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Abstract

Stem cell-based products have clinical and industrial applications. Thus, there is a need

to develop quality control methods to standardize stem cell manufacturing. Here, we

report a deep learning-based automated cell tracking (DeepACT) technology for nonin-

vasive quality control and identification of cultured human stem cells. The combination

of deep learning-based cascading cell detection and Kalman filter algorithm-based track-

ing successfully tracked the individual cells within the densely packed human epidermal

keratinocyte colonies in the phase-contrast images of the culture. DeepACT rapidly ana-

lyzed the motion of individual keratinocytes, which enabled the quantitative evaluation

of keratinocyte dynamics in response to changes in culture conditions. Furthermore,

DeepACT can distinguish keratinocyte stem cell colonies from non-stem cell-derived

colonies by analyzing the spatial and velocity information of cells. This system can be

widely applied to stem cell cultures used in regenerative medicine and provides a plat-

form for developing reliable and noninvasive quality control technology.
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1 | INTRODUCTION

Stem cells, including pluripotent and tissue-specific stem cells have vari-

ous clinical applications.1 The quality of the cultured stem cells is crucial

for successful application in regenerative medicine. Hence, these stem

cells must be maintained and expanded ex vivo under carefully con-

trolled conditions. However, the quality control of stem cell cultures is

currently based on visual inspection by individual cell culture experts,

which hinders the standardization of stem cell cultures and large-scale

stem cell manufacturing for applications in regenerative medicine.Takuya Hirose and Jun'ichi Kotoku contributed equally to this study.
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Human keratinocyte stem cells are among the few adult stem cells

that can be extensively and successfully expanded in culture for applica-

tions in regenerative medicine.2-4 Globally, autologous cultured human

epidermal keratinocyte stem cells have been used for transplantation in

patients with extensive burns for approximately 40 years.5-7 Additionally,

these stem cells are used for ex vivo gene therapy of hereditary skin dis-

orders.8,9 However, the specific identification of these stem cells in cul-

ture is a limiting factor as there are no known reliable cell surface

markers.10 Currently, the human keratinocyte stem cells in culture are

unambiguously identified through clonal analysis.10,11 The stemness of

stem cells can be examined with high accuracy using single-cell clonal

analysis. However, the single-cell clonal analysis is time-consuming,

expensive, and labor-intensive.

To overcome the limitations associated with clonal analysis11 and

xenotransplantation,12 we had previously reported that the human

keratinocyte stem cells can be distinguished from non-stem cells at an

early stage in the culture using cell motion analysis.13 In this study, we

have developed a predictable and reproducible readout to determine

the quality of human keratinocyte culture. However, human

keratinocytes form densely packed colonies.11,14 The motion analysis

of individual cells within a colony is performed only through manual

cell tracking,13,15 which is time-consuming and error-prone. Therefore,

there is a need to develop an automated system that provides quanti-

tative information on individual cell behavior within the human

keratinocyte colonies during cell manufacturing for regenerative medi-

cine. Previously, we had reported that motion analysis with optical

flow can automatically estimate the cell velocity of cultured human

keratinocytes and demonstrated a positive correlation between cell

velocity and proliferative capacity.16,17 However, this method is not

an equivalent for cell tracking and does not have the accuracy of man-

ual cell tracking.17 Hence, there is a need to develop an automated

cell tracking method with an accuracy equivalent to manual tracking

accuracy for clinical and industrial applications.

The accuracy of disease diagnosis by artificial intelligence

(AI) technology using medical images is similar to that by healthcare

professionals, which has increased the reliability of AI-based diagnos-

tic assessment.18-20 Deep learning-based AI technology has also been

applied to stem cell research and stem cell therapy.21-23 Here, we

report a deep learning-based automated cell tracking (DeepACT) tech-

nology that enables the evaluation of keratinocyte culture quality and

the identification of keratinocyte stem cells using quantitative cell

motion analysis. DeepACT comprises two main modules: identifying

human keratinocytes at single-cell resolution from phase-contrast

images of cultures through deep learning and tracking keratinocyte

motion in the colony using a state-space model.

