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Abstract

Purpose: Prospective surveillance of invasive mold diseases (IMDs) in haematology patients should be standard of care but
is hampered by the absence of a reliable laboratory prompt and the difficulty of manual surveillance. We used a high
throughput technology, natural language processing (NLP), to develop a classifier based on machine learning techniques to
screen computed tomography (CT) reports supportive for IMDs.

Patients and Methods: We conducted a retrospective case-control study of CT reports from the clinical encounter and up to
12-weeks after, from a random subset of 79 of 270 case patients with 33 probable/proven IMDs by international definitions,
and 68 of 257 uninfected-control patients identified from 3 tertiary haematology centres. The classifier was trained and
tested on a reference standard of 449 physician annotated reports including a development subset (n = 366), from a total of
1880 reports, using 10-fold cross validation, comparing binary and probabilistic predictions to the reference standard to
generate sensitivity, specificity and area under the receiver-operating-curve (ROC).

Results: For the development subset, sensitivity/specificity was 91% (95%CI 86% to 94%)/79% (95%CI 71% to 84%) and ROC
area was 0.92 (95%CI 89% to 94%). Of 25 (5.6%) missed notifications, only 4 (0.9%) reports were regarded as clinically
significant.

Conclusion: CT reports are a readily available and timely resource that may be exploited by NLP to facilitate continuous
prospective IMD surveillance with translational benefits beyond surveillance alone.
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Introduction

Despite the high health and economic burden [1] of invasive

mold diseases (IMDs) and effort invested in preventing them,

prospective continuous epidemiological surveillance as advocated

by professional societies and practice guidelines [2–4] is rarely

performed. Prospective epidemiological surveillance in routine

practice [5] is an onerous and costly task for hospitals principally

because IMDs lack an easily identifiable and consistent laboratory

prompt such as a positive blood culture. Case finding, like

diagnosis, relies on a constellation of findings from clinical review

in conjunction with radiology and microbiology with adjudication

by experts using complicated case definitions [6] making it a time-

consuming and therefore costly exercise that is not widely

performed outside research protocols [7–10].

For surveillance in general, the primary screening method

should have a high sensitivity in order to minimise the burden of

case finding while maximising case capture. However, for

epidemiological surveillance of IMDs the ideal screening method

is undefined. Laboratory-based surveillance is subject to significant
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underreporting because IMDs may be diagnosed with or without

microbiological confirmation corresponding to probable/proven

and possible categories respectively [6]. Indeed possible infections

may predominate in some settings [11–13] due to the difficulties in

establishing a microbiological diagnosis given that conventional

microbiology for Aspergillus and hyaline molds is positive in 50%

or fewer of cases [14] and patient acuity often contraindicates

invasive diagnostic procedures. Microbiological confirmation is

further hampered by the fact that non-culture based tests (NCBTs)

such as galactomannan (GM) or polymerase chain reaction (PCR)

are not widely available and have a suboptimal sensitivity [15,16]

which is further compromised by concomitant antifungal therapy

administered for either treatment or prophylaxis [17]. Adminis-

trative data such as coding diagnoses is unreliable for IMD

surveillance [18] and neither timely nor informative enough for

outbreak detection. In practice, no single method will be adequate

for epidemiological surveillance of IMDs and complete case

capture will require, the pooling of data from multiple sources

[7,8,18]. However, the combination of laboratory based data with

clinical or bed-side surveillance to best characterize total disease

burden is not feasible for many centers to perform in real-time as it

is a labour and time intensive task.

Although the optimal screening method for epidemiological

surveillance of IMDs is undefined, the high frequency of

pulmonary involvement makes chest computed tomography

(CT) imaging an attractive target for screening. Chest CT is

routinely performed when IMD is suspected as it is a non-invasive

test that is widely available with results reported within hours

rather than days and pulmonary involvement is present in 90% to

100% of patients with IA [7,8,10]. Although lung sampling and

other laboratory indicators could be used for epidemiological

surveillance and may upgrade possible cases to probable/proven

categories they are not performed with the same frequency of CT.

The major shortcomings of CT, however, are its poor specificity

for IMDs [19] and extracting meaning from free-text reports.

We hypothesized that epidemiological surveillance of IMDs that

is cost-effective and sustainable could be facilitated by technology.

