 
Seidman, 2006), as well as attention deficit hyperactivity disorder, 
or ADHD (see below).

Gated dipoles play a role in causing symptoms of these mental 
disorders when the arousal level remains either abnormally small 
or abnormally large. At either extreme, gated dipole outputs are 
depressed, but in different ways. Abnormally small arousal causes 
an underaroused depressive syndrome, whereas abnormally large 
arousal causes an overaroused depressive syndrome.

In an underaroused gated dipole, the response threshold to 
inputs is abnormally high but, after input intensity exceeds this 
elevated threshold, further increments in input intensity lead to 
hypersensitive emotional responses (Figure 6(c)). This happens 
because the habituative transmitter that divides dipole responses 
in abnormally small. In an overaroused gated dipole, the thresh-
old to inputs is abnormally low but, despite the ability of inputs 
to easily exceed this threshold, all dipole responses are hyposen-
sitive, leading to a flat emotional affect, insufficient incentive 
motivation, and a hypofrontal condition that is insufficient to 
support normal executive functions. This happens because the 
habituative transmitter that divides dipole responses is abnor-
mally large. Underarousal may be one cause of behavioural 
symptoms in individuals with autism (Baker et al., 2017; 
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Bujnakova et al., 2016) that are explained in Grossberg and 
Seidman (2006), whereas overarousal may be one cause of 
behavioural symptoms in schizophrenia (Ban, 1973; Depue, 
1974; Haralanova et al., 2011) that are explained in Grossberg 
(2000b).

Other mental disorders may also reflect these underaroused 
and overaroused depressive properties. For example, many indi-
viduals with ADHD seem to be underaroused; for example, 
Mayer et al. (2016). The underaroused transmitter has been 
reported to be dopamine, and it gives rise to the kind of hypersen-
sitivity that gated dipole affective dynamics predict (Sikström 
and Söderlund, 2007). Moreover, pharmacological ‘uppers’ like 
Ritalin are often used to bring individuals with ADHD ‘down’ 
(e.g. Weyandt et al., 2014). In a gated dipole, this happens 
because such an upper will increase tonic arousal from undera-
roused hypersensitivity to a Golden Mean of more moderate sen-
sitivity and threshold reactivity (Figure 6(c)).

These clinical symptoms will have predictable effects on rein-
forcement learning and motivated behaviour, notably on factors 
like desirability and reversal learning, that the reader can derive 
using the earlier explanations of these behavioural properties.

2.17. Some other recent models of 
orbitofrontal functioning

One way to appreciate the explanatory value of the cognitive-
emotional processes that have been summarised in Section 2 is 
by contrast with other recent models of OFC. For example, 
Wilson et al. (2014) and Schuck et al. (2016) have proposed a 
model which proposes that OFC is a ‘cognitive map of task 
space’ during animal and human decision-making. They claim 
that ‘OFC is critical for representing task states in … partially 
observable scenarios’ and that ‘OFC is unique in its ability to 
disambiguate task states that are perceptually similar but concep-
tually different, for instance by using information from working 
memory’ (Wilson et al., 2014: 267). One of the types of data that 
they use the model to simulate is how OFC dysfunction ‘is 
impaired during reversal learning’ (Wilson et al., 2014: 268). 
However, as was earlier reviewed in Section 1.2, monkeys with 
selective excitotoxic lesions of the OFC, unlike monkeys who 
have received aspiration OFC lesions, are unimpaired in learning 
and reversing object choices based on reward feedback (Rudebeck 
et al., 2013). Neurotoxic lesions of the amygdala (Izquierdo and 
Murray, 2007) have also led to results that challenge earlier dem-
onstrations using aspiration and radiofrequency lesions that the 
amygdala is needed for object reversal learning (Aggleton and 
Passingham, 1981; Jones and Mishkin, 1972; Spiegler and 
Mishkin, 1981).

How did the model lead to the wrong explanation? A basic 
weakness of the model is that is does not describe any neural 
mechanism. It does not model the functions of any brain region, 
including OFC. Instead, it describes abstract state space repre-
sentations to fit any particular set of data, with different states 
hypothesised to explain different data sets, and ad hoc assump-
tions that are tailored to explain each data set about how these 
abstract states will change due to an OFC lesion. One can go so 
far to criticise the definition of model states as being circular, 
designed, and modified until they simulate a small piece of data, 
even if the data are wrong, as in the case of reversal learning. 
These states are typically connected by abstract edges in a 

feedforward network. There are none of the feedback loops of 
identified neural interactions with critical functional properties 
that are described herein, for example, Figures 1–8, 10, 12, 15, 
17, and 18. A typical feedforward diagram in Wilson et al. (2014) 
is between one abstract state and two outcomes, or two succes-
sive states and an outcome.

Their model proposes no decision-making dynamics. Instead, 
it is a variant of the kind of formal, discrete time, statistical learn-
ing theories that were popular in the 1950s–1970s, such as stimu-
lus sampling theory (Estes, 1950), the Rescorla–Wagner learning 
rule (Rescorla and Wagner, 1972), and the Luce (1977) choice 
rule. The Rescorla–Wagner (1972) model was, however, shown 
long ago to be inadequate even to offer a formal explanation of 
key classical conditioning data, such as why conditioned excitors 
extinguish, but conditioned inhibitors do not (Lysle and Fowler, 
1985; Owren and Kaplan, 1981; Witcher, 1978; Zimmer-Hart 
and Rescorla, 1974), which the CogEM model does explain 
(Grossberg and Schmajuk, 1987). Thus, any model, including the 
Wilson et al. (2014) model, that attempts to explain data about 
extinction using this learning law is building on an incorrect 
foundation. Even if its states happen to be chosen to simulate a 
fixed piece of data, the learning law by which it does so cannot be 
trusted.

The second formal rule in the model, the Luce choice rule, is 
a simple ratio rule that, being a ratio, conveniently represents 
probabilistic outcomes, but includes no mechanistic explana-
tory power. This kind of formal rule has been obsolete for 
40 years, ever since the self-normalising properties of recurrent 
shunting on-centre off-surround networks started to be used to 
explain STM and decision-making in the brain (Douglas et al., 
1995; Grossberg, 1973, 1978a, 1978b, 1980; Heeger, 1992; see 
Section 3.15).

None of the explanations in Wilson et al. (2014) hold up to 
scrutiny. For example, it is assumed that ‘pressing the lever led to 
1 U of reward during conditioning and to −0.2 U in extinction’. 
None of the real-time dynamics of how an unexpected non-
reward counter-conditions a learned action is described. In con-
trast, the MOTIVATOR model explains in detail how recurrent 
opponent processes, modelled by gated dipoles, undergo antago-
nistic rebounds in response to unexpected events (Sections 2.13–
2.15), whose matching process is modelled by ART (Figure 5). 
Each of these model circuits is supported by psychological, ana-
tomical, and neurophysiological data and explains and predicts 
data that cannot be explained within a Rescorla–Wagner–Luce 
framework.

Wilson et al. (2014) claim to simulate how immediate versus 
delayed reward, including delayed alternation (p. 269), influence 
learned actions, but there is no representation of a delay in their 
model, unlike the adaptively timed learning in the pART model 
SNc, VTA, and hippocampus (Figures 2(b), 3(a), and 4(a)) that 
all share the same substrate of spectral timing which is realised 
by Ca++-modulated metabotropic glutamate (mGluR) dynamics 
(Brown et al., 1999). Significantly, our SNc/VTA model provides 
a real-time neural explanation of dopamine release in response to 
unexpected rewards. Despite there being no model VTA in the 
Wilson et al. (2014), the authors nonetheless discuss dopamine 
firing by VTA neurons (pp. 271–272) in terms of a purely descrip-
tive state diagram that is created to match the experiment.

Schunk et al. (2016) espouses the same model as Wilson et al. 
(2014), but it primarily reports interesting functional magnetic 
resonance imaging (fMRI) data from humans who are presented 
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with a series of images, each of which contains a face superim-
posed on a house. The task is to perform an age judgment of faces 
or houses on separate blocks of trials:

The age (young or old) of the first trial defined the age of the 
current ‘mini-block’ and participants were instructed to 
continue judging the same category as long as the age in that 
category stayed the same. Upon encountering a trial in which 
the age in the judged category was different (e.g. a change 
from ‘young’ to ‘old’), the task rules required participants to 
switch to judging the age of the other category, starting a new 
mini-block on the next trial. (p. 1403)

All of their data can be explained by the following pART neu-
ral mechanisms, none of which is modelled in their own article. 
In particular, the first trial in a block can activate an invariant 
object category for faces or houses (Figures 2(a) and 3(a)). 
Choosing low vigilance enables the choice of a general category 
that can match against many faces, or many houses, but not both 
(Figure 5). This invariant object category can be maintained in 
STM during the block of trials by, among other circuits, the feed-
back loop between visual cortex, amygdala, and OFC (Figures 2 
and 3). Sustained top-down attentive feedback from the invariant 
category to lower cortical and thalamic levels is matched against 
the bottom-up images via the ART Matching Rule (Figure 5(b)). 
These top-down signals are priming signals that can select face or 
house features from their overlay in each image, while suppress-
ing mismatched features, thereby creating a match state. When 
there is a big enough mismatch with the category of the top-down 
prime, say due to a change in the age of the face in the current 
image, the mismatch can reset the invariant object category 
(Figure 5(c)) and the next block can begin.

These category matching events use the invariant object cat-
egories in anterior inferotemporal cortex (ITa in Figure 1), which 
is called sensory cortex in Figures 2 and 3. Each active invariant 
category reads out a top-down prime against which input exem-
plars are matched at lower cortical levels, for example, posterior 
inferotemporal cortex (ITp in Figure 1). In addition, it activates 
its specific connection from ITa to OFC (Figures 1–3). Because 
the ITa-to-OFC connections are specific, changes in matching of 
an active invariant category at ITa are also represented at OFC, 
where they could be decoded by the support vector machine clas-
sifier that the authors applied to their data.

Instead of providing such a mechanistic account, variants of 
which have explained scores of other experiments about visual 
search and top-down attentive matching (e.g. Grossberg, 2013a, 
2017b), including how low vigilance categories are learned and 
matched against image morphs (Akrami et al., 2009; Grossberg 
et al., 2011), the authors show that different choices of abstract 
states can create fits to the data, thereby illustrating the arbitrary 
nature of state choices. In particular, the authors write (p. 1404) 
‘It is interesting to note that we did not find any evidence that the 
observable component “current age” could be classified, while its 
unobservable counterpart “previous age” was decodable in 
OFC’. This finding can be explained by the fact that the task is to 
match a current image exemplar against a stored invariant proto-
type of a face or house category that is young or old. Once that 
category is stored, all matching throughout a block of trials is 
against the stored ‘previous age’ until a mismatch causes reset of 
the active category, leading to choice of a category with which to 
match exemplars in the next block of trials.

These OFC articles illustrate how all the design principles, 
mechanisms, circuits, and architectures that are summarised in 
Section 2 play useful roles in explaining data about OFC and its 
interactions with multiple other brain regions, as in Figures 1–3.

3. Working memory, chunking, and 
reinforcement in PFC and related 
areas
This section will explain how different parts of the PFC (Figure 
1) interact to regulate the availability of outcomes (Rudeck 
et al., 2017), solve the credit assignment problem (Asaad et al., 
2017), and control aspects of feature-based attention (Baldauf 
and Desimone, 2014; Bichot et al., 2015). All the explanations 
derive from properties of prefrontal working memory circuits, 
the cognitive plans, or list chunks, which are learned from 
them, and the regulatory cognitive and emotional machinery 
that enables prefrontal circuits to predict outcomes that can 
maximise reward based on previously experienced sequences 
of events.

3.1. VLPFC lesions cause a deficit in learning 
probabilistic stimulus-outcome associations

Rudeck et al. (2017) concluded that VLPFC encodes the availa-
bility, rather than the desirability, of outcomes. They based this 
conclusion on experiments in which excitotoxic lesions of the 
VLPFC led to a profound deficit in the ability of lesioned mon-
keys to learn probabilistic stimulus-outcome associations. Their 
Experiment 1 first tested the ability to update likelihood esti-
mates for predicted outcomes by training a group of unoperated 
control monkeys and a group of monkeys with excitotoxic OFC 
neurons to perform a three-choice probabilistic learning task. 
Four of the unoperated control monkeys were tested before they 
also received excitotoxic VLPFC lesions. This procedure enabled 
monkeys with OFC lesions to be compared with controls, 
whereas monkeys with VLPFC lesions were compared with their 
own preoperative performances.

Each session consisted of 300 trials on which monkeys 
were presented with three novel stimuli on a touch screen mon-
itor. Monkeys sampled different stimuli over trials to learn 
which stimulus was associated with the highest probability of 
reward. Reward delivery was based on one of four different 
reinforcement schedules, called stable, variable, forward, and 
backward, which use a predetermined series of reward/no-
reward outcomes for each option on each trial over the 300 trial 
testing session. The likelihood of receiving a reward for choos-
ing an option on each trial was calculated using a moving 
20-trial window.

Unoperated controls and monkeys with OFC lesions quickly 
learned which image predicted the highest probability of reward 
and could track that image as it changed with the reward schedule 
on each session. In contrast, the VLPFC-lesioned monkeys were 
severely impaired on this task, except with the schedule wherein 
one option had a very high probability of reward compared to the 
others. Thus, the deficit is greatest when the probabilistic differ-
ence between the options is small. Unlike unoperated controls 
and OFC-lesioned animals, VLPFC-lesioned animals were more 
likely to change their choices between trials than they were 
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before their lesions. After their lesions, they were more likely to 
switch choices after a rewarded choice than were controls or 
OFC-lesioned monkeys.

Rudeck et al. (2017) traced these effects to a reduced effect of 
the long-term effects of reward history, also called contingent 
learning. Choices on the five preceding trials were analysed. In 
monkeys with VLPFC lesions, associations between previous 
choices and the outcomes that contingently followed had essen-
tially no influence on subsequent choices, except when one 
option consistently had a very high probability of reward. In this 
last condition, monitoring which previous sequences of stimuli 
predicted higher reward is not essential to doing the task.

3.2. Some classical data about sequential 
dependencies influencing future choices

The Rudeck et al. (2017) experiments contribute to a long history 
of experiments in psychology and psychobiology that study how 
probabilistic choices are determined by previous sequences of 
events. These kind of data are often attributed to the short-term 
storage of sequences of events and the influence of these stored 
sequences on current choices. The short-term storage of event 
sequences is accomplished by a working memory (e.g. Baddeley, 
1986, 1996, 2012; Baddeley and Hitch, 1974; Cowan et al., 2005; 
Engle, 2002; Grossberg, 1978a, 1978b; Grossberg and Pearson, 
2008; Oberauer, 2009; Silver et al., 2011). The term ‘working 
memory’ is used here to describe short-term storage of event 
sequences, not just the persistent storage of one event. Data and 
neural models will be summarised below that clarify how multi-
ple items can be simultaneously stored in working memory and 
use these models to explain the Rudeck et al. (2017) data.

