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The elimination of both cellular and tissue latent reservoirs is a challenge toward a

successful HIV cure. “Shock and Kill” are among the therapeutic strategies that have

been more extensively studied to target these reservoirs. These strategies are aimed

toward the reactivation of the latent reservoir using a latency-reversal agent (LRA) with

the subsequent killing of the reactivated cell either by the cytotoxic arm of the immune

system, including NK and CD8T cells, or by viral cytopathic mechanisms. Numerous

LRAs are currently being investigated in vitro, ex vivo as well as in vivo for their ability

to reactivate and reduce latent reservoirs. Among those, several toll-like receptor (TLR)

agonists have been shown to reactivate latent HIV. In humans, there are 10 TLRs that

recognize different pathogen-associated molecular patterns. TLRs are present in several

cell types, including CD4T cells, the cell compartment that harbors the majority of the

latent reservoir. Besides their ability to reactivate latent HIV, TLR agonists also increase

immune activation and promote an antiviral response. These combined properties make

TLR agonists unique among the different LRAs characterized to date. Additionally,

some of these agonists have shown promise toward finding an HIV cure in animal

models. When in combination with broadly neutralizing antibodies, TLR-7 agonists have

shown to impact the SIV latent reservoir and delay viral rebound. Moreover, there are

FDA-approved TLR agonists that are currently being investigated for cancer therapy and

other diseases. All these has prompted clinical trials using TLR agonists either alone or in

combination toward HIV eradication approaches. In this review, we provide an extensive

characterization of the state-of-the-art of the use of TLR agonists toward HIV eradication

strategies and the mechanism behind how TLR agonists target both cellular and tissue

HIV reservoirs.
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INTRODUCTION

HIV infection is still one of the highest causes of mortality and morbidity worldwide. The
introduction of anti-retroviral therapy (ART) in 1996 decreased the mortality due to HIV infection
and transformed the disease from deadly to chronic. Cure is still not attainable due to a small
reservoir of infected cells that harbor the virus in a latent form and become unrecognizable by
the immune system and current therapies (1–5). Several strategies have been proposed to eliminate
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this latent reservoir (6). Among these strategies, the “shock and
kill” approach rely on the notion that a pharmacological agent
that reactivates the latent virus or latency-reversing agent (LRA)
in the presence of ART will reduce the latent reservoir and
could be followed by two potential outcomes. “Shock and kill”
strategies can lead to complete viral eradication. In this case,
the final goal is to eliminate all latent viruses. In a way, these
strategies will try to echo the Berlin or the London patient,
whom underwent remission due to bone marrow transplants
and became undetectable for viral reservoirs (7, 8). Another
outcome could be that a reduction of the latent reservoir due
to the “shock and kill” strategy may be sufficient to allow
the immune system control viral replication in the absence of
ART (9–12). This has been termed “functional cure” and it is
exemplified with the VISCONTI study. In this study, a subset
of HIV-infected individuals who started ART early were able to
control viremia in the absence of ART (termed Post-Treatment
Controllers or PTCs) (11, 12). The authors of this study found
a strong association between a low HIV reservoir in blood with
the ability of the immune system to control viremia after ART
treatment interruption (11).

As of today, several LRAs have been developed and some
have reached clinical trials. The first generation LRAs that
reached human testing include Valproic Acid (13–18), SAHA
(19–21), Romidepsin (22), Panobinostat (23), Bryostatin-1 (24),
and Disulfiram (25, 26). However, these LRAs have resulted in
limited to no clinical effect on the size of the latent reservoir
(27–29). Some potential explanations for the failure of these
LRAs are the following. First, the lack of or low reactivation
of latent viruses with these LRAs in vivo. Second, the reduced
killing of reactivated cells either by the low frequency or
compartmentalization of HIV-specific cells on patients under
ART, immune exhaustion or the presence of defective proviruses
that divert the immune response from the reactivated cells
carrying replication competent virus. Third, a survival advantage
of latently infected cells (30–36). To that end, strategies that
can efficiently reactivate latent HIV in vivo and also enhance
immune responses against HIV may overcome these obstacles
encountered by the current cure efforts.