Natural language processing (NLP) is a computational method of

analyzing human language that has detected several medical

conditions [20–24] from the wealth of unstructured data in

hospitals, with an accuracy comparable to human interpretation

[24–26]. We developed a classifier that uses NLP based on

machine learning techniques, to flag suspicious CT reports

performed during routine clinical practice as a means of

facilitating prospective IMD epidemiological surveillance in

hospitals.

Methods

Study Design and Setting
This was a retrospective case-control cohort study of patients

from three tertiary adult university-affiliated hospitals (Alfred

Health, AH; Peter MacCallum Cancer Institute, PM; Royal

Melbourne Hospital, RMH). AH and RMH operate statewide

haematopoietic stem cell transplant (HSCT) services which

collectively perform approximately100 allogeneic transplants/

year. De-identified patient records were used and the human

research ethics committees at each site who granted permission for

the study, waived patient consent.

Inclusion and Exclusion Criteria
Case and uninfected control patients from 2003 to 2011

inclusive were identified from previously completed clinical

mycology studies [1,12,27,28] (Ananda-Rajah et. al. Unpublished

work: Prophylactic Effectiveness & Safety Of Intermittent Lipo-

somal Amphotericin In High Risk Haematological Patients

Abstract no M-280 51st Interscience Conference on Antimicrobial

Agents and Chemotherapy ASM, Chicago 2011) pharmacy

dispensing records, antimicrobial stewardship, HSCT, infectious

diseases databases and microbiology records. Patients lacking CT

scan reports were excluded, as were exclusively brain scans in

order to focus detection of sino-pulmonary disease. Because

detection of IMDs was the intent, patients with isolated

candidaemia were excluded as laboratory-based surveillance is

suitable for this infection.

Clinical Data and Definitions
CT reports from haematology/HSCT patients with (i.e. cases)

and without IMDs (i.e. controls) were manually downloaded from

each hospital as de-identified text files. CT reports, from

performance of the diagnostic scan and for 12 weeks thereafter

(in order to evaluate radiological progression) performed during

the clinical encounter were included. The clinical encounter was

defined from admission to either discharge, death or transfer.

Clinical information was extracted from aforementioned study

datasets and hospital records. IMDs were classified according to

consensus definitions by expert reviewers [6]. Date of diagnosis

was defined as the first day of suspicious radiological abnormality

for possible cases or for probable/proven cases, a positive

microbiological or histopathological test.

Development of the Reference Standard
A randomly selected convenience subset of reports from case

and control patients were annotated at sentence and scan level by

three infectious diseases physicians (MAR, KT, MS). The primary

reviewer (MAR) annotated all case and control reports. Secondary

review of case reports was undertaken by two physicians (KT,

MS). The secondary reviewers served to validate the primary

reviewer’s analysis through measures of agreement. Pre-specified

annotation guidelines were refined with differences in opinion

resolved by discussion at face-to-face meetings. An iterative

process of annotation ensued with reports from case patients

annotated twice or three times over, while those from control

patients (from the outset regarded as less challenging to interpret)

were annotated once by the primary reviewer (MAR).

For annotation, each sentence within a report and each report

was treated as an independent observation, meaning that for

sentence level annotation, sentences rather than specific words

were coded according to the following contextual features:

specificity for IMD (specific vs non-specific features e.g. macro-

nodules, halo vs. infiltrates, ground-glass, consolidation); certainty

(suggestive, equivocal or not supportive of IMD), directionality/

change (negation, stable, resolution, progression); temporality

(recent, past); alternative processes (e.g. pulmonary emboli, edema)

and clinical alerts (i.e. urgent follow-up required). Scan level

annotation referred to classification of the entire report as being

either supportive or not for IMD with equivocal scans subse-

quently merged with supportive reports. Supportive reports had

specific features of IMD including halo, nodule, cavity, focal mass,

wedge-shaped lesions, bony sinus erosions. Negative reports had

none of the above features while equivocal reports included

infiltrate, consolidation, ground glass change, effusions or uncer-

tainty by the reporting radiologist.

Importantly, the reference standard was informed by the

opinion of clinician experts rather than radiologists given that

the guiding principle was to flag reports of concern to end-users

irrespective of the final diagnostic outcome.

Automated Surveillance of Mold Infections
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Development of the Classifier
Reports were classified in a binary fashion as being supportive

or not supportive of IMD (i.e. positive/negative). A multi-class

classification approach at sentence level was used: each sentence

allocated one of a number of classes, with all sentence-level

classifications subsequently informing the report level decision.