An early discovery was that pupil dilation increases with the 
number of items that are stored in working memory, for example, 
Kahneman and Beatty (1966) and Unsworth and Robison (2015). 
Oddball experiments also activate working memory. In an odd-
ball paradigm (Banquet and Grossberg, 1987; Squires et al., 
1975), a subject receives a Bernoulli series of two types of stimu-
lus with complementary probabilities: a frequent distractor stim-
ulus, and a rare target stimulus, with unsignalled switches 
occurring in the probabilities of these stimuli. The subject has to 
perform a task such as releasing a motor response to each target 
stimulus, or counting target stimuli. Various measures indicate 
that a subject tracks the probabilistic sequential dependencies of 
distractor and target stimuli, for example, distractors 80% of time 
and targets 20% of time. These include the P300 event-related 
potential (ERP; Picton, 1992; Sutton et al., 1965), also called the 
P3b, whose amplitude tends to vary inversely with target stimu-
lus probability (Duncan-Johnson and Donchin, 1977; Tueting 
et al., 1971). Longer sequences of distractors elicit larger P300s 
(Remington, 1969; Squires et al., 1976), and the P300 is ampli-
fied by practice as an expectation of sequence structure is learned 
(Banquet and Grossberg, 1987). Adding an ERP manipulation to 
neurophysiological recordings can be a useful way to coordinate 
classical psychophysiological explanations with modern neuro-
physiological methods.

After an object or event sequence is stored in working mem-
ory, it can activate the learning of a cognitive plan, or list chunk, 
by sending output signals through a bottom-up adaptive filter to 
a category learning level (Figure 7). The adaptive filter obeys the 
same laws as the one from the feature level F1 to the category 

level F2 in the ART circuit of Figure 5(a) and (d). Such an adap-
tive filter can learn to categorise any spatial pattern of activity 
across a network of feature detectors. In the case where the activ-
ity pattern represents a sequence, or list, of items stored in work-
ing memory, the category uses the adaptive filter to learn list 
chunks that selectively respond to subsequences of these stored 
items. The dynamics depicted in Figure 7 of these two levels and 
their interactions will be explained below, including how 
Masking Fields learn to choose the list chunks that predict the 
most likely outcomes. For now, it suffices to note that learning by 
the adaptive weights, or LTM traces (hemidiscs in Figure 7), can 
learn a list chunk using the same kind of ART dynamics that can 
learn an object category or a value category, but a list chunk 
codes sequences, or lists, or events rather than objects or affec-
tive values.

3.3. Cognitive working memory and list 
chunks in VLPFC

This and the next few sections will present experimental and 
modelling facts that lead to an explanation of how VLPFC work-
ing memory and chunking dynamics compute the availability of 
outcomes. A large cognitive neuroscience experimental literature 
has implicated the VLPFC in working memory tasks, notably 
tasks that engage verbal and language working memory proper-
ties (e.g. Awh et al., 1996; Schumacher et al., 1996), as well as in 
temporal sequencing properties that are dissociated from the spe-
cific stimulus type (Gelfand and Bookheimer, 2003). Nozari, 
Mirman, and Thompson-Schill (2016) review a large number of 
competences that all require such a temporal sequencing property 
at their core, whatever other control structures also exist in order 
to convert the stored sequences into observable behaviours.

The theoretical discussion below will propose why so many 
cognitive competences may exploit a similar temporal sequenc-
ing property. It will explain how and why all linguistic, spatial, 
and motor working memories are predicted to exploit varia-
tions and specialisations of a similar circuit design (Section 
3.15; Grossberg, 1978a, 1978b; Grossberg and Pearson, 2008; 
Silver et al., 2011), along with psychological and neurophysi-
ological data that support this hypothesis. Henceforth, the kind 
of working memory that is found in VLPFC will be called a 
cognitive working memory to distinguish it from the kind of 
motor working memory in DLPFC that converts the VLPFC 
stored sequences into sequences that are monitored to choose 
and perform properly ordered and timed sequential behaviours 
(Petrides et al., 2002).

3.4. List chunks and reinforcement interact 
in a probabilistic choice environment

A list chunk that is active when reinforcement occurs can later be 
amplified by learned feedback interactions from reinforcement-
sensitive midbrain structures. The MOTIVATOR model (Figure 
3(a)) has already noted how this can happen due to interactions 
between OFC (or ORB) and the amygdala and BG. Amplification 
helps this list chunk to win the competition with other possible 
list chunks.

In particular, area 12o of macaque monkeys interacts  
with the LH (Öngür et al., 1998), and this area was spared in the 
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excitotoxic OFC lesions of Rudeck et al. (2017), but not the 
VLPFC lesion. Interactions with PRC may also play a role  
(Section 3.26; Petrides and Pandya, 2002). The winning list 
chunk can then be preferentially associated with a rewarded stim-
ulus by the Now Print signals that are emitted by SNc when this 
stimulus unexpectedly occurs (Figures 3 and 4). On later trials, 
output signals from this list chunk can be used to prime, and thus 
help to choose, the next stimulus to be attended and chosen. List 
chunks that are active when the most rewards occur will thus be 
favoured to win the competition and to determine future choices.

On the other hand, when a winning list chunk no longer best 
represents the correct choice, then its choice of an unexpectedly 
unrewarded stimulus can cause two parallel processes to occur 
that reduce the probability of choosing that list chunk in the 
future. First, the unexpected outcome can cause hypothalamic 
rebounds that can begin to extinguish the motivational support 
for the list chunk (Sections 2.14 and 2.15; Figure 6(a)). Second, 
SNc-mediated dopaminergic dips when a chosen stimulus is 
unexpectedly unrewarded (Figure 4) can begin to weaken the 
association between the list chunk and its learned prime. These 
reinforcing events in response to predictive successes and fail-
ures are cumulative across learning and performance trials, 
thereby flexibly shifting the list chunk that has the most support, 
and thus the choice that the newly chosen list chunk reads out, 
across trials. When a list chunk influences future choices based 
on past event sequences and their reinforcement history, it may 
be said to function as a cognitive plan.

This article argues that such working memory representations 
and their list chunks exist in the VLPFC, albeit in different corti-
cal layers (see Figure 10 below; Grossberg and Pearson, 2008), 
and can be amplified by reinforcing events even if the AMYG 
and OFC are excitotoxically lesioned. In this way, animals with 
AMYG or OFC lesions can compute the availability of a valued 
outcome, even if they can no longer estimate the desirability of 
such an outcome.

Different probabilistic reinforcement schedules require that 
an animal be sensitive to, and thus store in working memory, dif-
ferent numbers of preceding rewarded and unrewarded choices. 
Choosing among lower reinforcement probabilities requires sen-
sitivity to longer preceding sequences, other things being equal. 
When reinforcement is increased, and in the limit rewards every 
choice of a particular image, then tracking previous sequences of 
choices is no longer needed to make a correct choice on the next 
trial. This sort of consideration clarifies why a VLPFC working 
memory is not needed to adapt to such a (nearly) deterministic 
reinforcement schedule.

This consideration also calls attention to a basic problem that 
the brain needs to solve: how does the brain know how to choose 
the length of preceding event sequences that a chosen list chunk 
should encode in order to optimise choices that maximise reward? 
In particular, how does the brain learn list chunks of stored work-
ing memory sequences of variable length? And how do these list 
chunks compete to choose the most predictive list chunk? A brain 
design that accomplishes this is called a Masking Field (Cohen 
and Grossberg, 1987; Grossberg, 1978a; Grossberg and 
Kazerounian, 2011; Grossberg and Myers, 2000). Masking Fields 
will be discussed in Sections 3.21–3.23 after the predicted link 
between working memory and list chunking is explained.

3.5. The predicted link between Item-and-
Order working memory and list chunking

In order to explain how Masking Fields work, it is first necessary 
to summarise how the working memories that input to them are 
themselves designed. Grossberg (1978a, 1978b) introduced a 
neural model of working memory which posits that a temporal 
stream of inputs is stored through time as an evolving spatial pat-
tern of content-addressable item representations (Figure 8). 
These working memory patterns are, in turn, unitised through 
learning into list chunk representations that can control context-
sensitive behaviours. This working memory model is called an 
Item-and-Order model because, in it, individual nodes, or cell 
populations, represent list items, and the temporal order in which 
the items are presented is stored by an activity gradient across the 
nodes (Figure 8).

The classical work of Miller (1956) on working memory 
showed that a fundamental functional unit in speech and lan-
guage is abstract, namely the chunk, that ‘the memory span is a 
fixed number of chunks [and] we can increase the number of bits 
of information that it contains simply by building larger and 
larger chunks, each chunk containing more information than 
before’. Chunks can thus be learned from multiple types of 
acoustic inputs that vary in size. Miller (1956) proposed that 
approximately 7 ± 2 chunks could be simultaneously stored in 
working memory. He called this immediate memory span the 
Magical Number Seven, Plus or Minus Two.

In order to work properly, the networks that use Item-and-
Order working memories need to be composed of the correct 

Figure 7. An Item-and-Order working memory (lower level) for the 
short-term sequential storage of item chunks (e.g. M, Y, S, E, L, F) can 
activate a multiple-scale Masking Field list chunking network (upper 
level) through a bottom-up adaptive filter. The larger cell sizes and 
interaction strengths of the list chunks that categorise longer lists 
(e.g. MYSELF vs MY) enable the Masking Field to choose the list chunk 
that currently receives the largest total input and thus best predicts 
the sequence that is currently stored in the Item-and-Order working 
memory. The chosen list chunk can then read out the most likely 
prediction of what will happen next in that temporal context. Green 
connections are excitatory. Red connections are inhibitory. Arrowheads 
at the ends of Masking Field inhibitory recurrent pathways denote 
connections that undergo no learning. Hemidiscs denote connections 
that can undergo learning, both in the bottom-up filter connections 
and the top-down expectation connections. Recurrent on-centre 
off-surround connections in the Item-and-Order working memory are 
not shown, for simplicity. Recurrent self-excitatory connections in the 
Masking Field are also not shown, again for simplicity.
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functional units at successive levels of the brain’s speech and lan-
guage hierarchy. Some early models proposed levels that process 
phonemes, letters, and words (e.g. McClelland and Rumelhart, 
1981), but these levels do not fit basic psychophysical data and 
cannot self-organise using unsupervised learning. These prob-
lems were solved by the Item-and-Order model levels which rep-
resent distributed features, item chunks, and list chunks 
(Grossberg, 1978a, 1978b, 1984b, 1986). An item chunk selec-
tively responds to one pattern of activity, or a small set of similar 
patterns of activity, across the distributed feature detectors within 
a brief time interval (e.g. a phoneme). A list chunk selectively 
responds to the temporal order of a single sequence of item 
chunks that are stored in working memory. The properties of 
these functional units have been used to explain data about word 
superiority effect, list length effect, and related speech phenom-
ena that are incompatible with alternative processing levels (see 
Section 3.23).

3.6. Correct temporal order is stored in 
working memory by a primacy gradient

A primacy gradient stores items in working memory that will be 
recalled in the correct temporal order. In a primacy gradient, the 
first item in the sequence activates the corresponding item chunk 
with the highest activity, the item chunk representing the second 
item has the second highest activity, and so on, until all items in 
the sequence are represented (Figure 8). For example, a sequence 
‘A-B-C’ of items is transformed into a primacy gradient of activ-
ity with cells encoding ‘A’ having the highest activity, cells 
encoding ‘B’ having the second highest activity, and cells encod-
ing ‘C’ having the least activity.

3.7. Rehearsal and inhibition-of-return

How is a stored spatial pattern in working memory converted to 
a temporally performed sequence of items during recall? A 
rehearsal wave that is delivered uniformly, or nonspecifically, 
from the BG to the entire working memory enables read-out of 
stored activities (Figure 8). The node with the highest activity is 
read out fastest because it exceeds its output threshold fastest. As 
it is read out, it also self-inhibits its working memory representa-
tion via a recurrent inhibitory interneuron. This self-inhibitory 
process mechanises the cognitive concept of inhibition-of-return, 
which prevents perseverative performance of the most recent 
item (Posner et al., 1985). Self-inhibition of the last item to be 
performed is repeated until the entire sequence is performed. 
These operations may also be influenced by different rehearsal 
strategies, as illustrated by performance differences during 
immediate free recall experiments, during which subjects attempt 
to recall items in any order after a single hearing, versus immedi-
ate serial recall (ISR) experiments, during which subjects attempt 
to recall items in the order that they were heard. These different 
kinds of data are explained and quantitatively simulated using an 
Item-and-Order model in Grossberg and Pearson (2008).

3.8. Competitive queuing and primacy 
models

After Grossberg (1978a, 1978b) introduced the Item-and-Order 
model, it was used in various forms in a number of other studies 
(e.g. Boardman and Bullock, 1991; Bohland et al., 2010; Bradski 
et al., 1994; Bullock and Rhodes, 2003; Grossberg and Pearson, 
2008; Houghton, 1990; Page and Norris, 1998). For example, 
Page and Norris (1998) used a Primacy Model to explain and 
simulate cognitive data about immediate serial order working 
memory, including data about word and list length, phonological 
similarity, and forward and backward recall effects. Properties of 
the Item-and-Order model were also used in the Competitive 
Queuing model (Houghton, 1990) which describes how the most 
active item that is stored in working memory self-inhibits its 
stored activity when it is performed.

3.9. Supportive psychological and 
neurophysiological data for Item-and-Order 
networks

Both psychophysical and neurophysiological data have sup-
ported the Item-and-Order predictions that working memories 
encode item order with relative activity levels and are reset by 
self-inhibition. For example, Farrell and Lewandowsky (2004) 
did psychophysical experiments in humans that studied the 
latency of responses following serial performance errors. They 
concluded that

Several competing theories of short-term memory can explain 
serial recall performance at a quantitative level. However, 
most theories to date have not been applied to the 
accompanying pattern of response latencies … Data from 
three experiments … rule out three of the four representational 
mechanisms. The data support the notion that serial order is 

Figure 8. A temporal sequence of inputs creates a spatial pattern 
of activity across item chunks in an Item-and-Order working memory 
(height of hatched rectangles is proportional to cell activity). Relative 
activity level codes for item and order. A rehearsal wave allows item 
activations to compete before the maximally active item elicits an 
output signal and self-inhibits via feedback inhibition to prevent 
its perseverative performance. The process then repeats itself. Solid 
arrows denote excitatory connections. Dashed arrows denote inhibitory 
connections.
Source: Adapted from Grossberg (1978a).
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represented by a primacy gradient that is accompanied by 
suppression of recalled items. [italics mine] (p. 115)

Electrophysiological experiments have also directly recorded 
Item-and-Order working memory properties. For example, record-
ings in the posterior principal sulcus of the DLPFC of macaque 
monkeys were done by Averbeck et al. (2002) while monkeys per-
formed learned arm movement sequences that copy geometrical 
shapes. These authors did extracellular recording from the areas 
near, but outside the depths of, the caudal portions of the principal 
sulcus in DLPFC of macaque monkeys during the performance of 
a sequential motor task. In this task, monkeys used an X-Y joystick 
to copy concurrently presented geometrical shapes (triangle, 
square, inverted triangle, trapezoid) on an LCD screen in a pre-
scribed order. Copying proceeded counter-clockwise starting at the 
top middle of each shape. The recorded cell responses were pooled 
on the basis of the movement in the sequence with which their fir-
ing pattern most correlated. The population response for each 
movement in the series is shown in Figure 9(a).