Recently, a second generation of LRAs targeting toll-like
receptors (TLRs) have reached clinical trials. TLRs are pathogen-
recognition receptors (PRRs) capable of sensing small molecular
motifs conserved within microbes (37, 38). In addition to their
ability to reactivate latent HIV, TLR agonists also increase
immune activation and promote antiviral responses (39–44).
These combined properties make TLR agonists unique among
the LRAs characterized to date.

In 1891, William Coley demonstrated how several bacterial
components could be used to treat cancer patients (45). Since
then, several TLR ligands are being investigated and in clinical
trials to enhance immunity for their use in treatment of cancer
(46), viral infection (47), and bacterial infection (48). Several
reviews have previously focused in the development and use of
TLR agonists for cancer and other diseases (49–51). Here, we
provide a comprehensive literature review specifically focused on
the development of TLR agonists as LRAs and their potential use
of these agonists for HIV eradication purposes.

TOLL-LIKE RECEPTORS

TLRs and Their Ligands
TLRs are transmembrane PRRs that recognize a plethora of
molecules present in virus, bacteria, fungi or protozoa such
as lipids, proteins, nucleic acids, and carbohydrates (52, 53).
PRRs are germline-encoded receptors which function as
first line of detection of pathogenic infections and recognize
conserved molecular structures called pathogen-associated
molecular patterns (PAMPs) (54). PRRs can also recognize
soluble molecules released during cell death or damage. These
structures are called damage-associated molecular patterns
(DAMPs) (55, 56). In humans, there are 10 TLRs that differ both
in their location within the cell as well as their cognate PAMP
(Figure 1). TLR-1, 2, 4, 5, 6, and 10 are localized on the surface of
the cells and recognize PAMPs present at the exterior of bacteria,
fungi, and protozoa. On the other hand, TLR-3, 7, 8, and 9 are
localized within endosomal structures and recognize nucleic
acids derived from bacteria and viruses (53, 57). TLRs recognize
their cognate ligand through either homodimers or heterodimers
and are expressed in cells of the innate and adaptive immune
system (such as dendritic cells, macrophages, granulocytes, T
cells, B cells, NK cells, and mast cells) as well as epithelial and
endothelial cells [reviewed in (37)].

TLRs in the Plasma Membrane
TLR-2 has a broader spectrum of ligand recognition than other
TLRs due to its ability to dimerize with other receptors (58,
59). TLR-2 can recognize diacylated lipopeptides in the surface
of gram-positive bacteria in conjunction with TLR-6 (60, 61).
Whereas, TLR-2 can recognize triacylated lipopeptides present
in gram-negative bacteria together with TLR-1 (62). TLR-2 has
been shown to also induce signaling as a homodimer when
recognizing lipoarabidomannan of Mycobacterium smegmatis
(LAM-MS) and polysaccharide A of Bacteroides fragilis (PSA)
(63, 64). Finally, TLR-2 can complex to the c-type lectin
Dectin-1 to recognize zymosan, a β-glucan present in yeast
cell wall (65). TLR-4 recognizes lipopolysaccharide (LPS), the
principal component of gram-negative bacteria, and its truncated
versions lipooligosaccharide and lipid A (66). CD14 and MD-
2 are also needed for proper TLR-4 signaling (67, 68). TLR-
5 recognizes flagellin, the main component of bacterial flagella
(69). Lastly, TLR-10 has been an orphan receptor for a long
time with no clearly defined ligand (70). TLR-10 has been
shown to be involved in triacylated lipopeptides recognition
by TLR-2 (71, 72). Recently, TLR-10 has been shown to sense
gp41 and other HIV proteins in conjunction with TLR-1 and
TLR-2 (73).