2 | MATERIALS AND METHODS

2.1 | Preparation of feeder cells

The 3T3-J2 cells were cultured at 37�C and 10% CO2 in Dulbecco's

modified Eagle's medium (DMEM; Gibco 11995-065) supplemented

with 10% bovine serum (Sigma-Aldrich C8056). The cells were pas-

saged once a week and maintained up to passage 12. The culture

medium was replaced with fresh medium every 3 or 4 days. To pre-

pare the feeder layer, the 3T3-J2 cells were incubated with 4 μg/mL

mitomycin C (Kyowa Kirin Co. Ltd.) for 2 hours. The mitomycin

C-treated 3T3-J2 cells were washed with phosphate-buffered saline

(PBS) twice and trypsinized with 0.05% trypsin-ethylenediami-

netetraacetic acid (EDTA) solution (Gibco 25300-054). The trypsinized

cells were seeded into the cell culture dishes as feeder cells before

the inoculation of keratinocytes.

2.2 | Human keratinocyte culture

Normal human epidermal keratinocytes (KURABO) were isolated

from the neonatal skin. The frozen keratinocytes were thawed and

cultured at clonal density on a feeder layer of mitomycin C-treated

mouse 3T3-J2 fibroblasts. The co-culture was incubated at 37�C

and 10% CO2 in a 3:1 mixture of DMEM (Gibco 11995-065) and

Ham's F12 medium (Gibco 11 765-054) supplemented with 10%

fetal bovine serum (FBS; Biowest 91760-500), 1.8 × 10−4 M ade-

nine hemisulphate salt (Sigma-Aldrich A3159), 5 μg/mL insulin

(Sigma-Aldrich I5500), 0.4 μg/mL hydrocortisone (Calbiochem

386 698), 10−10 M cholera toxin (MP medicals 190 329), and

2 × 10−9 M triiodothyronine (T3; Sigma-Aldrich T2752) as

described previously.13 The keratinocytes between passages 2 and

7 were used for the experiments. The culture medium was replaced

with fresh medium every 4 days supplemented with 10 ng/mL

recombinant human EGF (Upstate 01-107). Clonal analysis was

performed as described previously.11,13 Briefly, the human

keratinocytes were cultured at clonal density on a feeder layer of

mitomycin C-treated 3T3-J2 cells. The isolated colonies were indi-

vidually trypsinized with 0.05% Trypsin-EDTA solution (Gibco

25300-054) in a cloning ring and seeded into the 6-well cell cul-

ture plate. To visualize the keratinocyte colonies, the cultures were

Significance statement

The authors developed a novel noninvasive quality control

technology for cultured human keratinocyte stem cells con-

structed by deep learning-based automated cell recognition

and Kalman filter algorithm-based tracking. This deep

learning-based automated cell tracking (DeepACT) technol-

ogy rapidly analyzed the motion of keratinocytes and pro-

vided the collective motion dynamics in cultured

keratinocytes, which enabled the quantitative evaluation of

keratinocyte dynamics in response to changes in culture

conditions. Furthermore, DeepACT identified human

keratinocyte stem cells since the stem cell colonies exhibited

a unique motion pattern.
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fixed with 3.7% buffered formaldehyde and stained with 1%

rhodamine B.

2.3 | Time-lapse imaging

Human epidermal keratinocytes were seeded at clonal density in a

35-mm cell culture dish (Grainer Advanced TC 627965) on a feeder

layer of mitomycin C-treated 3T3-J2 cells and cultured at 37�C and

10% CO2. For time-lapse imaging, the cells were maintained at 37�C

and 5% CO2 in a chamber mounted on a FLUOVIEW FV10i micro-

scope (Olympus). The images were captured at 5-minutes intervals

mostly for 1-3 hours depending on the experimental conditions.

2.4 | Preparation of cell tracking

Cell tracking was performed in two steps: the cell detection stage and

the cell tracking stage using state-space models. At the cell detection

stage, the aim was to determine the initial positions of cells and gener-

ate observation data. We used a multi-cascading network for cell

detection. In this process, the nearest detected cell from the predicted

point was assumed as the observation data.