The predicted properties of a primacy gradient and a self-
inhibitory form of inhibition-of-return are evident in these data. 
Figure 9(a) depicts stored working memory activities for drawing 
several different geometrical shapes. In each example, the move-
ment with the largest activity is performed first, before it self-
inhibits its activity. Then, the next largest activity reads out its 
movement while self-inhibiting its activity. After the next-to-last 
movement is performed, the activity of the final movement grows 
greater than that of any prior movement command because it has 
no competitors left that are stored in working memory. How this 
competition works, and why it exists, is explained in Section 3.15.

These properties were simulated (Figure 9(b)) using an Item-
and-Order working memory by the laminar cortical LIST PARSE 
model of Grossberg and Pearson (2008). This model proposes how 
a cognitive working memory in VLPFC is converted into a motor 
working memory in DLPFC (cf. Figure 1) which, when properly 
monitored, can perform the stored sequence at variable rates that 
are under volitional control from the BG (Figure 10). In all, the 
LIST PARSE model shows how a prefrontal linguistic working 
memory in VLPFC can quantitatively simulate human psycho-
physical data about ISR, and immediate, delayed, and continuous 
distractor free recall; whereas a similarly designed prefrontal 
motor working memory in DLPFC can quantitatively simulate the 
Averbeck et al. (2002) neurophysiological data about sequential 
recall of stored motor sequences (Figure 9). This property illus-
trates the fact that all linguistic, spatial, and motor working memo-
ries use variations of the same network design in VLPFC and other 
prefrontal areas, for reasons that are explained in Section 3.14.

3.10. Bowed and recency gradients during free recall 
and probabilistic choice behaviours

Before explaining why all working memories are embodied by a 
similar circuit design, it is important to realise when and why such 
working memories do not accurately encode or perform temporal 
order. Some of these data are summarised in this section and the 
next. Why this happens is explained in Section 3.12, which links 
this property to the ability to learn and stably remember list 
chunks. These explanations and predictions would benefit from 
further neurophysiological studies using longer lists.

Item-and-Order working memories provide principled 
answers to the following basic questions about working memory: 
What is the longest list that the brain can store in working mem-
ory in the correct temporal order? Why can only relatively short 
lists be stored with the correct temporal order in vivo? In an Item-
and-Order working memory, this question translates into: What is 
the longest primacy gradient that the working memory can store? 
How is a primacy gradient altered when longer lists are stored? 
Free recall data illustrate how primacy gradients change if a 
longer list is stored. Then, a bowed serial position curve is often 
observed (Figure 11; for example, Murdock, 1962) such that 
items at the beginning and the end of the list are performed earli-
est, and with the highest probability of recall.

Grossberg (1978a, 1978b) noted that these free recall proper-
ties can readily be explained if the working memory gradient that 
stores the list items is also bowed. Then, the first and last items 
have the largest activities, and items in the middle have less activ-
ity. The temporal order of recall is explained as follows: the item 
with the largest activity is read out first, whether at the list begin-
ning or end, because it exceeds the output threshold first of its 
output pathway when the rehearsal gate opens (Figure 8). As its 
output is read out, it then self-inhibits its working memory activity 
via a recurrent inhibitory interneuron (Figure 8) to prevent preser-
vation. Then, the next largest item will be read out and so on in the 
order of item relative activity. The probability of recall has the 
following explanation: items that are stored with larger activities 
have greater resilience against perturbation by cellular noise. 
Transpositions of order during recall are explained in the same 
way because transposed items have similar stored activities.

If even longer lists get stored, then the bow increasingly 
resembles a recency gradient, such that items at the end of the list 
are performed earliest, and progressively earlier items are stored 
with less and less activity (Figure 11). In a probabilistic choice 
experiment with low probabilities of reward, such a recency gra-
dient may be expected to develop. This working memory prop-
erty helps to explain the Rudebeck et al. (2017) data that 
unoperated and OFC-lesioned ‘monkeys were making contingent 
associations between their specific choices and subsequent out-
comes. This effect diminished with increasing distance from the 
current trial, suggesting that monkeys preferentially used the 
most recent feedback to guide future choices’ (p. 1211). The way 
that primacy gradients become bows and then recency gradients 
as stored list length increases hereby reconciles the different 
working memory properties that have been reported in experi-
ments like Averbeck et al. (2002) and Rudebeck et al. (2017). It 
would be interesting to record the transformation from primacy 
gradient, to bow, to extended recency gradient by systematically 
changing the number of choices and choice probabilities in this 
kind of experiment. Another informative kind of experiment 
could alter the strength of recurrent inhibition across the network, 
say with a GABA antagonist, and test how it alters the transient 
and immediate memory spans that will now be explained.

3.11. Magical numbers four and seven: 
immediate and transient memory spans

What is the longest primacy gradient that can be stored? The 
classical Magical Number Seven, or immediate memory span, of 
7 ± 2 items that is found during free recall (Miller, 1956) esti-
mates the upper bound. Section 3.23 offers an explanation of the 
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Magical Number Seven using an Item-and-Order network. 
Grossberg (1978a) distinguished between the immediate mem-
ory span and the transient memory span. The transient memory 

span was predicted to be the longest list for which a primacy 
gradient may be stored in working memory solely as the result of 
bottom-up inputs (see Figure 11). In contrast, the immediate 

Figure 9. Neurophysiological data and simulations of monkey sequential copying data. (a) Each plot shows the recorded cell activity profiles that 
control drawing of each segment for each time bin (at 25 ms) of the task. The number of movement segments is due to the starting positions of each 
movement sequence on the corresponding geometrical figure. Time 0 indicates the onset of the template. Lengths of segments were normalised to 
permit averaging across trials. Plots show parallel representation of segments before initiation of copying. Furthermore, rank order of strength of 
representation before copying corresponds to the serial position of the segment in the series. The rank order evolves during the drawing to maintain 
the serial position code. At least four phases of the Averbeck et al. (2002; Figure 9(a)) curves should be noted: (1) presence of a primacy gradient, 
that is, greater relative activation corresponds to earlier eventual execution in the sequence during the period prior to the initiation of the movement 
sequence (period −500 to 400 ms); (2) contrast enhancement of the primacy gradient to favour the item to be performed (greater proportional 
representation of the first item) prior to first item performance (period ~100–400 ms); (3) inhibition of the chosen item’s activity just prior to its 
performance and preferential relative enhancement of the representation of the next item to be preformed such that it becomes the most active item 
prior to its execution (period ~400 ms to near sequence completion); and (4) possible re-establishment of the gradient just prior to task completion. 
Reprinted with permission from Averbeck et al. (2002). (b) Simulations of item activity across the motor plan field of the LIST PARSE model for 3, 4, 
and 5 item sequences versus simulation time. In both (a) and (b), line colours correspond to representations of segments as follows: yellow, segment 
1; green, segment 2; red, segment 3; cyan, segment 4; magenta, segment 5. Reprinted with permission from Grossberg and Pearson (2008).
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memory span was predicted to arise from the combined effect of 
bottom-up inputs and top-down LTM read out from list chunks 
that could be activated by the working memory (Figure 7). 
Grossberg (1978a) mathematically proved that the read-out of 
top-down long-term memories can only increase the maximal 
primacy gradient that can be stored, and thus that the immediate 
memory span is longer than the transient memory span. Given 
an estimated immediate memory span of approximately seven 
items, it was estimated that the transient memory span should be 
approximately four items. Cowan (2001) has summarised data 
that support this prediction by showing that, when the influences 
of LTM and grouping effects are minimised, there is a working 
memory capacity limit of 4 ± 1 items. There is thus also a 
Magical Number Four.

If technically possible, reversible cooling or other method for 
silencing the list chunk level should therefore lead to a shortening 
of the longest primacy gradient that the working memory can store.

3.12. LTM Invariance Principle: learning 
stable list chunks

Why is the transient memory span so short? The proposed 
answer to this question suggests that neurophysiological experi-
ments be done that combine recordings of working memory 
storage and list chunk learning. In particular, a network for STM 
storage of sequences in working memory can only realise its full 
potential if it can also support the learning and LTM of list 
chunks. Indeed, without stable list chunk learning and memory, 
it would be impossible to learn and perform language, motor 
skills, or navigational routes. Grossberg (1978a, 1978b) pre-
dicted that all working memories are designed to enable learning 
and stable memory of list chunks and showed that two simple 
postulates imply these properties: the LTM Invariance Principle 
and the Normalisation rule. Grossberg (1978a, 1978b) also 
explained how these postulates can be mathematically realised 

Figure 10. LIST PARSE model. (Left panel) The brain processes that are modelled by LIST PARSE are written in red and underlined. These processes 
are a Cognitive Working Memory, assumed to be in VLPFC; a Motor Working Memory, assumed to be in DLPFC; a VITE, or Vector Integration To 
Endpoint, Trajectory Generator, assumed to be in motor cortex; Motor Volition, assumed to be in the basal ganglia substantia nigra pars reticulata, 
or SNr; and Rehearsal Timing, assumed to be in the basal ganglia and cerebellum. (Right panel) The Cognitive Working Memory network is assumed 
to be within the deeper layers 4–6 of VLPFC, and the corresponding list chunking network is assumed to be within the superficial layers 2/3 of 
VLPFC. Green solid arrows are excitatory, red dashed arrows are inhibitory, and blue lines ending in hemidiscs are adaptive. Only 1-item chunks (Ci) 
and their feedback connections within a single Cognitive Working Memory channel are shown, whereas the model simulates chunks corresponding to 
words of variable lengths in layer 2/3. Learned positive feedback signals from layer 2/3 to layer 5/6 of the cognitive working memory are broadly 
distributed from each list chunk across the working memory so that an active chunk can reinstate the activity pattern that caused it into working 
memory. Also, only the excitatory projections from Cognitive Working Memory to the Motor Working Memory (Yi→Fi) are shown. Several volitional 
gain control signals determine model dynamics. For example, the gain control signal F determines whether or not a sequence will be stored within 
the Cognitive Working Memory. The volitional signals V and G control variable-rate performance of the stored sequence. In particular, a rehearsal 
wave R is influenced by the volitional signal V when the network begins to recall items and by the deceleration signal (B – A) that allows another 
rehearsal burst to occur when a previously activated movement trajectory is almost completed. The text described more completely how the 
deceleration signal is computed.
Source: Adapted with permission from Grossberg and Pearson (2008).
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by Item-and-Order working memories and how they generate 
primacy and bowed gradients to explain free recall data. Since 
this early derivation, the understanding of how these working 
memories are realised in vivo has been incrementally refined 
(e.g. Bradski et al., 1992, 1994), leading to laminar cortical 
models of how prefrontal circuits realise Item-Order-Rank 
working memories (Grossberg and Pearson, 2008; Silver et al., 
2011) that can store sequences with repeated items in working 
memory, for example, ABACAD (see Sections 3.16–3.18).

The LTM Invariance Principle implies that novel sequences of 
items may be stored in working memory and chunked through 
learning in a way that does not destabilise memories of previously 
learned chunks. It explains, for example, how a sequence of the 
item chunks of the longer word MYSELF can be stored in work-
ing memory without forcing catastrophic forgetting of previously 
learned, shorter list chunks for the words MY, SELF, and ELF. 
Said in another way, the LTM Invariance Principle shows how, if 
bottom-up inputs activate a previously learned chunk of the word 
MY, then storage in working memory of the remaining portion 
SELF of the novel word MYSELF will not erode the previously 
learned adaptive weights that support activation of the list chunk 
of MY. Thus, the LTM Invariance Principle begins to explain how 
sequences of variable length may be stored in working memory 
and induce learning of list chunks that selectively respond to 
them. As noted in Section 3.10, longer sequences may need to be 
stored and selectively chunked when reinforcement probabilities 
are lower in order to predict the most likely stimulus that will next 
be rewarded. As Figure 7 illustrates, variable-length list chunks 
can be learned by a network that is called a Masking Field.

The LTM Invariance Principle is achieved mathematically by 
preserving the relative activities, or ratios, between previously 
stored working memory activities as new items are presented and 
stored in the working memory through time. Newly arriving 
inputs may, however, alter the total activity of each active cell 
across the working memory. How does preserving activity ratios 
help to stabilise the adaptive weights of previously learned cate-
gories? These activities send signals to the next processing stage, 
where the category cells are activated (Figure 7). The signals are 
multiplied, or gated, by adaptive weights, or LTM traces (in the 
synaptic knobs with hemidiscs in Figure 7), before the net adap-
tively gated signals activate their target categories. Multiplicative 
gating of the bottom-up signals by LTM traces converts the bot-
tom-up pathways into an adaptive filter. The total input to a cat-
egory thus multiplies a pattern, or vector, of activities times a 
pattern, or vector, of LTM traces. This kind of multiplication of 
two vectors is said to carry out an inner product, or dot product, 
operation. By preserving relative activities of the stored working 
memory activities, the relative sizes of these total inputs to the 
category cells do not change through time, and thus nor do the 
corresponding LTM patterns that track these activities when 
learning occurs at their category cells.

For example, suppose that bottom-up acoustic inputs are 
stored in working memory and activate their corresponding list 
chunks. As these inputs arrive, a chunk such as ‘MY’ may become 
active once it receives all or most of its expected bottom-up 
input. If the acoustic inputs are then followed immediately by 
silence, the chunked representation of ‘MY’ could stably learn 
from the stored STM pattern of activity that first supported it. On 

Figure 11. Simulation of cognitive working memory activity gradients by the LIST PARSE model. (Left panel) A short list of six items generates a 
primacy gradient. (Right panel) A longer list of 20 items, which exceeds the transient memory span of this network, generates a bowed gradient 
with extended recency. Note the smaller activities that are stored in response to 20 items than six items due to the normalising effect on total 
activity of the recurrent shunting on-centre off-surround dynamics that store these lists in working memory.
Source: Adapted with permission from Grossberg and Pearson (2008).
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the other hand, if the acoustic inputs are rapidly followed by fur-
ther acoustic signals (e.g. the inputs corresponding to ‘MYSELF’), 
then these newly arriving inputs could drastically alter the pattern 
of activation that represents MY in STM if the LTM Invariance 
Principle did not hold. If this could happen, then the LTM traces 
that activate chunk ‘MY’ could change in response to the now 
altered STM pattern in working memory. The LTM Invariance 
Principle prevents this from happening, since the newly arriving 
inputs (corresponding to ‘SELF’) then leave intact the relative 
pattern of activity in working memory of the already occurring 
acoustic inputs (corresponding to ‘MY’). A new list chunk for the 
full word (corresponding to ‘MYSELF’) could then be learned 

without destabilising the already learned LTM pattern for its sub-
set components (e.g. ‘MY’).