Text was analyzed as groups of words (‘‘bag-of-words’’), phrases

(‘‘bag-of-phrases’’) and concepts (‘‘bag-of-concepts’’) [29] which

were extracted from the annotated reports. The bag-of-words

framework collates unordered sets of words, mapping dates and

numbers to date and number features respectively. The bag-of-

phrases framework uses phrases identified by MetaMap [29]

corresponding to concepts from the Unified Medical Language

System (UMLS) Metathesaurus. The version of MetaMap

employed leverages the Negex tool [30] to determine negation

of a concept (e.g., ‘‘… is not consistent with …’’). The bag-of-

concepts framework used Metathesaurus concepts mapped by

MetaMap, noting that multiple phrases may map to the same

concept.

We adopted a supervised machine learning approach experi-

menting with several machine learning algorithms including

Support Vector Machines (SVM), Naı̈ve Bayes, Random Forests,

and Bayesian Nets, as implemented in the Weka 3.6.0 [31] and

LibSVM 3.11 [32] toolkits. Briefly, supervised machine learning is

a group of computational methods which use algorithms to

Table 1. Characteristics of patients with and without invasive mold diseases (IMDs).

Characteristic IMD group n (%) Control group n (%)

No. of patients 79 68

No. of clinical encounters1 79 (51) 75 (49)

Male gender 48 (61) 35 (51)

Age, mean (range) years 53 (20–89) 51 (18–89)

Underlying disease

AML 32 (41) 35 (51)

ALL 14 (18) 14 (19)

Lymphoma 15 (19) 12 (16)

Chronic leukaemia 7 (8.9) 1 (1.3)

MDS/transformed MDS 6 (7.6) 2 (2.7)

Multiple myeloma 3 (3.8) 3 (4)

Other 2 (2.5) 5 (6.7)

Neutropenia (#0.5 cells/L) present 65 (82) 56 (75)

Median duration of neutropenia (IQR), days 18 (8–45) 19 (5–39)

HSCT 36 (46) 39 (52)

Allogeneic 31/36 (86) 30/39 (77)

Autologous 5/36 (14) 9/39 (23)

Characteristics of IMDs, n = 79 NA

Probable/proven IMDs 33 (42)

Possible IMDs 46 (58)

Site of infection

Lung 67 (85)

Sino-pulmonary 3 (3.8)

Sinus 2 (2.5)

Hepatosplenic 2 (2.5)

Disseminated 4 (5.1)

Organism

Aspergillus fumigatus 13

Non-fumigatus Aspergillus species (A. niger, A. flavus) 4

Fungal hyphae resembling Aspergillus species 3

Scedosporium species 4

Any positive PCR 2

Rhizopus species 4

Other molds (Acrophialophora fusispora, Paecilomyces lilacinus) 2

Candida glabrata (co-infection with S. Prolificans fungaemia) 1

Abbreviations: AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; MDS, myelodysplastic syndrome; IQR, inter-quartile range; HSCT, haematopoietic stem
cell transplant.
1Clinical encounter defined from admission to either discharge, death or transfer and for up to 12-weeks after where applicable.
doi:10.1371/journal.pone.0107797.t001
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automatically construct a model from labeled/annotated training

data that is then used to predict classification in unseen/unlabeled

examples [33]. Of the algorithms tested, SVM performed best and

was selected for the final classifier.

Physician annotated reports were divided into development

(n = 366) and held-out sets (n = 83), the latter annotated at scan

level only. We used 10-fold cross validation on the development set

with the optimal classifier identified from experiments, tested

against the held-out set which served as an additional validation

step. Cross-validation is an accepted method within the machine

learning domain that maximizes limited gold standard data while

minimizing the risk of overfitting associated with training on the

test set [34].

Statistical Analysis
The results of each manually annotated report was compared to

the binary and probabilistic predictions of the classifier allowing

calculation of sensitivity, specificity and receiver operating curve

(ROC).

Hypothetical IMD prevalence rates of 5%, 10% and 20% were

used to estimate positive and negative predictive values (PPV,

NPV). Inter-annotator agreement was assessed using Cohen’s

kappa coefficient, a chance corrected index of agreement [35]. All

analyses used Stata 11.0 software (Stata Corp, College Station,

Texas, USA).