2.4.1 | Processing phase

Initial phase-contrast microscope images (TIFF) with a size of

1024 × 1024 pixels were preprocessed with histogram equalization

and converted into 8-bit JPEG images. All the following analyses were

performed on these preprocessed images.

2.4.2 | Training data preparation

For cell detection, several training data were required for supervised

learning. To prepare these training data, the cells recognized by a biolo-

gist through visual analysis were used and each cell region was cropped.

The training data comprised positive 18 032 boxes and negative 5628

boxes. An example of some training data is shown in Figure 1A.

2.5 | Deep learning for cell detection

2.5.1 | Cell candidate extraction

To detect the cells, a detection algorithm based on a convolutional

network (SSD),24 was used. Before learning, the original training

images were augmented as follows: 188 original images were

converted to 808 images by performing up, down, left, and right

inversions, gamma corrections (0.75, 1.00, 1.25, and 1.50), resolution

changes (0.75, 0.85, 1, 1.15, and 1.25). The images were augmented

80 (= 4 × 4 × 5) times to obtain 15 040 images.

2.5.2 | Cell recognition

The extracted candidate cells involved many false-positive results. The

correct cells were chosen from these candidates using a cascading net-

work built to classify the candidate boxes accurately. As shown in

Figure 1B, the cascading network comprised three deep convolutional

networks based on VGG1625 (DCN1, DCN2, DCN3). These deep con-

volutional networks were trained independently. In the learning step,

the data were augmented 72 times using rotation. The images of cells at

the mitosis stage were also added to the dictionary. The Adam algorithm

minimized the entire network. All networks were implemented with

Chainer. A super-computer (Reedbush-L) at the Information Technology

Center, University of Tokyo calculated the whole steps for learning.

2.6 | Input data preprocessing

The raw microscope images were preprocessed with histogram equali-

zation before tracking.

2.7 | Cell tracking

In the tracking process, observation data were generated using the fol-

lowing rules. The cell was regarded as an observed cell if the nearest

cell was not beyond a distance of 20 pixels from the prediction point,

while the other observed data were regarded as missing. The Kalman

filter26 filtered all these steps. Supplemental Figure S1A shows an

example of the determination of the next cell and missing cells. The

red circle at the bottom includes a detected cell, which was regarded

as an observed cell. In contrast, when the circle did not include any

detected cells, the observation data were regarded as missing data.

2.8 | Calculation of motion index

The motion index was calculated by dividing the average cell velocity

in the central region of the colony by that in the marginal region of

the colony. The marginal region of each colony comprising 30% of the

total colony area is defined as the marginal region. The remaining area

(70% of the total colony area) was defined as the central region

(Supplemental Figure S1B).

2.9 | Statistics

All statistical analyses were performed using Prism8 (GraphPad Soft-

ware) and Excel (Microsoft Office 2016). The differences between

two groups were analyzed using the unpaired two-tailed Mann-

Whitney U-test and chi-squared test. The differences between multi-

ple groups were analyzed using one-way analysis of variance

(ANOVA), followed by Tukey's post hoc test. The differences were

considered statistically significant when the P-value was less .05.
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3 | RESULTS

3.1 | Automated recognition of keratinocyte nuclei
through deep learning

We captured a large number of images of nuclear and non-

nuclear regions in the cultured human keratinocytes, which were

used to generate an image dictionary for training the deep learn-

ing model. In total, 18 031 nuclear and 5632 non-nuclear images

were identified through manual analysis (Figure 1A). Next, the

images were automatically processed through image inversion and

gamma correction to obtain a keratinocyte image dictionary com-

prising a large amount of processed data (see details in Materials

and Methods).