The Normalisation Rule ensures that the total activity that is 
stored in working memory has an upper bound that tends to be 
independent of the number of items that are stored. Thus, if more 
items are stored, then each item tends to be stored with less 
activity (see Figures 9 and 11). This normalisation property 
implies the limited capacity of working memory (Baddeley and 
Hitch, 1974; Grossberg, 1978a, 1978b) by redistributing, rather 
than adding, activity when new items are stored. Storing more 
items in working memory thus causes each of them to have less 
activity. When a sufficiently long list length is reached, trying to 

Figure 12. The lisTELOS model macrocircuit: each grey box represents a brain region within which fields of cells, represented by white inset boxes, 
share similar functional roles, which are summarised in the box. Arrowheads denote excitatory connections between cells, and filled circles represent 
inhibitory connections. Curved branches at the ends of connections represent one-to-many fan-out connections that impact all other cells in the 
field. Half-filled boxes at the ends of connections represent habituative gates that exhibit activity-dependent changes in synaptic efficacy. White 
circles containing a multiplication sign (×) represent multiplicative interaction between two signals. Boxes containing a sigma (Σ) represent the sum 
of outputs from all cells in the field that gave rise to the projection. Stacked field representations denote populations of rank-sensitive cells. SC: 
superior colliculus; PPC: posterior parietal cortex; PFC: prefrontal cortex; BG: basal ganglia; FEF: frontal eye fields; SEF: supplementary eye fields. Note 
the three BG loops gating the release of output signals from different brain regions. See the text for discussion of model function and dynamics.
Source: Reprinted with permission from Silver et al. (2011).
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store more items will prevent some of them from exceeding the 
storage threshold.

Consistent with this conclusion, application of a GABA 
antagonist to DLPFC, and thus a weakening of recurrent inhibi-
tion, causes an overall increase in cell activity (Rao et al., 2000). 
In the opposite direction, excess GABA-mediated inhibition of 
prefrontal neuronal activity has been identified as a contributor to 
working memory dysfunction during the first 4 months following 
a cortical impact injury in rats (Hoskison et al., 2009).

3.13. Bowed gradients for long lists follow 
from self-stabilising memory

Properties such as the transient memory span were mathemati-
cally proved in Grossberg (1978a, 1978b) to follow if both the 
LTM Invariance Principle and the Normalisation Rule hold. If a 
list is longer than the transient memory span, then the primacy 
gradient that is initially stored will evolve into a bowed gradient 
as more items are stored, as illustrated in Figure 11.

In other words, the ability of a working memory to enable 
learning and stable memory of stored sequences implies an upper 
bound on the length of lists that can be temporarily stored in the 
correct temporal order. The bowed serial position curves of free 
recall and ISR data can thus be understood as the price paid for 
being able to rapidly learn, and stably remember, language and 
sequential spatial and motor skills.

These results about primacy gradients hold when the same 
amount of attention is paid to each item as it is stored in working 
memory. If attention is not uniform across items, then multi-
modal bows can occur. These Von Restorff (1933) or isolation 
effects (Hunt and Lamb, 2001) enable items in the middle of a list 
to be remembered and recalled before other list items.

3.14. Similar circuits for linguistic, spatial, 
and motor working memories

It can now be seen from the deeper perspective of chunk learning 
why VLPFC and DLPFC are involved in storing so many types of 
event sequences, including the probabilistic choice sequences that 
are activated during the Rudebeck et al. (2017) experiments. Namely, 
if all working memories obey the LTM Invariance Principle and the 
Normalisation Rule, then all linguistic, motor, and spatial working 
memories should have a similar design, and thus should therefore 
exhibit similar data properties, such as error distributions. Data that 
support this prediction include the following: Jones et al. (1995) 
reported similar performance characteristics to those of verbal work-
ing memory for a spatial serial recall task in which visual locations 
were remembered. Agam et al. (2005) reported psychophysical evi-
dence of Item-and-Order working memory properties in humans as 
they performed sequential copying movements, and Averbeck et al. 
(2002, 2003a, 2003b) reported neurophysiological evidence for such 
a working memory in monkeys during performance of sequential 
copying movements (Figure 9(a)).

Model explanations of working memory data also support the 
prediction of a universal working memory design for all kinds of 
input sequences. It has already been noted that the LIST PARSE 
model of Grossberg and Pearson (2008) has simulated the 
Averbeck et al. data using a prefrontal motor Item-and-Order 
working memory (Figure 9(b)) and has used a prefrontal 

linguistic working memory to quantitatively simulate human 
psychophysical data about ISR, and immediate, delayed, and 
continuous distractor free recall. The lisTELOS model of Silver 
et al. (2011) has, in addition, used a prefrontal Item-Order-Rank 
spatial working memory to quantitatively simulate neurophysio-
logical data about the learning and planned performance of sac-
cadic eye movement sequences.

The LTM Invariance Principle and Normalisation Rule also 
imply that there is an intimate connection between the process of 
storing sequences temporarily in working memory and the learn-
ing of list chunks by the next processing stage. Data that support 
this prediction include the following: Agam et al. (2007) reported 
data about the formation of list chunks as movement sequences 
are practiced. Psychophysical experiments on speech perception 
have also successfully tested this prediction (e.g. Auer and Luce, 
2008; Goldinger and Azuma, 2003; Luce and McLennan, 2008; 
McLennan et al., 2003, 2005; Vitevitch and Luce, 1999).

3.15. Recurrent shunting on-centre off-
surround networks embody working memories

What is this shared working memory design? In particular, are 
postulates such as the LTM Invariance Principle and the 
Normalisation Rule too sophisticated for evolution to discover? 
In fact, both the LTM Invariance Principle and the Normalisation 
Rule are embodied within a ubiquitous neural design, thereby 
clarifying how such a working memory could arise through evo-
lution: a recurrent on-centre off-surround network (Figure 8) 
whose cells obey the membrane equations of neurophysiology, 
also called shunting dynamics. Such networks occur ubiquitously 
because they enable the brain to process and store distributed pat-
terns of inputs without being degraded by noise – when their 
inputs are small – or saturation – when their inputs are large, 
thereby solving the noise-saturation dilemma that is faced by 
every brain network (Grossberg, 1973, 1980).

How such recurrent shunting networks process ratios (LTM 
Invariance Principle) and conserve total activity (Normalisation 
Rule) was mathematically proved in Grossberg (1973). Also see 
Grossberg (1978a, 1980) for reviews. Bradski et al. (1994) went 
on to prove theorems about how Item-and-Order recurrent 
shunting on-centre off-surround networks generate primacy and 
bowed gradients, among other properties, as a function of net-
work parameters.

The excitatory feedback due to the recurrent on-centre inter-
actions in such a network helps to store an evolving spatial pat-
tern of activities in response to a sequence of inputs. The recurrent 
shunting off-surround, in concert with the on-centre, helps to 
preserve the relative activities that are stored. A volitional 
rehearsal signal from the BG enables the highest stored activity 
to be read out first, and self-inhibitory feedback prevents perse-
verative performance of this most highly activated cell popula-
tion, thereby enabling less active populations to be performed 
(Figure 8), while the network as a whole gradually renormalises 
its activity through time. For example, the Normalisation rule 
clarifies why, in Figure 9, after the next-to-last item that is stored 
in working memory has been performed, the population that 
stores the last item is disinhibited. By being freed from inhibitory 
normalisation, it can reach the highest activity through time of 
any population that stored the list.
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3.16. Storing lists with repeated items: 
Item-Order-Rank working memory

In a probabilistic learning situation such as the one used by 
Rudebeck et al. (2017), where a subject chooses one of three 
images to receive reward, each image may repeat itself over tri-
als. In order to estimate the choice that will most probably lead to 
reward, an animal needs to keep track of such a contingency. This 
state of affairs raises the question: How are sequences with 
repeated items stored in working memory? Can recordings be 
made during experiments on availability that more completely 
characterise the predicted circuits whereby repeated items are 
stored in a PFC working memory? The need for combined pre-
frontal-parietal recordings of availability in the broadest sense is 
also suggested by the prediction in Section 3.17 of how PFC 
working memories that can store repeated occurrences of each 
experienced option receive inputs from parietal mechanisms for 
numerically estimating how much of a valued goal object is 
available during foraging in naturalistic environments.

In its simplest form, an Item-and-Order working memory can-
not represent the same item in multiple positions, or ranks, of a 
list. However, there are many examples in human cognitive data 
of sensitivity to list position (e.g. Henson, 1998). For example, 
when presented with the sequence ABC (pause) DEF, exchanges 
between items at B and E are more common than exchanges 
between items at B and F. In addition, phonemes or syllables in 
similar positions in different words may be selectively inter-
changed. These examples include spoonerisms, for example, 
‘hissed my mystery lesson’. Error data in human serial recall 
experiments also indicate that rank information is available, 
which some models of serial recall have incorporated (see 
Grossberg and Pearson, 2008 for a review). In monkeys, some 
PFC neurons respond, not only to a given item but also to the 
rank of that item within a sequence of items. Such a cell may 
respond to a specific target that is presented in a specific list posi-
tion (e.g. Averbeck et al., 2003a; Barone and Joseph, 1989; 
Funahashi et al., 1997; Inoue and Mikami, 2006; Kermadi and 
Joseph, 1995; Ninokura et al., 2004).

3.17. From parietal numerical map to 
prefrontal Item-Order-Rank working memory

Given that both psychophysical and neurophysiological data also 
support Item-and-Order models, it remains to explain how rank 
information may be integrated into such a working memory. 
Bradski et al. (1994) proposed the first Item-Order-Rank working 
memory model that incorporated rank-order coding into an Item-
and-Order working memory that is capable of storing item 
repeats at arbitrary list positions, for example, ABACBD. The 
LIST PARSE model (Grossberg and Pearson, 2008) predicted 
where in the brain this rank-order coding arises, namely, the ana-
logue spatial representations of numbers that exist in the parietal 
cortex. The model specifies how an Item-Order-Rank working 
memory can be created in PFC using parietal-prefrontal projec-
tions from this parietal numerical representation. This prediction 
built upon the Spatial Number Network, or SpaN, model of 
Grossberg and Repin (2003) which simulated how the analogue 
map of ordered numerical representations in inferior parietal cor-
tex enables animals and humans to estimate and compare suffi-
ciently small numerical quantities. Such a capability can have 

life-saving consequences in terrestrial animals who forage for 
food. For example, choosing a tree with more fruit, or a flower 
with more honey, illustrates how survival may be enhanced by 
being able to estimate and compare numerical quantities. The 
predicted properties of SpaN model parietal neurons were sup-
ported by neurophysiological data of Nieder and Miller (2004a), 
who also studied the prefrontal projections of these parietal 
numerical representations (Nieder and Miller, 2004b). It would 
be very interesting to combine the Nieder and Miller experimen-
tal manipulations with manipulations of option availability.

In an Item-Order-Rank working memory, a spatial gradient of 
activity still represents temporal order, with the most active cell 
population being performed first. The main new idea is that each 
item representation in an Item-Order-Rank working memory has 
multiple map positions, or slots, that can store occurrences of the 
item at multiple list positions. For each item, the cell population 
that codes all the possible list positions, or ranks, forms a numeri-
cal hypercolumn. The parietal number map hereby broadcasts a 
numerical hypercolumn that is incorporated into multiple PFC 
item representations using a conjunction of item and numerical 
information.

This parietal-prefrontal projection enables the correct posi-
tion in the hypercolumn to be activated when the item occurs 
with a given rank in the list. The numerical hypercolumn that 
represents a specific list item can hereby store that item in multi-
ple list positions, just as a positional hypercolumn in the primary 
visual cortex can selectively respond to multiple orientations at a 
given position in space (Hubel and Wiesel, 1962, 1963). Thus, to 
store the list ABAC, item A would be stored in the first and third 
slots within its hypercolumn, item B would be stored in the sec-
ond slot within its hypercolumn, and item C would be stored in 
the fourth slot within its hypercolumn.

A primacy gradient of activity (Figure 11) would still repre-
sent the temporal order of a short stored list, whether or not it had 
repeated items. Working memory gradients would be created in 
the same way as in an Item-and-Order working memory. The 
recurrent on-centre off-surround network that stores items in an 
Item-Order-Rank working memory can still use self-excitatory 
feedback from each cell population to itself, and a broad off-sur-
round can still equally inhibit all other populations in the working 
memory, including all the slots of all the items. A similar concept 
has been used by Davis (2010) to model letter repetitions during 
visual word identification.

3.18. lisTELOS: an Item-Order-Rank spatial 
working memory in PFC

How to combine parietal and prefrontal manipulations to get 
more insight into how option availability is computed may be 
guided by available models of neural architectures in which Item-
Order-Rank working memories play a key role. For example, 
Silver et al. (2011) implemented an Item-Order-Rank model of 
spatial working memory in DLPFC that is part of the larger 
lisTELOS neural architecture (Figure 12) that also includes pos-
terior parietal cortex (PPC), including the lateral intraparietal 
cortex (LIP), as well as the supplementary eye fields (SEF), fron-
tal eye fields (FEF), BG, thalamus, and superior colliculus (SC). 
The pART macrocircuit in Figure 1 includes four of these brain 
regions. The lisTELOS architecture simulates the temporal 
dynamics of how the brain may control working memory storage, 
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choice, and execution of saccadic eye movement sequences, as 
they are used to carry out different kinds of tasks. In this spatial 
working memory, the ‘items’ are target positions to which sac-
cades are commanded to move. An activity gradient across these 
target positions can store the sequence of target positions to 
which the eyes will move in the stored temporal order.

The lisTELOS Item-Order-Rank working memory was used 
to simulate neurophysiological data about SEF and FEF cells that 
are rank-sensitive (Isoda and Tanji, 2002, 2003). Given that all 
working memories have a similar network design in order to real-
ise the LTM Invariance Principle and Normalisation Rule, the 
Item-Order-Rank working memory of the lisTELOS model may 
be considered a prototype for all linguistic, spatial, and motor 
working memories in which repeated items may occur.

lisTELOS was also used to learn and perform saccades in five 
experimental paradigms that did not require storage of a sequence 
of saccadic target positions (Hikosaka et al., 1989). These para-
digms had earlier been simulated by the TELOS model of Brown 
et al. (2004). Four of these paradigms are shown in Figure 13. A 
fifth paradigm, the fixation task, requires an animal to learn not 
to move its eyes from a foveated fixation cue while the cue 
remains on. This ability is then used to also learn the other four 
tasks, which all require that the monkey foveate the fixation cue 
until it turns off, and then to move to an extrafoveal target posi-
tion. The delayed saccade task, in particular, requires PFC stor-
age of a target light, since the target shuts off 500 ms before the 
fixation cue does.

Both TELOS and lisTELOS were able to learn all the tasks. 
After learning was complete, they could perform all the tasks 
with the model’s learned parameters, which the models used to 
reproduce, and predict distinct functional roles for, the neuro-
physiologically recorded dynamics of 17 different cell types, 
including properties of FEF dynamics and of sustained cell 
responses in PFC during the delay period. These predicted func-
tional roles remain to be experimentally tested.