Results

Patient Characteristics
A total of 147 patients were included in the annotated subset of

449 reports; 79 (54%) had IMDs and 68 (46%) were control

patients (Table 1). Neutropenia (#0.56109 cells/L) was present in

82% and 75% of clinical encounters among case and control

patients respectively and was prolonged (median 18 and 19 days

respectively). A history of HSCT was present in 46% and 52% of

case and control patients, being allogeneic in 86% and 77% of

patients respectively.

IMDs were probable/proven in 33/79 (42%) and possible

infections in 46/79 (58%). Sinus and/or pulmonary disease

occurred in 91% of case-patients. IA comprised 20/33 (61%) of

microbiologically confirmed cases with rare molds including

Scedosporium and Rhizopus species identified in 10/33 (30%).

Table 2. Characteristics of the physician expert annotated and unannotated reports.

Characteristic Annotated reports n (%) Unannotated reports n (%)

No. of reports 449 1431

Held-out reports1 83 (18) NA

No. of patients total 147 380

No. of IMD patients 79 191

No. reports from IMD patients 294 (65) 905 (63)

No. reports from control patients 155 (35) 526

Chest (alone or in combination with sinus, abdo/pelvis, brain etc) 375 (84) 865 (60)

Sinus (alone or brain-sinus, orbits, abdo/pelvis) 38 (8.5) 44

Other (abdo, abdo pelvis, liver, aorta, neck) 36 (8.0) 408

No. of reports according to study site

Hospital A 226 (50) 713

Hospital B 131 (29) 422

Hospital C 92 (20) 296

No. of words per report according to study site

Hospital A 211 229

Hospital B 126 128

Hospital C 314 348

Abbreviation: IMD, invasive mold disease.
1Held out reports were annotated at scan level only as being supportive, unequivocal or negative for IMD.
doi:10.1371/journal.pone.0107797.t002

Table 3. Performance characteristics of the classifier.

Characteristic TP FP TN FN Sn, % (95%CI) Sp, % (95%CI)

Development dataset, reports n = 366 197 32 117 20 91 (86 to 94) 79 (71 to 84)

1Held-out dataset, reports n = 83 35 13 30 5 88 (74 to 95) 70 (55 to 81)

All reports, n = 449 232 45 147 25 90 (86 to 93) 77 (70 to 82)

1Held out dataset were annotated at report level only as being positive, negative or equivocal for IMD.
Abbreviations: TN, true positives; FP, false positives; TN, true negatives; FN, false negatives; Sn, sensitivity; Sp, specificity; CI, confidence interval.
doi:10.1371/journal.pone.0107797.t003
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Characteristics of the Dataset of CT Reports
Overall, 1880 reports were retrieved from 527 patients (51%

with IMDs) (Table 2). A total of 7083 sentences were annotated at

sentence level according to pre-defined contextual features. Mean

report length per hospital was 314, 211 and 126 words reflecting

inter-institutional variations in reporting styles. Hospital A

supplied 50% of annotated reports. The annotated dataset

predominantly comprised chest 375/449 (84%) and sinus scans

(alone or in combination with other sites) 28/449 (8.5%). In the

annotated subset, there were 10 reports from 5 outpatients, all of

who were control patients not subsequently diagnosed with IMD.

Inter-annotator agreement between primary reviewer and the

two secondary reviewers combined, was fair at sentence level for

distinguishing certainty from equivocal/negative labels (K = 0.64)

but improved at report level for the same classification (0.83) given

that K levels $0.75 represent excellent agreement [35].

Performance of the Classifier
Classifier performance among development and held-out sets

respectively, was as follows (Table 3): sensitivity (i.e. concordance

between classifier and physician annotation for reports supportive

of IMD) was 91% (95%CI 86% to 94%)/88% (95%CI 74% to

95%); specificity was 79% (95%CI 71% to 84%)/70% (95%CI

55% to 81%); false negative rates were 20/366 (9.2%) and 5/83

(12.5%). The area under the ROC for the development set was

0.92 (95%CI 0.89 to 0.94) and 0.90 (95%CI 0.86 to 0.93) for the

inpatient subset (n = 321) only (Figure 1). For the inpatient subset,

sensitivity was 85% (95% CI 79% to 90%) and specificity was 86%

(95% CI 81% to 93%). Using a sensitivity of 90% and specificity of

77% from the entire dataset of 449 reports at IMD prevalence’s of

5%, 10%, 20%, estimated PPVs were 17%, 30%, 49% and NPVs

were 99%, 99%, 97%.