(A)

(C)

(E) (F) (G)

(D)

(B)

F IGURE 1 Development of deep learning-based object tracking model for automated cell tracking in human keratinocyte colonies.
A, Preparation of image dictionaries for deep learning using the phase-contrast images of cultured human keratinocytes. Scale bar = 100 μm for
left panel, and 10 μm for middle panel. B, Single shot multi-box detector (SSD)-based deep learning model for nuclear recognition. Scale
bar = 200 μm. C, Automated nuclear recognition by the trained SSD-based deep learning model. The recognized nuclei are indicated in red boxes.
Scale bar = 100 μm. D, Accuracy of automated nuclear recognition. Five hundred and twenty-four keratinocytes were extracted from this phase-
contrast image of the keratinocyte colony by visual recognition. About 80% of keratinocytes are also automatically recognized by the trained SSD
deep learning model. The 3T3-J2 cells were excluded from the analysis. E, Moving object tracking using the Kalman filter algorithm. F, Tracking of
a nucleus automatically recognized from the time-series phase-contrast images of human keratinocytes. Scale bar = 10 μm. G, Successive tracking
of nuclei in the culture containing cellular debris. The Kalman filter algorithm skips the image if the nucleus is not recognized within the predicted
region and performs tracking with the next time-series image. Scale bar = 10 μm
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This dictionary was used to train a single shot multi-box detector

(SSD)-based deep learning model. Several neural networks were also

organized for automated nuclear recognition in the cultured human

keratinocytes. In the automated system, after a keratinocyte colony

image is fed to the machine, the SSD lines up the candidate region

and each neural network identifies the nucleus of individual

keratinocytes based on different criteria. The output is a combination

of the results from each neural network (Figure 1B).

This system could automatically identify the nuclei of cultured

human keratinocytes (Figure 1C). To evaluate the accuracy of auto-

mated nuclear recognition, the output images processed by the trained

deep learning model were compared with those processed by manual

analysis. Manual analysis revealed that the original image contained

524 keratinocyte nuclei (Figure 1D); whereas the deep learning

model-based image processing revealed that the image contained

407 keratinocyte nuclei. Of these 407 nuclei, 403 matched with the

nuclei detected using manual analysis and only 4 nuclei were detected

as false positives (Figure 1D). However, 121 keratinocyte nuclei identi-

fied in the manual analysis were not identified in the automated analysis

(false-negative). Thus, the SSD-based deep learning model could detect

approximately 76.9% of the keratinocyte nuclei with high accuracy.

3.2 | Tracking of nuclei using the Kalman filter

Individual identical nuclei can be tracked by analyzing the nuclei in

time-series images. We developed a novel cell tracking system

adapted to the cell cultures. To track the keratinocyte nuclei identified

by the deep learning-based automated system, we applied a frame-

work of state-space models, especially an algorithm called Kalman fil-

ter. This algorithm can predict the position of a moving object based

on previous observations and compare the predicted position and

measured position at a certain time point (Figure 1E and see details in

Materials and Methods and Supplemental Figure S1A). The Kalman fil-

ter algorithm successfully tracked an automatically recognized nucleus

in the colony (Figure 1F). Furthermore, if a nucleus is not detected

within the predicted area, this image was skipped and the next time-

series image was used for tracking. The presence of a high amount of

cell debris in the cell cultures, especially those derived from tissues,

disrupts cell tracking. However, the automated system could track the

cells even in the presence of cellular debris (Figure 1G). This indicted

that the tracking system can be adapted to cell cultures used for cell

therapy.

3.3 | Evaluation of automated cell tracking

The deep learning-based automated nuclear recognition system and

Kalman filter algorithm was used to analyze the time-series phase-

contrast images of a human keratinocyte colony. The system success-

fully recognized and tracked most cells in the colony and automati-

cally determined the velocity of individual cells in the colony every

hour (Figure 2A and Supplemental Movie S1). Additionally, the system

determined the pattern of cell locomotion (Figure 2B). The nuclear

(A)

(B) (C)

F IGURE 2 Automated cell tracking in human keratinocyte colonies. A, Automated cell tracking by a combination of deep learning-based nuclear
recognition and Kalman filter algorithm-based tracking (see also Supplemental Movie S1). The circles and lines show the nuclei and their trajectories,
respectively. The color indicates the magnitude of cell velocity, as shown on the right. Scale bar = 100 μm. B, The 3D image indicates the changes in
nuclear positions along with the time as lines for 12 hours. Scale bar = 100 μm. C, Comparison of manual and automated tracking. The velocity
distributions were analyzed by manual and automated tracking. The color indicates the magnitude of cell velocity as shown on the right
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(A)

(C) (D)

(G)(F)(E)

(B)