Several kinds of simulations tested how the PFC working 
memory interacts with the other simulated brain regions. One 
such test simulated the ISR task, which has served as a bench-
mark for models of working memory for many years. The ISR 
task can be divided into two phases. First, a sequence of cues is 
presented that must be remembered in order. Second, the cues are 
reproduced in the order in which they were presented. In the 
lisTELOS simulations, a fixation cue was first presented towards 
which the model must execute a saccade. Then, a sequence of 
cues was presented at various spatial positions while fixation was 
maintained. Finally, the fixation cue was removed. Its disappear-
ance acts as a GO signal during which a BG gate opens, thereby 
initiating saccades to each of the cued positions in order. This 
task illustrates, among other things, how SEF chooses the next 
saccade to be performed from a stored sequence, and how three 
BG loops sequentially open their gates to enable three different 
kinds of operations to occur: the storage of a target position 
sequence in working memory, the choice of the next saccade to 
be performed, and the performance of that saccade. This gating 

Figure 13. Four of the five benchmark oculomotor tasks that are learned by the lisTELOS model: the saccade task, gap task, overlap task, and 
memory-guided saccade task. Saccade latencies in the four tasks are consistent with those observed in the literature. In particular, the model 
reproduces the gap effect by generating saccades at a much lower latency during the gap 500 task (64 ms) than during the saccade task (gap 0; 
137 ms) and overlap task (137 ms). Furthermore, saccade latencies are dramatically increased on the memory-guided delayed saccade task (256 ms). 
These latencies of the model are measured by the timing of its SC burst. F = fixation cue; T = target; E = eye movement. 
Source: Reprinted with permission from Silver et al. (2011).
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function of the BG is controlled by the substantia nigra pars  
reticulata (SNr; Alexander and Crutcher, 1990; Alexander et al., 
1986; Grahn et al., 2009; Hikosaka and Wurtz, 1983, 1989; see 
Grossberg, 2016, for a review).

lisTELOS also simulated DLPFC working memory dynamics 
that quantitatively reproduced behavioural data, including reac-
tion times, from two microstimulation paradigms (Histed and 
Miller, 2006; Yang et al., 2008). These experiments focused on the 
SEF as a region that chooses the next saccade to perform from the 
sequence of target positions that is stored in the DLPFC working 
memory (Nachev et al., 2005; Parton et al., 2007; So and Stuphorn, 
2010; Taylor et al., 2007). Electrode stimulations altered the order 
in which eye movements were carried out, but not the target posi-
tions to which the eyes moved (Figure 14(a) and (b)). Quantitative 
simulations of how the saccadic order was changed by microstim-
ulation provided strong evidence for Item-Order-Rank coding in a 
spatial working memory by showing how the relative activities, 
and thus the order of recall, were altered. The quite different find-
ings of Histed and Miller (2006) and Yang et al. (2008) about how 
saccade latency responded to miscrostimulation were also given a 
unified explanation. These miscrostimulation results followed 
from how the stimulating electrode increased activity-dependent 
habituation within SEF feedback pathways (Figure 12) near the 
electrode position and gradually less with increasing distance, as 
depicted by the spatial gradient from black (most active) through 
grey to white (least active) in Figure 14(c).

3.19. DLPFC credit assignment by selective 
and sustained working memory storage

The above examples illustrate some of the working memory 
properties that are needed to solve the credit assignment problem 
that Asaad et al. (2017) discuss in the light of their own DLPFC 
neurophysiological data. As the authors note (p. 6995), ‘credit 
assignment is the process by which we infer the causes of suc-
cesses and failures’. In particular, a solution of the temporal 
credit assignment requires ‘a stable representation of relevant 
information over time … so that reinforcement received when an 
outcome becomes apparent can be applied to the same neural 

(a)

(b)

(c)

Figure 14. SEF microstimulation causes saccade trajectories to 
converge. Each arrow denotes the initial and final position of a 
saccadic eye movement during a memory-based saccadic task. In this 
task, Histed and Miller (2006) trained monkeys to perform a task in 
which two spatial positions were sequentially cued during an initial 
fixation phase, remembered during a memory delay, and then visited 
in order with a sequence of saccades following the offset of the 
fixation point. Microstimulation did not disrupt the monkey’s ability 
to correctly saccade to the remembered target positions, thereby 
supporting the hypothesis that a spatial working memory encodes 
the saccadic target positions. However, microstimulation did disrupt 
the order of saccades. The bias of these movements to converge to 
a position at the upper left target position illustrates the effect of 
microstimulation. (a) Observed saccade trajectories that converge 
toward the upper left target. (b) Model simulations reproduce the 
convergence effect. (c) In model simulations, microstimulation 
habituates synapses according to a two-dimensional Gaussian function 
centred over the microstimulation site. The depth of habituation 

diminishes in a Gaussian fashion across space from black (maximal) to 
white (minimum). Saccade trajectories after following microstimulation 
tend to ‘climb’ the Gaussian habituation gradient. Saccades that are 
furthest from the microstimulation site are least affected by it and 
thus most likely to serve as the first saccade target position. Data 
adapted from Histed and Miller (2006). Another important finding of 
Histed and Miller (2006) was that microstimulation had no effect on 
saccade accuracy, peak velocity, or latency. These observations suggest 
that SEF is not involved in the storage, generation, or fine timing of 
saccades. A target selection role is consistent with these data because 
SEF microstimulation manipulates only the potency with which plans 
compete and, during fixation while basal ganglia SNr gates are closed, 
do not generate new saccade targets. Moreover, if SEF selects targets 
but does not issue the motor commands that move the eyes, saccade 
velocity remains unchanged. So long as the duration of the selection 
process is not changed by microstimulation, saccade latency will also 
remain unchanged. Reprinted with permission from Silver et al. (2011).

Figure 14. (Continued)
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ensemble that earlier signaled the causal features’ (p. 6996). A 
solution of the structural credit assignment problem requires the 
ability to select causal features when multiple potentially rele-
vant features are simultaneously available.

In the cue learning experiment reported by Asaad et al. (2017) 
that was used to test credit assignment, rhesus macaques learned 
which cue was correct by trial and error in blocks of trials, before 
an unsignalled new block was begun in which a new cue was cor-
rect. During each trial, animals were required to maintain central 
fixation as four cue objects were presented peripherally for 
500 ms. The monkeys had to continue maintaining fixation for 1 s 
after the cues shut off and then to make a choice of the correct cue 
by making a saccade to the position where the correct cue had 
appeared. Visual feedback was then presented that indicated 
whether the choice was correct or not (a green circle or a red X), 
followed by a juice reward if the choice was correct. Feedback 
did not reveal which cue had been at the selected position, so the 
animal had to maintain in working memory a representation of 
the correct cue against which to match one of the four cues and 
then saccade to its remembered position. The position of the cor-
rect cue was changed across trials within the block.

In the spatial version of the task, the correct choice was deter-
mined solely by a cue’s spatial position, and not by the identity of 
the cue that had previously appeared at that position. In both 
tasks, an animal’s attention to a particular cue had to be learned 
from the correct outcomes across trials.

Blocking and unblocking experiments (Section 2.7) also 
require that an animal infer what cues are predictive based on 
expected or unexpected consequences that occur after these cues 
shut off.

A necessary condition for correct credit assignment is thus the 
ability of the PFC to maintain a representation of the correct cue 
throughout each trial. Item-Order-Rank working memories 
accomplish this using the positive feedback in their recurrent 
shunting on-centre off-surround networks (Section 3.15 and 
Figure 8). As noted below, such storage is permitted when the 
appropriate SNr gates open (cf. Figure 11). Another necessary 
condition is that reinforcing feedback can increase the probabil-
ity that predictive list chunks will be chosen. This feedback can 
act either via the amygdala through incentive motivational feed-
back (Figures 2 and 3) or via the BG through feedback circuits 
that are strengthened by unexpected rewards. These circuits may, 
or may not, include the amygdala (Figures 3, 4, and 11).

Reinforcing feedback that enhances the activity of predictive 
PFC list chunks, combined with SNr gating, are not the only 
ways that the PFC can selectively choose and store causal contin-
gencies. Sections 3.25 and 3.26 will summarise how the PRC and 
PHC are proposed to also contribute to this selectivity (Figure 1) 
by enabling object and spatial contexts, respectively, to influence 
the storage process. Additional mechanisms regulate whether 
items will be allowed to be stored in working memory in the first 
place. Explaining how this occurs requires mechanisms that have 
not previously been modelled, including functional roles of the 
ventral bank of the principal sulcus (VPS) and the ventral 
prearcuate gyrus (VPA; Figure 1). These regions have been 
shown to enable monkeys to attend and foveate objects that pos-
sess task-relevant feature combinations (Bichot et al., 2015). A 
related role of the inferior frontal junction (IFJ) in humans has 
also been reported (Baldauf and Desimone, 2014). Here, it will 
be proposed how these regions may also regulate selective PFC 
working memory storage.

Before an explanation is offered of how this is proposed to 
happen, it is useful to summarise some of the data which demon-
strate that working memory storage is indeed selective. PFC stor-
age may be prevented on tasks that do not require storage of 
visual information, consistent with data demonstrating that PFC 
working memory cells do not fire during such tasks (Fuster, 
1973; Kojima and Goldman-Rakic, 1984). Selective storage is 
also consistent with the observation that, given the presentation 
of identical stimuli, neural selectivity in PFC depends on subse-
quent task demands (Warden and Miller, 2010). Awh and Vogel 
(2008), describing imaging data from McNab and Klingberg 
(2008), noted that success on working memory tasks was associ-
ated with an individual’s ability to selectively identify and store 
task-related stimuli from a larger sequence of stimuli. Tsushima 
et al. (2008) showed that subliminal distractors can damage per-
formance in attention tasks, but that making distractors supra-
threshold can alleviate performance deficits, perhaps by 
facilitating the ability to filter them out. Suzuki and Gottlieb 
(2013) showed similarly that, during a memory saccade task in 
which a salient distractor was flashed at a variable time and posi-
tion during the memory delay, responses to the salient distractor 
were more strongly suppressed and more closely correlated with 
performance in DLPFC than in LIP. The brain may hereby learn 
to ‘blacklist’ distracting stimuli before they can be stored in PFC, 
allowing all other information to be stored. When all of these 
functions are realised, they embody a solution of the structural 
and temporal credit assignment problem that the DLPFC has 
been proposed to solve (Asaad et al., 2017).

3.20. Two processes regulate whether items 
will be stored in working memory

It is now possible to distinguish two distinct processes that can 
influence working memory storage, even after all earlier preproc-
essing has taken place. The first process, as noted above, carries 
out task-sensitive filtering of individual items before they reach 
the working memory. This process selects only those items for 
storage whose feature combinations are compatible with task 
requirements; for example, only red objects from a sequence of 
objects with various colours (cf. Egeth et al., 1984; Grossberg 
et al., 1994; Treisman and Gelade, 1986; Wolfe et al., 1989). This 
process will be further discussed in Section 3.31 which proposes 
a mechanistic explanation of the roles of the VPS and the VPA in 
enabling monkeys to attend and foveate objects that possess task-
relevant feature combinations (Bichot et al., 2015) and the related 
role of the IFJ in humans (Baldauf and Desimone, 2014).

As noted above, the second process enables all the items that 
get through the filter to be stably stored after they reach the work-
ing memory. This corresponds to keeping an SNr gate open dur-
ing list storage and option prediction (Figure 12). Closing the 
SNr gate can rapidly reset, or delete, the entire stored sequence 
from working memory when there is an attention shift to do a 
different task.

3.21. Masking field working memory chunks 
variable-length lists

Before discussing the feature-selective gating of objects before 
they can be stored in VLPFC, it is important to explain how the 
list chunking networks learn how to selectively categorise 
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sequences of variable length that are stored in working memory; 
for example, A versus AB versus ABC. How is the most predic-
tive list chunk in a given situation chosen? In particular, in a 
probabilistic learning situation, how is the most predictive list 
chunk chosen so that it can read out the best top-down prime with 
which to predict the most likely stimulus to be reinforced on the 
next trial, and thereby guide the choice of this stimulus? A 
Masking Field network has these properties (Figure 7; Cohen and 
Grossberg, 1986, 1987; Grossberg, 1978a, 1984b, 1986; 
Grossberg and Kazerounian, 2011; Grossberg and Myers, 2000).

A Masking Field is a specialised type of Item-and-Order 
working memory that can store chosen list categories through 
time. As with all Item-and-Order working memories, it is defined 
by a recurrent on-centre off-surround network whose cells obey 
the membrane equations of neurophysiology (Section 3.15). The 
stored ‘items’ of a Masking Field are list chunks that are selec-
tively activated (e.g. chunks representing ‘MY’ and ‘MYSELF’ 
in Figure 7), via a bottom-up adaptive filter, by prescribed 
sequences of items that are stored in an Item-and-Order working 
memory at an earlier processing level (e.g. M, Y, S, E, L, F in 
Figure 7). The network in Figure 7 thus first compresses spatial 
patterns of feature detectors into item chunks starting in infer-
otemporal cortex, and then sequences of the item chunks that are 
stored in a VLPFC working memory are compressed into list 
chunks there, among other cortical regions (Figure 1).

3.22. Temporal chunking problem: learning 
words of variable length

How are the variable-length list chunks of a Masking Field 
learned, so that they can be used to effectively predict subsequent 
outcomes? Masking Fields were introduced to solve this 
Temporal Chunking Problem (Cohen and Grossberg, 1986, 1987; 
Grossberg, 1978a, 1986) which concerns how a list chunk of an 
unfamiliar list of familiar speech units – for example, a novel 
word composed of familiar phonemes or syllables – can be 
learned under the type of unsupervised learning conditions that 
are the norm during daily experiences with language.

In particular, before a novel word, or list, can fully activate the 
adaptive filter, all of its individual item chunks must first be pre-
sented. What prevents the familiarity of smaller lists (e.g. MY, 
ELF, and SELF), which have previously learned to activate their 
own list chunks, from forcing the novel longer list (e.g. MYSELF) 
to always be processed as a sequence of these smaller familiar 
chunks, rather than being able to drive learning of its own list 
chunk (Figure 7)? How does a not-yet-established word repre-
sentation overcome the salience of already well-established pho-
neme, syllable, or word representations to enable learning of the 
novel word to occur?

3.23. Self-similar growth and competition 
solve the temporal chunking problem

A Masking Field accomplishes this using cells with multiple cell 
and receptive field sizes, or scales (Figure 7), that are related to 
each other by a property of self-similarity; that is, each scale’s 
properties, including its cell body sizes and their excitatory and 
inhibitory connection lengths and interaction strengths, are a 
multiple of the corresponding properties in another scale.

Such a self-similarity property can develop as a result of sim-
ple activity-dependent growth laws (Cohen and Grossberg, 1986, 
1987). Here is one possible scenario: suppose that item chunk 
cells in the working memory are endogenously active during a 
critical period of development. As a result, Masking Field cells 
that receive inputs from a larger number of item chunk cells 
receive a larger average total input activity through time. 
Activity-dependent cell growth causes the Masking Field cell 
bodies and connections to grow approximately proportionally. 
This property is called self-similar growth. Cell growth termi-
nates when the cell bodies become large enough to dilute their 
activities sufficiently in response to their inputs so that they no 
longer exceed a growth-triggering threshold. Cells that receive 
more inputs grow larger as a result, so that the effects of indi-
vidual inputs are smaller on larger cells. In effect, self-similar 
growth normalises the total effect of all the inputs that converge 
on a Masking Field cell. Consequently, such a cell fires vigor-
ously only if it receives active inputs from all of its item chunk 
cells.

Due to self-similar growth, larger list chunks can selectively 
represent longer lists because they need more inputs, and thus 
more evidence, to fire. Once they fire, their stronger inhibitory 
interaction strengths than those of smaller list chunks can inhibit 
the smaller list chunks more than conversely (Figure 7). This 
asymmetric competition embodies the intuitive idea that, other 
things being equal, the longest lists are better predictors of subse-
quent events than are shorter lists, because a longer list embodies 
a more unique temporal context.