Error Analysis
Of the 25 missed cases (false negatives), 4 (4/449, 0.9%) were

significant as shown in Figure 2. Reports from patients subse-

quently not diagnosed with IMD were disregarded (n = 10). The

remaining 15 reports from case-patients comprised 10 inpatient

reports including 6 progress reports whose antecedents were

appropriately flagged. Five scans from case patients performed

outside admission were follow up scans that provided information

on clinical progress. Among the 4 significant missed notifications,

one was a sinus scan in combination with a chest scan, the latter

being flagged appropriately.

Review of 45 false positive reports revealed several sources of

systematic error described in Table 4. Unsystematic errors were

the result of three reports inappropriately annotated negative, two

with sinus mucosal thickening and one describing ground glass

pulmonary changes with a fungal aetiology entertained by the

radiologist.

Discussion

Mold infections are not well suited to prospective detection

using manual methods of epidemiological surveillance due to the

absence of an easily identifiable electronic prompt but may be

rendered amenable to real-time detection using NLP of CT

reports. Our classifier flagged reports suggestive of IMD from a

variety of anatomic sites but overwhelmingly the sino-pulmonary

tract (92%), the site most commonly involved by IA [8,10,36],

achieving a sensitivity in the development subset, of 91% (95%CI

86% to 94%), specificity of 79% (95%CI 71% to 84%) and good

overall accuracy with an area under the ROC of 0.92 [37].

Performance of the classifier was validated two ways, by cross-

validation of development data in addition to held-out data,

importantly with both methods using unseen data and producing

similar findings (Table 3), lending robustness to the results.

For screening purposes, sensitivity is favoured over specificity

especially for uncommon events like IMDs because missed cases

are less tolerable than the resources spent following up false

notifications [23]. The 25/449 (5.6%) missed notifications

occurred at the expense of a modest number of false positive

reports (45/449, 10%). Inpatient reports took precedence over the

few outpatient reports given the higher clinical acuity of inpatients

and the remote but real risk of nosocomial acquisition, resulting in

a few missed notifications from case patients regarded as clinically

significant (0.9%). False notifications were expected as the classifier

was tuned for sensitivity, with inclusion of reports annotated

Figure 1. Receiver operating characteristic (ROC) curve for 321 inpatient reports comparing the probabilistic output of the
classifier to expert opinion. Area under the ROC curve = 0.90 (95%CI 0.86 to 0.93). Abbreviation: CI, confidence interval.
doi:10.1371/journal.pone.0107797.g001
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Table 4. Major systematic errors in the false notifications (false positives) for invasive mold diseases among computed
tomography reports by the classifier.

Reason for misinterpretation No. of reports Characteristics

Inconsequential nodules 10 ,1 cm nodules, granulomas

Abdominal scans 9 Non-specific hepatic or splenic lesions

Progress scans 9 Change in lesions rather than diagnosis the focus, therefore reports annotated negative by
experts

Non-specific pulmonary/thoracic lesion 8 Atelectasis, scarring, mediastinal neoplastic mass

Misclassification 3 Pulmonary oedema, septic emboli, pulmonary lesions consistent with graft versus host
disease

doi:10.1371/journal.pone.0107797.t004

Figure 2. Error analysis of reports annotated supportive for invasive mold disease (IMD) but missed by the classifier. Abbreviations:
CT, computed tomography.
doi:10.1371/journal.pone.0107797.g002
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equivocal included in the positive training bucket. Accordingly the

classifier, like the physician annotators, was not designed to be

conservative, assigning a positive label if there was any possibility

of IMD.

In the absence of a gold standard for IMD reporting we relied

upon peer review. Sentence level agreement between the primary

and secondary annotator pair was fair (K = 0.64) despite measures

mitigating unreliability including pre-specified guidelines, multiple

experts and repeated consultation to resolve differences [35]. Our

inter-annotator agreement is consistent with other cognitively

challenging tasks such as ascribing pneumonia [38–40] or central-

line associated blood stream infection [21] because deciding if

clinical narratives are compatible with these complex conditions is

sometimes difficult. Importantly, at report level, agreement was

excellent (K = 0.83), noting that this endpoint (i.e. report rather

than sentence level classification) is most relevant for the purpose

of real-time surveillance or clinical decision support.