TLRs in the Endosomal Membrane
Several TLRs are present in endosomes, lysosomes and
endolysosomes (74). TLR-3 recognizes double-stranded RNA
(dsRNA) generated during viral infections while TLR-7 and
TLR-8 both recognize single stranded RNA (ssRNA) (75, 76).
Finally, TLR-9 can recognize unmethylated double-stranded
DNA derived from both bacteria and viruses (77).
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FIGURE 1 | State of the art of TLRs as LRAs for HIV eradication. TLRs can be expressed either in the plasma membrane or in endosomal membranes. They

recognize molecular patterns such as lipids, proteins, nucleic acids and carbohydrates present in bacteria, protozoa, viruses or fungi. Based on the structure of the

natural ligands, several synthetic derivatives and small molecules have been developed to specifically target different TLRs. Several of them are being investigated

toward HIV cure strategies in cell lines, animal models or clinical trials.

Synthetic Ligands
Due to their immunostimulatory properties, the discovery of
small molecules that can “mimic” a TLR response is an area
of active research. Over the past years, several small molecules
have been developed to specifically target TLRs and are being
investigated for the treatment of bacterial and viral infections,
for cancer immunotherapy and to optimize vaccine efficacy
[reviewed in (50, 78, 79)].

Synthetic lipopeptides have been the gold standard TLR-2
ligands. Pam2CSK4 is a synthetic diacylated lipopeptide that
engages TLR-2/TLR-6 heterodimers or TLR-2 homodimers
(60, 80). Pam3CSK4 is a synthetic triacylated lipopeptide
that engages TLR-2/TLR-1 heterodimers (62, 81). Mono-acyl
lipopeptides are the minimal structure required for TLR-
2 activity (82). Guan and colleagues identified a series of
compounds with a similar core structure consisting of 3-
carboxylbenzothiophene linked via a carbonothioyl amino

bridge to an anilino group (83). Further structure-activity
relationship (SAR) studies have yielded an optimized novel
compound termed CU-T12-9 (84). This compound has shown
higher efficacy than the original compound and shows a
specificity toward TLR-2/TLR-1 heterodimers over TLR-2/TLR-6
heterodimers (84). Using structure-based virtual screening of
over 10.5 million compounds, Chen and colleagues identified
ethyl 2-(4-methylpiperazine-1-carboxamido)-5,6-dihydro-4H-
cyclopenta[b]thiophene-3-carboxylate (SMU127) as a specific
TLR-2/TLR-1 heterodimer ligand (85). Recently, the same
group has developed 2-(1-(2-(Methylamino)-5-nitrophenyl)-
1H-imidazol-4-yl)-5-(trifluoromethyl)phenol (SMU-Z1) as
a specific TLR-2/TLR-1 heterodimer ligand (86). Finally, a
screening in PMA-differentiated THP-1 cell line of nearly
100,000 compounds identified diprovocims as inducers of TLR-2
and TLR-1 receptor dimerization and activation in the low pM
range (87).
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The main synthetic ligand used for TLR-3 is polyinosinic-
polycytidylic acid [poly(I:C)]. Poly(I:C) mimics dsRNA and
it is formed of a strand of inosine poly(I) homopolymer
annealed to a strand of cytidine poly(C) homopolymer.
The antiviral and antitumoral activities of Poly(I:C) were
described in the 1960’s but it was not characterized as a
TLR-3 agonist until the early 2000’s (75). Other derivatives
of Poly(I:C) have been developed such as a combination
of polyinosinic-polycytidylic acid and poly-L-lysine (Poly-
ICLC/Hiltonol R©), or the introduction of uridine in the
Poly(I:C) strand (poly(I:C12U)/rintatolimod/Ampligen R©), or
Polyadenylic–polyuridylic acid [poly(A:U)] (88–90).