Asymmetric competition also enables learning of these longer 
list chunks to occur, because the stronger inhibition from list 
chunks of longer, but unfamiliar, lists (e.g. MYSELF) enables 
them to inhibit the chunks that represent shorter, but familiar, 
sublists (e.g. MY), more than conversely, so that tuning of the 
LTM traces within the adaptive filter that activates the longer list 
chunk can occur. Kazerounian and Grossberg (2014) have simu-
lated how variable-length list chunks of a Masking Field can be 
learned as a list of item chunks is stored in working memory in 
real time.

Masking Fields have been used to explain cognitive data 
such as the Magical Number Seven (Miller, 1956), the word 
length effect in word superiority experiments (Samuel et al., 
1982, 1983), phonemic restoration (e.g. Warren and Sherman, 
1974), and various other percepts where, in response to a 
sequence of word inputs, future linguistic context can influence 
the word sequences that are consciously heard (e.g. Repp et al., 
1978).

How does a Masking Field explain the classical Magical 
Number Seven, or immediate memory span (Section 3.5)? 
Because a Masking Field can chunk working memory sequences 
of variable length, it contains cells of variable size. The self-sim-
ilarity of cell size and asymmetric competition together imply 
that a larger cell can inhibit a smaller cell more than conversely. 
This implies that only the largest, and most predictive chunks, 
will determine Masking Field outputs. Because of self-similarity, 
the same number of cells of any fixed size can be simultaneously 
stored. This size will be approximately seven if the transient 
memory span is chosen to be approximately four (Section 3.11).

How does a Masking Field explain the word length effect in 
word superiority studies? This effect shows that a letter is pro-
gressively better recognised when it is embedded in longer words 
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of lengths from 1 to 4. The word length effect may also seem to 
follow from self-similarity, since larger chunks are more potent 
and predictive than smaller chunks. However, self-similarity 
implies that the list chunk of a familiar multi-letter word can 
inhibit the list chunk of a shorter word, including a familiar letter 
(Figure 7), which seems to contradict the property that the word 
can facilitate perception of its constituent letters, which is the 
main result of word superiority studies. This problem is resolved 
in ART systems that use item chunk and list chunk processing 
levels (Figure 7). In particular, although chunks that represent 
lists of multiple length compete within the Masking Field that 
categorises list chunks, the top-down expectations from the list 
chunk level to the item chunk level are excitatory. By self-simi-
larity, list chunks that represent longer words generate larger 
inhibitory and excitatory signals (Figure 7). List chunks that rep-
resent longer lists will therefore send larger top-down excitatory 
priming signals to the item chunk level, thereby explaining both 
how the Magical Number Seven can arise due to asymmetric 
inhibition among list chunks and how a word length effect in 
word superiority can arise due to asymmetric top-down excita-
tion from list chunks to the item chunks that activate them.

How future linguistic contexts can influence conscious per-
cepts of previously occurring linguistic items is explained and 
simulated in articles such as Grossberg et al. (1997) and Grossberg 
and Kazerounian (2016). Although many neurobiological experi-
ments have shown the importance of activity-dependent plastic-
ity during brain development (e.g. Penn and Shatz, 1999), there 
seems to be much less experimental evidence that directly studies 
its effects on neocortical neuron size (e.g. Benders et al., 2015). 
It would be useful for additional experiments to characterise 
whether multiple-scale list chunking cells with self-similar prop-
erties exist in VLPFC, as predicted by the Masking Field model, 
particularly in the superficial layers of VLPFC, as suggested by 
the LIST PARSE model (Grossberg and Pearson, 2008). In par-
ticular, if a GABA agonist applied to VLPFC reduces the number 
of items that can be simultaneously stored there, it should also 
reduce the longest list that a list chunk can learn and use to pre-
dict outcomes from there.

3.24. Visual search: efficient versus 
inefficient, bottom-up versus top-down

In naturally occurring environments, animals need to search 
scenes in order to discover the contextual information that can 
support actions that lead to reward. How this may be achieved 
will now be discussed, first by reviewing relevant data and then 
by showing how the pART model explains them, including data 
about prefrontal mechanisms of feature-based attention and how 
they may regulate selective storage of items in VLPFC.

Visual attention and eye movements can explore scenes with-
out any goals in mind. Just as often, however, visual searches 
seek out valued goal objects that are embedded in complex 
scenes. Common examples include finding a friend in a crowd or 
locating a menu board in a fast food restaurant. Neurophysiological 
data from monkeys that illustrate this distinction have been col-
lected by simultaneously recording from multiple electrodes in 
the parietal and prefrontal cortices (Buschman and Miller, 2007). 
These experiments used simple stimulus materials to distinguish 
bottom-up versus top-down processes of attentional control 
whereby to search a scene. The distinction between a 

fast automatic bottom-up sweep of activation versus a slower 
controlled top-down flow of activation has been described in 
many publications (e.g. Desimone and Duncan, 1995; Grossberg 
et al., 1994; Hochstein and Ahissar, 2002; Sarter et al., 2001; 
Treisman and Gelade, 1980). In all conditions of the Buschman 
and Miller (2007) experiments, a target was randomly located in 
an array of four stimuli. In the bottom-up, or pop-out, condition, 
the distractors were identical and differed from the target along 
the dimensions of colour and orientation. In this case, the target’s 
salience automatically drew attention to it. In the top-down, or 
search, condition, each distractor differed independently from 
the target, and the target matched some of the distractors in each 
dimension. Memory of the target, rather than its salience, had to 
be used to find it.

In the pop-out condition, LIP neurons in the PPC were acti-
vated first, followed by neurons in the FEF and DLPFC (Figure 
1). This kind of search thus proceeded in a primarily bottom-up 
way. In the search condition, the reverse order of activation was 
observed, and with a longer latency. Here, search proceeded top-
down from prefrontal to lower cortical areas.

In the classical visual search literature, pop-out searches were 
often called efficient searches. These searches typically yielded 
zero reaction time (RT) slopes as a function of the number of 
distractors, hence the term ‘pop-out’ search. The Buschman and 
Miller (2007) search task illustrates an inefficient search, which 
in the classical search literature often used targets that are 
described by a conjunction of features. During an inefficient 
search, RT increased with the number of distractors (e.g. 
Treisman and Gelade, 1980). Albeit suggestive, the dichotomy of 
efficient versus inefficient search based on RT slopes was later 
shown to be inadequate (e.g. Thornton and Gilden, 2007; 
Townsend, 1972) because a continuum of flat to steep slopes can 
be obtained by varying saliency factors (Wolfe, 1998; Wolfe 
et al., 1989). In particular, search efficiency increases with 
decreased similarity of targets to distractors and increased simi-
larity between distractors (Duncan and Humphreys, 1989). By 
proper choice of stimuli, a conjunction search can be rendered 
efficient, and a feature search can be rendered inefficient, all 
depending on the degree to which a target can be distinguished 
from distractors.

Before the eyes move to search a scene, its gist can be rapidly 
identified (e.g. coast, forest, mountain, countryside; Oliva and 
Torralba, 2001) if the scene contains enough familiar elements. 
Gist can be learned as a large-scale texture category in IT (cf. 
Figure 5) in a manner that is explained and simulated by the 
ARTSCENE model (Grossberg and Huang, 2009). When the gist 
texture is supplemented by one to three texture categories of 
smaller regions of a scene that are learned as the eyes scan the 
scene, these textures can vote to predict scenic type with up to 
91.85% correct on a test set, a benchmark that outperformed 
alternative models in the literature at that time by 16.5%.

3.25. Object and spatial contexts and 
reinforcement influence predictive choices

The computation of gist begins the process whereby human 
observers deploy visual attention using attention shifts and eye 
movements in a global-to-local and coarse-to-fine manner 
(Navon, 1977; Schyns and Oliva, 1994), thereby accumulating 
evidence about a scene, including where a target lies within it 
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(Gold and Shadlen, 2007; Grossberg and Pilly, 2008; Heekeren 
et al., 2008; Irwin, 1991; Jonides et al., 1982). As part of this 
evidence accumulation process, object and spatial contexts pro-
vide important information that enables working memories and 
list chunks to carry out more effective visual searches and to 
more successfully predict which options will be rewarded.

For example, when looking for a friend in a beach picture, our 
eyes typically fixate the sand at the bottom of the scene before the 
sky at its top. Such knowledge about the spatial layout of a scene 
is called spatial contextual cueing (e.g. Chun and Jiang, 1998). 
Spatial contextual information is not, however, always available 
in a novel environment. For example, when searching for a bev-
erage in a friend’s refrigerator for the first time, we may not even 
know where the kitchen is located in the house until we glimpse 
related objects such as a stove and a sink. In this situation, we 
may have prior knowledge about which objects may be corre-
lated in a scene like a kitchen, so continue to move towards the 
room where the stove and sink were glimpsed. However, we may 
not know the position where the refrigerator is located in this 
particular kitchen. This is an example of object contextual cueing 
(e.g. Chun and Jiang, 1999).

Many psychological experiments have described how humans 
use spatial and object contexts to efficiently search scenes. Such 
contextual cueing effects are typically measured using the RT for 
visually searching a familiar scene, subtracted from the RT for 
more slowly searching a novel scene, as described more fully 
below. These data have inspired the development of many visual 
search models (e.g. Backhaus et al., 2005; Brady and Chun, 
2007; Grossberg et al., 1994; Itti and Koch, 2000; Torralba et al., 
2006; Treisman and Gelade, 1980; Wolfe, 1994). Huang and 
Grossberg (2010) review how search materials are chosen and 
how different search models differ.

In general, these models typically try to explain where eye 
movements fixate to discover targets, and how fixated non-tar-
gets lead to the next eye movement. The ARTSCENE Search 
neural model (Huang and Grossberg, 2010) proposes, in addition, 
how an eye fixation on an object triggers learning about both its 
identity and its position, while also matching learned top-down 
expectations against the object and its position to determine 
whether it is a target or non-target. Sequences of eye movements 
also lead to storage of sequences of object and positional repre-
sentations. These object and spatial contexts are associated 
through learning with currently fixated objects as the search con-
tinues. Associative strength is commensurate with the co-occur-
rence frequency of the contextual information and the target, the 
magnitude and frequency of reward of correct target acquisitions, 
and the attentional valence of both the search target/position and 
a context object/position. Attentional valence is defined as the 
degree to which an object attracts attention in response to both 
bottom-up and top-down factors. For example, a familiar moving 
object in a scene can attract bottom-up attention due to its activa-
tion of transient cells in the Where cortical stream, after which 
both top-down spatial attention from the PPC and top-down 
object attention from its learned category in the What cortical 
stream can further increase its salience, as modelled by Foley 
et al. (2012). By combining attentionally modulated object and 
spatial information, each eye movement also helps to accumulate 
learned contextual evidence about object and spatial contexts 
that can be used to determine where to look next to most effi-
ciently find the target.

3.26. Perirhinal and parahippocampal 
cortices store object and spatial contexts

What brain regions carry out these processes? The sequences of 
scanned objects and their spatial positions are proposed to be 
stored in object and spatial working memories within the model 
VLPFC and DLPFC, respectively. Sequences of fixated objects 
and their spatial positions are also stored in the model PRC and 
PHC, respectively (Figure 1). Stored PRC and PHC sequences 
define object and spatial contexts that interact with the VLPFC 
and DLPFC working memories via bottom-up adaptive filters. 
The proposed role of PRC and related cortical areas in defining 
object contexts, and of PHC and related cortical areas in defining 
spatial contexts, is consistent with neuroimaging data about the 
dissociation of item and context information by these regions in 
humans (Aminoff et al., 2007; Diana et al., 2007; Libby et al., 
2014).

Learning in the ARTSCENE Search model from a stored 
object or position in PRC or PHC, respectively, to a stored object 
or position in VLPFC or DLPFC, respectively, is modulated by a 
dopamine burst from the model BG (Figures 3(a) and 4(a)) when 
a target is foveated and reinforced. In this way, predictively suc-
cessful associations between PRC and VLPFC, and between 
PHC and DLPFC, can amplify the stored working memory item 
chunks and list chunks that led to predictive success. The spatial 
attentional focus can be broadened or narrowed, as task con-
straints demand, to determine what objects or positions will 
influence the winning prediction.

Model interactions of IT, PRC, and VLPFC (Figure 1) also 
clarify neurophysiological data from monkeys that are recorded 
when they learn, using a delayed match-to-category paradigm, to 
categorise morphs of image exemplars into two categories; for 
example, cats versus dogs (Freedman et al., 2001, 2003; Roy 
et al., 2010). Supervised learning is needed because exemplars 
that are close to the category boundary, but on opposite sides of 
it, could be visually more similar than stimuli that belonged to the 
same category, for example, a cheetah and a housecat. Contextual 
cueing using sequences of image exemplars, and of a category-
predicting discriminative stimulus in cases where it is also pre-
sented, help to explain these data. In particular, it was found that 
IT seems to have properties consistent with ART mechanisms of 
ITp-ITa category learning (Figure 1), notably attention to critical 
features of each exemplar (Figure 5), whereas VLPFC seems to 
have properties consistent with ITa-PRC-VLPFC contextually 
cued learning (Figure 1), notably sustained activity during the 
delay period before reward, and greater match/mismatch effects. 
These studies did not, however, record from PRC, or interactions 
between PRC and VLPFC. Such additional measures are much to 
be desired.

3.27. Parietal-prefrontal resonance controls 
choice of reactive versus planned targets

These last experiments study category learning when stimuli are 
foveally presented from the start. During daily life, in contrast, an 
animal typically needs to move its eyes, head, and/or body to 
foveate important objects. Here, a major design problem needs to 
be solved: how do planned movements to an extrafoveal object 
compete with reactive movements to a different extrafoveal 
object? Rapid reactive movements in response to bottom-up 
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sensory demands are often needed to ensure survival in response 
to unexpected dangers. Planned movements, that may require 
PFC executive control and top-down attention, often take longer 
to select and release. How does the brain prevent reactive move-
ments from being triggered prematurely in situations where a 
more slowly occurring planned movement would be more 
adaptive?

A movement gate that is controlled by the SNr is typically 
tonically active until a movement command inhibits it. Then, the 
cells that control the corresponding movement can be activated 
(Figure 15(a)). When a visual cue occurs, the fastest response 
would be an orienting response to look at it. For this to happen, 
the cue needs to open the appropriate SNr gate to launch a reac-
tive movement to its position (Figure 15(b)). If the cue is a dis-
criminative cue to do a planned action as quickly as possible, 
then, as noted above, it may take longer to fully process the fea-
tures of the discriminative cue to determine the adaptive condi-
tional response. How does the brain know that a plan is being 
elaborated, even before it is chosen, so that the reactive gate can 
be kept shut, yet also allow a reactive movement command to 
open its gate as rapidly as possible when no planned movement 
command is being formed?