Our classifier has several limitations. Its poor PPV was not

unexpected as PPV is highly conditional upon disease prevalence

and, for uncommon events like IMDs, will be low despite a high

sensitivity, as we observed [41]. High NPVs meant that a negative

result could exclude IMD with some confidence. False notifica-

tions could potentially undermine confidence in a surveillance

system and may be minimised (i.e. improving specificity) by

including adjunctive sources of data (e.g. antifungal drug

dispensing, microbiology) or by raising pre-test probability by

filtering reports [41] based on clinical context (a clinical query of

fever for example). It is possible but unlikely that changes in

clinical practice over the long observational period of the study

may have affected the radiological manifestations of IMD. The

opinion of expert physicians rather than radiologists informed

development of the classifier. However, these are the end users

whose clinical acumen we sought to emulate and for similar

syndromes such as pneumonia, albeit in chest radiograph reports,

clinicians have demonstrated comparable performance to

radiologists [25]. Annotation was unblinded, but informed by

annotation guidelines that were developed in an iterative process.

No conclusions can be drawn regarding classifier performance for

subgroups with small numbers of reports such as sinus disease or

hepatosplenic candidiasis. We confined ourselves to haematology-

oncology population as this group is at highest risk for IMD [8,42]

and thus our findings may not be generalizable to other risk

groups.

Further improvements in specificity may be achieved by

omitting progress reports given their overrepresentation among

false notifications. Experts often annotated progress reports

negative because diagnostic radiological features may not always

be re-iterated in a progress report. Non-specific pulmonary lesions

such as atelectasis or scarring could be disregarded with the

creation of handcrafted rules. Pulmonary nodules of questionable

significance are more challenging to address, as size of lesions was

not taken into account by the classifier. The development dataset

did not exclusively comprise proven/probable-IMDs (despite these

representing a higher degree of certainty) for several reasons:

possible IMDs constitute a substantial burden in clinical practice

and may predominate (up to 90%) in some centres [11,12];

possible IMDs consume similar health-care resources (e.g.

diagnostics, antifungal drugs) and their exclusion would underes-

timate true prevalence. Notably, all cases in our reference standard

including possible-IMDs underwent expert adjudication according

to international definitions [6]. Although we used a sample of

reports from the entire dataset, the narrow confidence intervals

around overall performance measures suggests that additional

reports would not have made an appreciable difference. Finally, a

dataset enriched with positive cases was used for classifier

development yielding results acceptable for subsequent human

verification but prospective validation of the classifier in the field is

required.

The classifier is not a diagnostic adjunct but rather a screening

tool designed to facilitate IMD case finding by exploiting routinely

available clinical data [5,7,10]. The classifier’s strengths include its

multi-site derivation; machine learning algorithms which unlike

rule or knowledge based systems do not require manual

programming of specific language features [43,44] and consisten-

cy, by avoiding subjective interpretations of complicated case

definitions [6].

Epidemiological surveillance for IMDs is needed for many

reasons, including antifungal stewardship [45], clinical trial design,

clinical audit, clinical registry development, intra and inter-facility

comparisons. However, it is rarely performed in routine clinical

practice, partly due to a lack of validated tools. Traditionally most

IMD surveillance has relied on microbiological/histological

diagnoses (which are not sensitive) with or without the addition

of clinical diagnoses (which lack specificity). The intention of the

classifier is to improve sensitivity i.e. case finding, with the

advantage of early detection. This classifier is an additional tool to

be used in combination with other methods to enable compre-

hensive surveillance of IMDs to be performed with minimal

additional effort.

Acknowledgments

The authors thank Dr Orla Morrissey for her assistance in identifying study

participants and Dr Tim Spelman for his statistical contribution.

Contributions by DM and LC were while employed at National

Information and Communication Technology Australia (NICTA). NICTA

is funded by the Australian Government as represented by the Department

of Broadband, Communications and the Digital Economy and the

Australian Research Council through the ICT Centre of Excellence

program.

Author Contributions

Conceived and designed the experiments: MAR DM LC AC MS KT.

Performed the experiments: MAR DM LC KT MS. Analyzed the data:

MAR DM LC AC KT MS MD. Contributed reagents/materials/analysis

tools: MD AC MAR MS KT LC. Wrote the paper: MAR DM AC LC KT

MS MD.