F IGURE 3 Quantitative evaluation of keratinocyte behavior in response to changes in culture conditions. A, Automated cell tracking in the
human keratinocyte cultures with and without feeding (see also Supplemental Movies S2 and S3). The velocity of the individual cells is indicated
with the color shown on the right. Scale bar = 100 μm. B, Violin plots of cell velocity measured by automated cell tracking of keratinocyte
colonies with and without feeding. Three colonies were analyzed under each condition. C, Automated cell tracking of human keratinocyte
cultures with and without epidermal growth factor (EGF) (see also Supplemental Movies S4 and S5). Tracking was started approximately
30 minutes after the addition of 10 μg/mL EGF. The velocity of the individual cells is indicated with the color shown on the right. Bars,
200 μm. D, The 3D image indicates the changes in nuclear positions along with the time as lines for 180 minutes. Bars, 200 μm. E, The changes in
the average cell velocity with and without EGF treatment in the same keratinocyte colony. Tracking was started approximately 30 minutes after
EGF addition. F and G, Violin plots of cell velocity measured by automated cell tracking of keratinocyte colonies with and without EGF treatment.
Data obtained from 15 (F) and 60 (G) min after tracking are shown. Three colonies were analyzed under each condition. P-values for cell velocity
under each condition were calculated using the Mann-Whitney U-test
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detection accuracies of automated nuclear tracking and manual

nuclear tracking were comparatively analyzed. The velocity distribu-

tions of cells in the colony analyzed using manual and automated cell

tracking were similar but not identical (Figure 2C). In particular, the

automated tracking revealed higher population of fast-moving cells

than the manual tracking. This is because the automated system rec-

ognizes and tracks two different cells as identical cells. However, the

combination of deep learning-based nuclear recognition and Kalman

filter algorithm-based object correctly tracked most cells in the

colony.

3.4 | Quantitative evaluation of the collective
dynamics of keratinocytes in response to changes in
culture conditions

Noninvasive real-time monitoring of cell cultures is required for quality

and production control of cultured cells. The application of DeepACT

for the quality and production control of human keratinocyte cultures

was evaluated. In this study, the cultures were fed at day 4 post-inocu-

lation. The locomotion of individual keratinocytes in the colony was

observed on day 5 post-inoculation (Supplemental Movie S2). The

DeepACT system quantified the cell locomotion in the colony by ana-

lyzing the time-series phase-contrast images (Figure 3A and B). When

the culture was not fed as per schedule, the DeepACT analysis rev-

ealed significantly decreased keratinocyte locomotion (Supplemental

Movie S3 and Figure 3A,B). Therefore, cell locomotion velocity can be

used as a noninvasive parameter for determining the optimal cell cul-

ture conditions.

The human keratinocyte culture must be supplemented with epi-

dermal growth factor (EGF) during mass expansion.27-29 The addition

of EGF and subsequent activation of EGF receptor (EGFR) induces

the outward migration of keratinocytes in the colony.14,28 The

DeepACT system could detect the EGF-induced change in cell migra-

tion pattern (Supplemental Movies S4 and S5, and Figure 3C,D). Fur-

thermore, quantitative cell motion analysis using the DeepACT

system revealed that the activation of EGFR accelerates the velocity

of individual cells in the colony within a short duration (Figure 3E-G).

These results indicate that EGFR activation in keratinocytes can be

noninvasively detected based on the change in cell locomotion pat-

tern and velocity, which can be monitored through automated cell

tracking. Thus, the DeepACT system can be applied to monitor the

cell culture conditions for quality and production control of cultured

human keratinocytes.