The TELOS model (Brown et al., 2004) explains and simu-
lates how the brain may achieve this balance between reactive 
and planned movements by predicting how the distribution of 
excitation and inhibition that converges on the BG when a plan is 
being elaborated can keep the reactive gate closed (Figure 15(c)). 
When a movement plan is finally chosen, there is agreement 
between cells in the FEF and the PPC representation of target 
position. This agreement is expressed by a synchronous FEF–
PPC resonance (Figures 1 and 15(d)) that changes the excitatory–
inhibitory balance as it inhibits outlier PPC positions. This 
resonance is predicted by TELOS to signal attentive consistency 
between a finally selected movement plan and the target position 
of the conditional movement. Then, the new balance of excitation 
and inhibition enables the appropriate FEF-commanded move-
ment gate to open and release the context-appropriate action 
(Figure 15(d)). As part of their study of bottom-up and top-down 
attention, Buschman and Miller (2007) reported such prefrontal–
parietal resonances, including between FEF and LIP, during 
movement control, and Pasupathy and Miller (2004) reported 
that the different time courses of activity in the PFC and BG are 
consistent with how BG-mediated gating of prefrontal cortical 
commands are learned in the TELOS model.

3.28. RTs in behavioural data and 
simulations about object and spatial 
searches

Computer simulations of contextual cueing data provide consid-
erable support for the ARTSCENE Search model’s proposal of 
how PRC and PHC help to guide sequential searches. In particu-
lar, ARTSCENE Search quantitatively simulates RT data about 
positive/negative, spatial/object, and local/distant contextual 
cueing effects during visual search. Figure 16 summarises six of 
the many experimental conditions about contextual cueing that 
ARTSCENE Search has successfully simulated. Each panel in 
the figure depicts RT data (left) and a computer simulation of it 
(right). These various conditions lead to expectations about what 

to measure if the neurophysiological methods of Buschman and 
Miller (2007) are added to traditional psychophysical experi-
ments on contextually cued searches.

Figure 16(a) summarises RT data and a simulation of positive 
spatial cueing. Positive spatial cueing effects are the RT reduc-
tions for search in a familiar spatial context compared to a new 
context. In this paradigm (Chun and Jiang, 1998), a fixed target 
position was chosen from a grid search display without replace-
ment and presented in one trial per block. Across blocks of search 
trials, a target position was accompanied by either a repeated spa-
tial configuration of distractors (Old condition) throughout the 
entire experiment or a random configuration that was newly gen-
erated in each block (New condition). In Figure 16(a) (left panel), 
the x-axis represents search epochs grouped from blocks of trials, 
and the y-axis represents search RT for completing a trial. Since 
the upper and lower curve in each panel of this figure corresponds, 
respectively, to the New and Old spatial context condition, the 
separation between these two curves indicates the amount of con-
textual facilitation in search RT that derives from a regular spatial 
context. Notice that the RT in the New spatial context condition 
dropped across epochs, and a further RT reduction in the Old spa-
tial condition also developed as the session progressed.

ARTSCENE Search replicates spatial cueing effects by learn-
ing pairwise associations between a context position in PHC and 
a target position in DLPFC. Specifically, when a search display is 
presented, it activates model PPC and, from there, both DLPFC 
and PHC as the eyes search a scene. Each context position that is 
stored in PHC sends biasing signals to all the target positions 
with which it has been associated in the past that are currently 
stored in DLPFC. When the contextual information combines 
with the intrinsic Masking Field dynamics of DLPFC, the chosen 
DLPFC list chunks encode the likelihood of seeing a target at 
each position. Top-down feedback from these list chunks to the 
FEF (Figure 1) then biases attention and eye movements toward 
likely target positions given the current scene layout. As a conse-
quence, an eye-scan path becomes more target-based rather than 
saliency-based. Accordingly, the probability of fixations on sali-
ent distractors is reduced, reflected as spatial cueing effects.

Why does the New curve also decrease with increased training? 
This happens because the strongest pairwise associations learned by 
the model are typically from a target position to itself due to its per-
fect self-correlation. Unlike positions where a target never occurs, a 
target position itself, once it re-appears in a search trial, signifies tar-
get presence and strongly attracts overt attention. Therefore, search 
RT can still decrease during the course of training even if a target 
position is presented in combination with a new context.

The five other panels in Figure 16 depict other spatial contex-
tual cueing (Figure 16(b) and 16(c)) and object contextual cueing 
(Figure 16(d)–(f)) paradigms that the model successfully simu-
lates. The object contextual cueing results depend upon model 
interactions between the model’s IT, VLPFC, and PRC regions 
(Figure 1). These and other successful simulations of the model 
strongly support its proposed mechanisms. It should, however, be 
noted that the simulations compute the decreasing number of eye 
fixations in the New and Old conditions, rather than absolute 
RTs. By assigning an RT to each fixation duration, a fit to RTs can 
also be achieved. However, that would still leave open the ques-
tion about whether each of these fixation steps takes that amount 
of time in associated brain regions. Such a mixed experimental 
and modelling study remains to be done.
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3.29. Where-to-What and What-to-Where 
interactions learn and search for objects

The ability to carry out a search for a desired object requires a 
solution to a major design problem that sufficiently advanced 
brains have solved. The What cortical stream learns recognition 

categories that tend to be increasingly independent of object view, 
size, and position at higher cortical levels, with ITa cells, among 
others in the temporal cortex, exhibiting such invariance (Bar 
et al., 2001; Sigala and Logothetis, 2002; Tanaka et al., 1991). The 
cortical magnification factor does, however, limit the degree of 
positional invariance, as reflected by the neurophysiologically 

Figure 15. Regulation of BG-gating of SC saccadic commands by frontal-parietal resonance. (a) When multiple stimuli exist as potential saccade 
goals, the corresponding PPC representations specifically excite striatal spiny projection neurons (SPNs; shown in the rectangle within the 
BG rectangle) and nonspecifically (convergently) excite feedforward inhibitory interneurons (labelled with a capital sigma) via corticostriatal 
projections. If more than one saccade plan is active, then striatal feedforward inhibition from all active plans prevents any one plan from activating 
its corresponding striatal SPNs to open the BG gate. This is because the pooled inhibitory input to each SPN can overwhelm the specific excitatory 
input. Therefore, the SC is not released from inhibition from the SNr, and movement is prevented while the conflicting cortical plan activity remains 
unresolved. (b) Targets compete in PPC via inhibitory interactions. When competition resolves so that the movement plan is unambiguous, the 
PPC’s excitatory input to striatal SPNs eventually exceeds striatal feedforward inhibition, which wanes as competing plans lose activation and stop 
convergent excitation of striatal inhibitory interneurons. The winning SPN’s discharge inhibits SNr (opens the normally closed BG gate), which 
disinhibits part of the SC map. (c) If the FEF plans a saccade goal whose position differs from that of a strong visual stimulus, the competing frontal 
and parietal activities collectively drive striatal feedforward inhibition to keep the BG gate shut until the conflict resolves. (d) As the frontal cortex 
imposes its saccade goal on the parietal cortex, the competition between saccade goals resolves, leading to a frontal-parietal resonance and BG 
gate opening to generate the unambiguous saccade.
Source: Reprinted from Brown et al. (2004).



38 Brain and Neuroscience Advances

recorded trade-off between object selectivity and position toler-
ance in ITa cells (Zoccolan et al., 2007). Grossberg et al. (2011) 
have used ART to explain and simulate this trade-off.

Invariant recognition categories avoid a combinatorial explo-
sion in the number of categories that are needed to represent an 
object. Instead of having to learn a different category for each 
object view, position, and size, the brain just uses a small popula-
tion of cells in ITa to code an invariant object category that is 
significantly invariant under changes in view, size, and position 
(e.g. Hung et al., 2005). This invariant category can then easily 
interact with other brain processes, such as reinforcement learn-
ing and working memory storage. In particular, an invariant 
object category in ITa may be attended with higher probability if 
it receives motivated attention via an ITa-AMYG-OFC cogni-
tive-emotional resonance (Figures 1 and 2).

In becoming positionally invariant, however, ITa recognition 
categories lose information about the positions in space of the 
objects that they represent. The Where stream represents target 
positions and controls actions aimed at acquiring them, but does 
not represent featural properties of the objects themselves. These 
What and Where stream properties are computationally comple-
mentary (Grossberg, 2000a, 2013a). Interactions between the 
What stream and the Where stream overcome these complemen-
tary computational deficiencies. Using What-to-Where interac-
tions, invariant object categories in the What stream can use 
Where stream spatial representations to control actions towards 
desired goals in space. Section 3.31 explains how this is proposed 
to occur.

In addition to What-to-Where interactions that help to search 
for an object, the ARTSCAN Search model has simulated how 
Where-to-What interactions enable invariant object categories to 
be learned as the eyes freely scan a scene. Along the way, this 
model has successfully explained and predicted many data about 
interactions between multiple brain regions, including V1, V2, 
V3A, V4, ITp, ITa, PPC, LIP, PFC, FEF, and SC (Cao et al., 
2011; Chang et al., 2014; Fazl et al., 2009; Foley et al., 2012).

In particular, the model explains how, as the eyes freely scan 
a scene, learning occurs from prestriate visual cortex (e.g. V4) to 
posterior inferotemporal cortex (ITp) of categories that combine 
both featural and positional information, and how multiple ITp 
categories learn, in turn, to be associated with an emerging invar-
iant ITa category (Figure 1). Category learning from ITp-to-ITa 
uses ART bottom-up adaptive filters. This learning is dynami-
cally stabilised by learning top-down expectations from ITa-to-
ITp (Figures 1 and 5).

For invariant category learning to work, the brain needs to 
solve a basic View-to-Object Binding Problem: as the eyes scan 
a scene, two successive eye movements may focus on different 
parts of the same object or on different objects. How does the 
brain avoid erroneously classifying views of different objects 
together into an invariant object category, even before the brain 
knows what the object is? ARTSCAN Search proposes how spa-
tial attention in the Where stream and object attention in the What 
stream interact to solve this problem.

The category learning process begins when a view- and posi-
tion-specific category of a novel object is learned in ITp and acti-
vates cells in ITa. These ITa cells will learn to encode an invariant 
object category as multiple specific ITp categories are associated 
with it as the eyes explore the object surface. When the object 
view changes enough, the previously active ITp category gets 

reset to enable a new one to be activated and learned. The emerg-
ing invariant category in ITa cannot, however, get reset because 
it needs to remain active while it is associated with multiple ITp 
categories of that object.

Why is the invariant category not reset? An attentional shroud 
in PPC is predicted to inhibit reset of an invariant object category 
while the eyes scan different views and positions of the object 
(Figure 17). An attentional shroud (Tyler and Kontsevich, 1995), 
or form-fitting distribution of spatial attention, can form pre-
attentively even before the brain learns to recognise the surface 
as representing a particular object. Such a shroud is part of a 
surface-shroud resonance (Figure 17) that arises due to positive 
feedback interactions between a surface representation (e.g. in 
cortical area V4) and spatial attention (e.g. in PPC). A surface-
shroud resonance maintains sustained spatial attention upon the 
object to be learned and triggers the process whereby the attended 
surface qualia becomes consciously visible (Grossberg, 2017b). 
While the shroud is active, it inhibits the parietal Category Reset 
mechanism that would otherwise inhibit ITa (Figure 17) while 
helping to select eye movement target positions whereby to fove-
ate salient features on the object surface. The process whereby 
sequential eye movement targets are chosen occurs from V2-to-
V3A-to-LIP and FEF (Figure 17). When spatial attention shifts to 
focus on another object, the reset mechanism is transiently disin-
hibited, and its burst of activity inhibits the active ITa category 
(Figure 17), so that a new object can be attended and its invariant 
category learned. See Grossberg (2013a, 2017b) for extensive 
discussions of this process and the psychological and neurobio-
logical data that it explains and predicts.

3.30. What working memory filtering and 
activation of Where target positions

After Where-to-What stream interactions help to learn invariant 
object categories, What-to-Where stream interactions regulate how 
to foveate valued target objects in a scene. Both ARTSCAN Search 
and ARTSCENE Search proposed a minimal anatomy (Section 1.3) 
that could carry out this function, while also simulating challenging 
RT data about visual search, for example, Figure 16.

Such an anatomy proposes how an invariant object represen-
tation in the What stream can activate a positional representation 
in the Where stream that can be used to foveate a valued target 
object in a scene. However, it did not try to solve the problem of 
how the brain can selectively filter desired targets from a stream 
that also contains distractors, so that it only attends, stores, and 
foveates matched targets. The minimal anatomy is summarised 
here for multiple reasons. First, it was sufficient to quantitatively 
simulate challenging RT data in many contextual cueing experi-
ments. Second, it may have evolved before the prefrontal mech-
anisms of selective working memory storage did, may operate in 
parallel with them, and may be unmasked if the prefrontal mech-
anisms are lesioned. This last possibility may be worth testing 
directly.

In the minimal anatomy of ARTSCENE Search, winning 
VLPFC activities send a top-down attentional prime to ITa. An 
open SNr gate lets the primed ITa cells fire. These ITa cells can 
then prime the positionally sensitive categories in ITp with which 
they were associated when ITa was being learned using resonant 
bottom-up and top-down interactions (Figure 5). If one of the 
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Figure 16. Some simulations of contextual cueing behavioural paradigms using the ARTSCENE Search model. (a)–(c) simulate spatial cueing 
paradigms, whereas (d)–(f) simulate object cueing paradigms. In all graphs, the x-axis represents training epoch grouped from blocks of trials, and 
the y-axis represents search reaction time for completing a trial. (a) Positive spatial cueing effects are the RT reductions for search in a familiar 
spatial context (Old condition) compared to a novel context (New condition). Data reprinted with permission from Chun (2000). (b) Spatial cueing 
effects can be mainly attributed to target-predictive positions closer to the target, such as those in the same visual hemifield. In the graphs, the 
conditions New, GlobalCxt, LRCxt, and SRCxt refer to novel, repeated, long-range, and short-range spatial contexts, respectively, with respect to the 
target position. Data reprinted with permission from Olson and Chun (2002; Experiment 2). (c) Negative cueing effects or context-induced search 
RT increases can arise at the single subject level due to focused attention. At the group level in which search RTs were averaged across subjects, 
there was no significant RT difference for search in a familiar spatial context (Old condition) or a novel one (New condition). Data reprinted with 
permission from Lleras and Von Mühlenen (2004; Experiment 3). (d) Object cueing effects are the RT reductions for search in a congruent or familiar 
object context (Old condition) compared to an incongruent or a novel context (New condition). Data reprinted with permission from Chun (2000). 
(e) Selective feature-based attention modulates contextual cueing. In the experiment and simulation, a search trial consisted of red and green 
items including the target whose colour was maintained and attended to throughout the entire session. Across blocks, the spatial configuration of 
distractors in a trial was randomly varied in the Control condition, but fully repeated in the Both-old condition. The Ignored-old and Attended-old 
conditions preserved spatial locations across blocks for distractors in the ignored or attended colour, respectively. Data reprinted with permission 
from Jiang and Chun (2001; Experiment 3). (f) Task-irrelevant colours did not affect spatial cueing. In the experiment and simulation, the target 
colour was non-predictable, either red or green. The context layouts were varied in the New condition, but preserved across blocks for half of 
the items that shared the target colour in the Old-Match condition. In contrast, the Old-Oppose condition preserved locations for half items that 
differed in colour from the target. Data reprinted with permission from Olson and Chun (2002; Experiment 4). Adapted with permission from Huang 
and Grossberg (2010).

primed ITp categories also receives a bottom-up input from an 
object at its position, then it can fire and activate positional 

representations in LIP and FEF. These positional representations 
can move the eyes to the position in space that they represent.
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3.31. Feature-based attention, saccadic 
choice, and selective working memory 
storage

More is needed for VLPFC to also be able to selectively filter 
desired targets from a stream that also contains distractors, and to 
enable it to selectively attend, store, and foveate matched targets. 
Neurophysiological data about the role of VPA as ‘a source for 
feature-based attention’ (Bichot et al., 2015: 832) may be under-
stood in the light of these additional functional properties, nota-
bly how and why cells in VPA selectively match desired 
combinations of object features, resonate with a target that 
matches these features, and then rapidly activate a positional rep-
resentation in FEF that can command a saccade to this target. 
These properties were recorded in experiments where fixating 
monkeys were presented with a central cue object that defined 
the search target, which was followed by a delay during which 
the monkeys held a representation of the target in memory. Then, 
an array of eight stimuli appeared that contained the search target 
and seven distractors. The monkeys found the target using free 
gaze and were rewarded for maintaining fixation on it for 800 ms.