References

1. Ananda-Rajah MR, Cheng A, Morrissey CO, Spelman T, Dooley M, et al.

(2011) Attributable hospital cost and antifungal treatment of invasive fungal

diseases in high-risk hematology patients: an economic modeling approach.

Antimicrob Agents Chemother 55: 1953–1960.

2. Guidelines on the management of invasive fungal infection during therapy for

haematological malignancy. Writing Group of the British Committee on

Standards in Haematology (2008) Available at: www.bcshguidelines.com/.

Accessed 2013 January 16.

3. Tomblyn M, Chiller T, Einsele H, Gress R, Sepkowitz K, et al. (2009)

Guidelines for preventing infectious complications among hematopoietic cell

transplantation recipients: a global perspective. Biol Blood Marrow Transplant

15: 1143–1238.

4. Yokoe D, Casper C, Dubberke E, Lee G, Munoz P, et al. (2009) Infection

prevention and control in health-care facilities in which hematopoietic cell

transplant recipients are treated. Bone Marrow Transplant 44: 495–507.

5. Fourneret-Vivier A, Lebeau B, Mallaret MR, Brenier-Pinchart MP, Brion JP,

et al. (2006) Hospital-wide prospective mandatory surveillance of invasive

aspergillosis in a French teaching hospital (2000–2002). J Hosp Infect 62: 22–28.

6. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, et al. (2008)

Revised definitions of invasive fungal disease from the European Organization

for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative

Automated Surveillance of Mold Infections

PLOS ONE | www.plosone.org 7 September 2014 | Volume 9 | Issue 9 | e107797

www.bcshguidelines.com/


Group and the National Institute of Allergy and Infectious Diseases Mycoses

Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 46: 1813–

1821.

7. Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, et al. (2010)

Prospective surveillance for invasive fungal infections in hematopoietic stem cell

transplant recipients, 2001–2006: overview of the Transplant-Associated

Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis 50:

1091–1100.

8. Lortholary O, Gangneux JP, Sitbon K, Lebeau B, de Monbrison F, et al. (2011)

Epidemiological trends in invasive aspergillosis in France: the SAIF network

(2005–2007). Clin Microbiol Infect 17: 1882–1889.

9. Steinbach WJ, Marr KA, Anaissie EJ, Azie N, Quan SP, et al. (2012) Clinical

epidemiology of 960 patients with invasive aspergillosis from the PATH Alliance

registry. J Infect 65: 453–464.

10. Nicolle MC, Benet T, Thiebaut A, Bienvenu AL, Voirin N, et al. (2011) Invasive

aspergillosis in patients with hematologic malignancies: incidence and descrip-

tion of 127 cases enrolled in a single institution prospective survey from 2004 to

2009. Haematologica 96: 1685–1691.

11. Neofytos D, Treadway S, Ostrander D, Alonso CD, Dierberg KL, et al. (2013)

Epidemiology, outcomes, and mortality predictors of invasive mold infections

among transplant recipients: a 10-year, single-center experience. Transpl Infect

Dis 15: 233–242.

12. Ananda-Rajah MR, Grigg A, Downey MT, Bajel A, Spelman T, et al. (2012)

Comparative clinical effectiveness of prophylactic voriconazole/posaconazole to

fluconazole/itraconazole in patients with acute myeloid leukemia/myelodys-

plastic syndrome undergoing cytotoxic chemotherapy over a 12-year period.

Haematologica 97: 459–463.

13. Pagano L, Caira M, Candoni A, Aversa F, Castagnola C, et al. (2012)

Evaluation of the practice of antifungal prophylaxis use in patients with newly

diagnosed acute myeloid leukemia: results from the SEIFEM 2010-B registry.

Clin Infect Dis 55: 1515–1521.

14. Denning DW (2000) Early diagnosis of invasive aspergillosis. Lancet 355: 423–

424.

15. Mengoli C, Cruciani M, Barnes RA, Loeffler J, Donnelly JP (2009) Use of PCR

for diagnosis of invasive aspergillosis: systematic review and meta-analysis.

Lancet Infect Dis 9: 89–96.

16. Pfeiffer CD, Fine JP, Safdar N (2006) Diagnosis of invasive aspergillosis using a

galactomannan assay: a meta-analysis. Clin Infect Dis 42: 1417–1427.

17. Maertens J, Groll AH, Cordonnier C, de la CÃ¡mara R, Roilides E, et al. (2011)
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