3.5 | Automated cell tracking identifies human
epidermal keratinocyte stem cell colonies

Previously, we had demonstrated that the average velocity of

keratinocyte locomotion in the colony is positively correlated with the

long-term proliferative capacity of keratinocytes.13,17 The DeepACT

system was used to identify the human keratinocyte stem cell

colonies. Time-lapse imaging of keratinocyte colonies was performed

at day 6 post-inoculation for 1 hour. Each colony was subcloned into

a new cell culture plate (Figure 4A). To evaluate the long-term prolif-

erative capacity of individual clones, each clone was categorized into

three clonal types according to the guidelines of Barrandon and Green

1987,11 which are the gold standard for the assessment of long-term

proliferative capacity of human keratinocytes. Holoclones can main-

tain their growth potential and form progressively growing colonies

after passage. Paraclones lose their proliferative capacity and generate

only differentiated terminal colonies after the passage. Meroclones

exhibit an intermediate phenotype and generate both growing and

terminal colonies. There was no correlation between the areas of each

colony before cloning and its clonal type (Figure 4B). The clonal types

of individual human keratinocyte colonies were correlated with the

total area of keratinocyte colonies in the replated cultures after sub-

cloning (Figure 4C).

The DeepACT system could determine the velocity of cells in

the colony. There was no correlation between the average velocity

of cell locomotion and long-term proliferative capacity (Supplemental

Figure S2A,B). The DeepACT system sometimes did not recognize

keratinocytes located in the central region of the colony. This indi-

cates that the calculated average velocity was majorly based on the

velocity of cells located in the marginal region of the colony. In a

previous study, we calculated the average velocity of cells using the

locomotion velocity of randomly selected cells located at both the

central and the marginal regions of the colony.13 Here, we analyzed

the velocity data using a function that calculates the motion index, a

value indicating the motion dynamics of individual keratinocytes in

the colony. Motion indices are derived from the ratio of the average

velocity of cells at the central region to that at the marginal regions

of the colony (see details in Materials and Methods and Supplemen-

tal Figure S1B). The motion index of less than 1.0 indicates that the

cells located in the marginal region of the colony move faster than

those in the central region. Conversely, a motion index of more than

1.0 indicates that the cells located in the central region move faster

than those in the marginal region. The clonal analysis revealed that

the paraclone-derived colonies exhibited a low motion index. In con-

trast, the holoclone-derived colonies exhibited high motion index

(Figure 4D). When the colonies with the highest motion index (>1.0)

were selected, the probability of obtaining holoclone-derived

colonies significantly increased (odds ratio = 4.5, P = .04181, by chi-

square test) (Figure 4E). These results indicate that cell motion anal-

ysis using the DeepACT system can identify human keratinocyte

stem cell colonies without cell culture labeling and that this system

can be applied for quality control of keratinocyte cultures used in

cell therapy.

4 | DISCUSSION

Deep learning-based image recognition has advanced the field of bio-

medical science and has been applied for AI-based disease diagnosis.

In this study, we demonstrated that the quality of human keratinocyte
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stem cells could be predicted by analyzing the collective motion

dynamics with a combination of deep learning-based image recogni-

tion and Kalman filter algorithm-based moving object tracking. The

success of cell therapy for severe burns6 and corneal blindness30 is

dependent on optimal ex vivo maintenance and expansion of

keratinocyte stem cells. During culture, the keratinocyte stem cells

(holoclones) are transformed into meroclones and paraclones, which

exhibit restricted growth potentials under suboptimal culture condi-

tions.10,14 The efficiency of transplantation decreases as the number

of holoclones decreases in the culture due to clonal conversion even if

the generated epithelial sheets are engrafted successfully.31-33 The

DeepACT system can directly estimate the number of colonies derived

from holoclones on cell culture dishes and flasks, which enables the

selection of cultures suitable for transplantation before preparing the

confluent keratinocyte sheets. Efficient isolation of holoclone-derived

colonies, which have applications in gene therapy, has been achieved

using a clonal population of genetically modified keratinocytes.34

Previously, we had demonstrated that the human keratinocyte

stem cell colonies exhibit a locomotive phenotype.13,17 However, the

cell motion analysis using the DeepACT system revealed that the

average velocity of stem cells was not positively correlated with

the proliferative potential of keratinocyte colonies. This was because

the automated system did not recognize the nucleus of keratinocytes

located at the central region of the colony. Furthermore, this study

demonstrated that the measured cell velocity varies depending on the

cell culture conditions. Thus, the absolute value of cell velocity may

)C()B()A(

(E)(D)

F IGURE 4 Human keratinocyte stem cell colonies were identified by automated cell tracking. A, Clonal analysis of human keratinocytes.