Bichot et al. (2015) conducted experiments in which they 
simultaneously recorded from IT, VPA, and FEF in two mon-
keys, and VPS, VPA, and FEF in two other monkeys (Figure 1). 
The following summary proposes a mechanistic and functional 

explanation of how these cells interact together, notably how they 
enable matched and mismatched objects to be selectively pro-
cessed in PFC (Figure 1):

1. Both ITp (TEO) and ITa (TE) project to PFC (Barbas 
and Pandya, 1989; Tanaka, 1996; Webster et al., 1994).

2. ITp topographically projects to VPA, whose cells exhibit 
significant sensitivity to extrafoveal positions (Bichot 
et al., 2015), as do those in ITp (Tanaka, 1996).

3. ITa topographically projects to PRC, as in the ARTSCENE 
Search model, and also to VPS, which in turn projects to 
VLPFC. As noted in Bichot et al. (2015), VPS had the 
largest spatial tuning curve of any of the cells that they 
recorded, consistent with invariance properties of ITa.

4. VLPFC outputs top-down signals to both VPS and VPA, 
where they learn modulatory top-down expectations 
when they are associated with the currently active VPS 
and VPA cells. These expectations are assumed to obey 
the ART Matching Rule (Figure 5(b)).

5. The activity of cells in VPA that are receiving an active 
VLPFC-to-VPA prime are enhanced when a currently 
presented extrafoveal object matches target features in 
their receptive field, and is suppressed when such an 
object mismatches expected target features, consistent 
with the ART Matching Rule.

Figure 17. How ARTSCAN maintains spatial attention in the Where cortical stream upon an object surface via a surface-shroud resonance between 
V4 (Object Surface) and PPC (Spatial Attention), while the What cortical stream learns view-specific categories in ITp that get associated with 
view-invariant object categories in ITa. While the attentional shroud in PPC maintains spatial attention upon the object surface, it also inhibits 
reset cells in PPC (dashed red connection from Spatial Attention to Category Reset). When spatial attention shifts to another object, this inhibition 
shuts off, thereby disinhibiting the reset cells and enabling them to send a transient inhibitory burst to the invariant category representation 
(dashed red connection from Category Reset to Object Category), which is then also inhibited. A shift of spatial attention and learning of an 
invariant object category for the newly attended surface can then proceed. Feedback interactions between the object’s boundaries and surfaces 
include surface contour signals in V2 (red rectangular boundary) that assure perceptual consistency while also initiating figure-ground separation 
within cortical area V2. Because they are computed using a contrast-enhancing on-centre off-surround networks, surface contour signals are largest 
at high curvature boundary positions (see purple dots at rectangle corners). These high curvature positions mark locations of salient features, and 
are converted into eye movement target positions in V3A, which are relayed to brain regions like LIP and FEF (not shown) that enable the eyes to 
explore the object surface while it is attended.
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6. The enhanced VPA activity is sufficient to trigger an out-
put signal to FEF at the corresponding positional repre-
sentation in FEF (Figure 1), consistent with data of 
Bichot et al. (2015) showing VPA activating around 
20 ms before FEF. FEF can then elicit a saccade to the 
matched target, leading to it being foveated. By inhibit-
ing inputs from objects that mismatch the VPA expecta-
tion, mismatched objects are not foveated.

7. The activity of cells in VPS that are receiving an active 
VLPFC-to-VPS prime are enhanced when an invariant object 
category from ITa matches their receptive field, and are sup-
pressed when such an object mismatches it, consistent with 
the ART Matching Rule. When a match occurs, a synchro-
nous resonance develops that enables the category to be stored 
in VLPFC (Figure 1). This resonance propagates through 
multiple cortical areas, in the manner described in Section 
3.32, and supports conscious recognition of the object.

The mapping between VPA and FEF positions is assumed to 
have been learned in response to series of objects that have, in the 
past, activated the What and Where streams in parallel (Figure 1). 
The kind of learning that can associate corresponding VPA and 
FEF positions has previously been simulated in the FACADE 
(Form-And-Color-And-DEpth) model of 3D vision and figure-
ground perception, where it was used to associate corresponding 
positions in the boundary and surface representations within the 
interblob and blob cortical streams, respectively, through V1, V2, 
and V4 (Figure 1) as they were activated in parallel by a series of 
objects (Grossberg et al., 2002). Once these cortical streams were 
associatively linked, output signals from oriented boundaries to 
the colours with which they were associated in the surface stream 
provided an explanation of many properties of the McCollough 
effect, a striking long-term, oriented, chromatic aftereffect, 
among other percepts (McCollough, 1965).

The pART macrocircuit in Figure 1 contains two cortical 
areas, VPA and VPS, that have not previously been simulated. 
However, interactions and functional roles for all the other brain 
regions in Figure 1, and some that are not included in this Figure 
(cf. Figures 3–5, 12, 15, and 17), have been extensively simu-
lated in earlier models, and used to explain large psychological 
and neurobiological data bases. These models provide a secure 
foundation for including VPA and VPS in a unified model of pre-
frontal dynamics. Models of cognitive-emotional dynamics, such 
as CogEM, MOTIVATOR, and nSTART, have already been men-
tioned above, as have What stream invariant category learning 
and search models such as ART, ARTSCAN Search, and 
ARTSCENE Search. In addition to these models, all the Where 
stream brain regions in Figure 1 have been extensively modelled, 
including a model of motion processing, form-to-motion interac-
tions, and directional attention (3D FORMOTION model); 
motion-based decision-making (MODE model); visual naviga-
tion using heading, obstacle avoidance, and route selection 
(ViSTARS model); and target tracking by combinations of sac-
cadic and smooth pursuit eye movements (SAC-SPEM model) 
that together simulate properties of Where stream cortical areas 
V1, middle temporal cortex (MT), medial superior temporal area 
(MST), PPC/LIP, FEF, and PFC, and areas with which they inter-
act (Baloch and Grossberg, 1997; Berzhanskaya et al., 2007; 
Browning et al., 2009a, 2009b; Elder et al., 2009; Grossberg 
et al., 1999, 2001, 2012; Grossberg and Pilly, 2008; Pack et al., 
2001; Srihasam et al., 2009).

3.32. Synchronisation of multiple cortical 
regions for feature-based attention

The proposed role of VPA for ‘feature-based attention’ should not 
be conflated with the ‘feature-based attention’ that supports con-
scious seeing and knowing about a familiar object. In this regard, 
ART and ARTSCAN predicted – and thereby explained a lot of 
data – about how percepts of visual qualia may become con-
scious due to surface-shroud resonances that are triggered 
between V4 and PPC (Figures 1 and 17), before propagating both 
bottom-up and top-down to other cortical areas; how familiar 
objects may be recognised due to a feature-category resonance 
that is triggered between V4 and IT (Figures 1 and 17), before 
propagating both bottom-up and top-down to other cortical areas; 
and how an observer may consciously see and know about a 
familiar object when these two types of resonances synchronise 
(Grossberg, 2013a, 2017b).

VPA processing carries out a type of top-down ‘feature-based 
attention’ in a strict mechanistic sense because its circuit seems to 
embody the ART Matching Rule (Figure 5(b)), as do multiple 
stages of feature-based attention (Grossberg, 2013a, 2017b). 
Multiple cortical stages that compute ‘feature-based attention’ 
can synchronise during a match state, as illustrated by MEG and 
fMRI data of Baldauf and Desimone (2014) in humans. See also 
Buschman and Miller (2007), Engel et al. (2001), Gregoriou 
et al. (2009), and Pollen (1999).

The LAMINART (Laminar Adaptive Resonance Theory) model 
(Grossberg, 1999; Grossberg and Raizada, 2000; Raizada and 
Grossberg, 2001, 2003) clarifies how multiple cortical stages can 
synchronise (Figure 18). This model proposes how all granular neo-
cortical areas may combine bottom-up, horizontal, and top-down 
interactions that embody variations of the same canonical laminar 
cortical circuitry. Because of this shared circuitry across cortical 
areas, the ART Matching Rule circuit in Figure 5(b) may be realised 
using a similar circuit design at multiple stages of cortical process-
ing. For example, in Figure 18, the top-down attention pathway from 
layer 6 in V2 projects to layer 6 in V1, which sends bottom-up sig-
nals to layer 4. These bottom-up signals are sent via a modulatory 
on-centre (note the balanced excitatory and inhibitory pathways to 
layer 4) surrounded by a driving off-surround network. The top-
down signals from V2 are hereby ‘folded’ at layer 6 in V1 in order to 
reach layer 4. This property shows that object attention is carried by 
a top-down, modulatory on-centre, off-surround network whose off-
surround is activated by a folded feedback network.

Figure 18 illustrates how a top-down, task-selective priming 
signal from PFC can propagate through multiple lower cortical 
areas via their layer 6, which can then activate their layer 6-to-4 
modulatory on-centre, off-surround networks via folded feed-
back. In this way, an entire cortical hierarchy, including multiple 
stages of ‘feature-based attention’, may get primed to process 
incoming bottom-up signals to accommodate the bias imposed 
by the prime. When a matched bottom-up target is received by 
this cortical hierarchy, multiple processing stages can rapidly go 
into gamma synchrony, as simulated by Grossberg and Versace 
(2008), and can support recognition of the target.

In summary, as Figure 1 illustrates, section 3 has summarised 
how selective, context-sensitive storage of event sequences in cog-
nitive and motor working memories occurs, and how learning and 
performance of the most predictive cognitive plans, or list chunks, 
builds upon the event sequences that are stored in working memory. 
Selectivity is achieved both by feature-based attention and SNr BG 
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gating. Attentive matching can trigger orienting movements to 
foveate a target object and can cause a feature-category resonance 
to propagate through multiple cortical levels and to support con-
scious event recognition and working memory storage. Opening an 
SNr gate enables storage in working memory to occur, and closing 
the gate inhibits storage and prepares the working memory to store 
future sequences without bias. Choice of list chunks that can best 
predict valued outcomes is supported by a combination of Masking 
Field competitive dynamics (Figure 7), PRC and PHC contextual 
associations (Figure 1), and reinforcement learning mechanisms 
that operate via both the AMYG and OFC (Figures 1–3) and via 
SNc Now Print signals in response to unexpected rewards and non-
rewards (Figures 3(a), 4(a), and 12).

4. Concluding remarks
This article describes an emerging neural architecture, called 
pART (Figure 1), that embodies explanations and predictions 
about the neural mechanisms and functional properties of several 
prefrontal cortical areas, including OFC, VLPFC, DLPFC, VPS, 
VPA, and FEF as they carry out cognitive-emotional and cognitive 
working memory dynamics. The explanations describe how these 
prefrontal areas may realise their functional properties as emergent 
properties due to interactions among themselves and with other 

brain regions, including the amygdala, BG, cerebellum, V1, V2, 
V3A, V4, ITp, ITa, MT, MST, LIP, PPC, and SC. These functional 
properties include the computation of desirability by OFC and 
availability by VLPFC (Rudebeck et al., 2017), a solution of the 
credit assignment problem by DLPFC (Asaad et al., 2017), and 
how feature-based attention by VPS and VPA may filter expected 
versus unexpected objects and thereby both help to direct saccadic 
eye movements to expected objects (Baldauf and Desimone, 2014; 
Bichot et al., 2015) and select items for storage in the VLPFC cog-
nitive working memory. Cognitive-emotional interactions, includ-
ing reinforcement learning and incentive motivational learning; 
object and spatial working memory dynamics; and category learn-
ing, including the learning of object categories, value categories, 
object-value categories, and sequence categories, or list chunks, 
are among the processes that are carried out by this architecture. 
Several functionally distinct types of attention (prototype, surface, 
and motivated attention) help to dynamically stabilise these learn-
ing processes as well as to predictively prime their target represen-
tations. Prototype attention focuses upon the critical feature 
patterns that are attended during the feature-category resonances 
that support object recognition (Figure 5); surface attention focuses 
on an object surface during the surface-shroud resonances that sup-
port conscious seeing of its visual qualia (Figure 17); and moti-
vated attention focuses on valued objects during conscious 
cognitive-emotional resonances and supports conscious feelings 
about them (Figures 2 and 3; Grossberg, 2013a, 2017b).

Many of the pART explanations in this article can be viewed 
as confirmed predictions, because the model mechanisms that are 
used to explain the data anticipated the experiments that reported 
them. The article also suggests multiple additional predictions 
whereby to further test these explanations. Some of these predic-
tions are stated explicitly in the text, but every model interaction 
and emergent property implicitly embodies additional predic-
tions. In particular, the article’s unified explanation of cognitive-
emotional and cognitive working memory dynamics enables 
each laboratory to imagine new kinds of experimental tests that 
would be amenable to its own particular laboratory capabilities.

It should also be emphasised that, once models sufficiently 
explicate the actual design principles, mechanisms, circuits, and 
architectures that are used by our brains, the models can lead to 
explanations and predictions in totally different areas of psychol-
ogy and neuroscience than those that were their original explana-
tory targets. That is how, for example, explanations have been 
discovered showing how particular breakdowns in normal brain 
functioning may give rise to behavioural symptoms of mental dis-
orders that afflict millions of individuals, including Alzheimer’s 
disease (Grossberg, 2017a), autism and Fragile X syndrome 
(Grossberg, 2013a; Grossberg and Kishnan, 2018; Grossberg and 
Seidman, 2006), schizophrenia (Grossberg, 2000b), and medial 
temporal amnesia (Carpenter and Grossberg, 1993; Grossberg, 
2013a). Here too, multiple predictions are made for which addi-
tional experimental tests would be of great value.
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Figure 18. The LAMINART model clarifies how bottom-up, horizontal, 
and top-down interactions within and across cortical layers in V1 and 
V2 interblob and pale stripe regions, respectively, carry out bottom-
up adaptive filtering, horizontal grouping, and top-down attention to 
carry out perceptual grouping, including boundary completion. Similar 
interactions seem to occur in all six-layered cortices. See text for details.
Source: Reprinted with permission from Raizada and Grossberg (2001).
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