Time-lapse imaging of a progressively growing colony was performed. The colony was subcultured into a new cell culture plate for evaluation of
clonal types. Scale bar = 100 μm in left panel and 10 mm in right panel. B, The colony area of growing colonies before subcloning was not
correlated with the following three clonal types: paraclones (P), meroclones (M), and holoclones (H). C, The colony area of subcultured growing
colonies was correlated with their clonal types. D, The distribution of the motion index of keratinocyte colonies derived from three clonal types.
Motion indices were calculated with automated cell tracking as shown in the Materials and Methods and Supplemental Figure S1B. In the right
panel, the percentages of each clonal type in three motion index classes (MI > 1.0, 1.0 ≥ MI > 0.8, MI ≤ 0.8) are presented. The odds ratio and its
P-value calculated using the chi-squared test (probability of holoclone-derived colonies in the colonies with MI >1.0 against the colonies with MI
≤1.0) are described in the box. E, Images of cell cultures after subcloning of keratinocyte colonies with various motion indices. The subcultures of
five colonies from the top (upper) and bottom (lower) are shown. Scale bar = 10 mm. P-values, except for the right panel in D, were calculated
using one-way analysis of variance (ANOVA), followed by Tukey's multiple comparison test
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not be a suitable indicator of “good” keratinocyte cultures suitable for

transplantation. In contrast, the motion index is a relative value and

can be used as a comparative parameter among cell cultures. Motion

index of more than 1.0 indicates the long-term proliferative capacity

of keratinocyte, which suggests that the cells located in the central

region of the holoclone-derived colony move faster than those located

in the marginal region. This has also been predicted in our previous

observation and simulation experiments.13 These results indicate that

the homogeneity of cell locomotion velocities is one of the characteris-

tics of holoclone-derived colonies and that the motion index is a predict-

able and reproducible readout of growth potentials of human

keratinocyte colonies. Hence, the colonies exhibiting motion index >1.0

during the production of keratinocyte sheets might be an indicator of

“good” cultures, which can be used for successful transplantation.

The cascading cell detection model, which was trained using the

phase-contrast images of cultured human epidermal keratinocytes,

achieved automated nuclear recognition in the keratinocytes. This

system can also be directly applied to human keratinocyte cultures

used for regenerative medicine of other stratified squamous epithelia,

including corneal, oral mucosal, and esophageal epithelia.30,35-37 Fur-

thermore, the trained SSD model can be easily utilized for automated

nuclear recognition of other types of cells with “transfer learning.”
This system can also be applied to other types of cell cultures with a

smaller number of image data. Collective cell motion is observed in

various cells,38 including neural progenitor cells,39 and human

keratinocytes in epidermal40 and corneal sheets.41 Furthermore, cell

motility is associated with the state of human embryonic stem cells

(hESCs)42 and human induced pluripotent stem cells (hiPSCs),43 which

strongly suggests that automated cell motion analysis can be also

applied to quality control of human pluripotent stem cell cultures.

Thus, the DeepACT technology can be widely used for stem cell

research and cell manufacturing for regenerative medicine.

To further advance stem cell-based regenerative medicine, the

cell cultures should be automatically processed, which enables stable

supply of high-quality cells and decreased cell production cost for

industrial cell manufacturing. Recently, several automated cell culture

systems using human stem cells have been developed for applications

in regenerative medicine.44-48 However, these systems do not incor-

porate in situ and noninvasive quality control of cell production.

DeepACT can be used for reliable real-time monitoring of cell cultures

and for selecting cell cultures suitable for transplantation. Cell motion

analysis-based stem cell quality control can be easily implemented in

automated cell culture devices, which provide an intelligent cell cul-

ture system for fabricating high-quality stem cell-based products with

increased sterility and safety.

5 | CONCLUSION

We developed the DeepACT technology that successfully tracks the

individual cells within the densely packed human epidermal

keratinocyte colonies in the phase-contrast images of the culture. Our

data demonstrate that automated cell motion analysis enables the

quantitative evaluation of keratinocyte dynamics in response to

changes in culture conditions and label-free identification of human

keratinocyte stem cells. This technology can be widely applied to stem

cell cultures used in regenerative medicine.
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