Monophosphoryl lipid A (MPL) is a detoxified form of
the TLR4 agonist LPS from Salmonella minnesota that retains
immunostimulatory properties but lacks the toxic effects of
LPS (91). RC599 is a synthetic mimetic of MPL derived from
aminoalkyl glucosaminide 4-phosphate (92). Both, MPL and
RC599 have been shown to be efficient adjuvants and promote
CD4T cell responses (93). MPL has been used in a number
of complex adjuvants included in human vaccines (Supervax R©,

Cervarix, Melacine R©, Stimuvax) [reviewed in (94)]. Other lipid A
mimetics (AS04, GLA-SE, GSK1795091, and OM-174) have been
developed as vaccine adjuvants and are in licensed vaccines or in
Phase I or II clinical trials as anticancer therapeutics [reviewed
in (95)].

The polypeptide CBLB502 (Entolimod) derived from Flagellin
is a potent TLR-5 ligand under extensive investigation as vaccine
adjuvant, cancer and ischemia (96–99).

Imiquimod is an imidazoquinoline amine analog to guanosine
that specifically activates TLR-7 (100). Several other agonists
derived of imidazoquinoline have been developed that target
TLR-7 such as GardiquimodTM and PF-04878691 [also known
as 852A or 3M-001) (101, 102)], or to target TLR-7 and
TLR-8 simultaneously such as CL075, CL097, or Resiquimod
(also known as R-848) (103–105). In addition, guanosine
analogs such as Loxoribine have been generated as specific
TLR-7 ligands (106). ANA975 and ANA773, also guanosine
analogs, are prodrugs derived of the TLR-7 agonist isatoribine
(107, 108). CL264 and SM360320 are derivatives of 9-benzyl-
8 hydroxyadenine that have been shown to stimulate TLR-7

FIGURE 2 | Toll-like receptors signaling pathways. TLRs are the sentinels of host defense. The homodimers TLR5, TLR4, and TLR2 and the heterodimers

TLR2-TLR1, TLR2-TLR6, and TLR2-TLR10 bind to their specific ligand at the cell surface, whereas TLR3, TLR7, TLR7-TLR8, and TLR9 localize to the endosomes,

where they interact to their ligands. TLR4 following microbial detection is endocytosed into the endosome. When TLRs are activated by interaction with their ligands,

adaptor molecules are recruited to stimulate downstream signaling pathways including NF- κB, AP1, and IRFs.

Frontiers in Immunology | www.frontiersin.org 4 October 2019 | Volume 10 | Article 2450

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Macedo et al. TLR Agonists as LRAs

(109, 110). Finally, GS-9620 (Vesatolimod) and its close analog
GS-986 are also a 9-benzyl-8 hydroxyadenine derivatives that
targets TLR-7 with higher activity than CL264 (41, 42, 111).

All the synthetic TLR-9 ligands generated to date are derived
from CpG oligodeoxynucleotides (CpG ODNs). CpGs ODNs
can be classified into three classes (A, B, or C) that differ in
their structure as well as their immunostimulatory properties
(112, 113). Among others, CpG ODNs include CPG10101,
IMO-2125, SD-101, CpG7909 (ProMune), MGN1703
(Lefitolimod) (114–118).

Finally, a series of synthetic TLR ligands that covalently link
two or more TLR ligands are under investigation. These multi-
TLR ligands have been designed to enhance immune responses
through the synergistic activation of two or more TLRs with
different downstream pathways (42, 119).

TLR Signaling Pathway
TLRs are type I transmembrane glycoproteins composed of
a leucine-rich-repeat (LRR) motifs on the extracellular or
endosomal domain that mediates ligand recognition and the
Toll/IL-1R (TIR) in the cytoplasmic domain responsible for
signaling (120). The signaling cascades following TLR activation
involves multiple steps. Adaptor proteins such as myeloid
differentiation primary-response protein 88 (MyD88), TIR-
domain containing adaptor protein (TIRAP, also known as
MAL), TIR-domain containing adaptor protein inducing IFN-β
(TRIF) and TRIF-related adaptormolecule (TRAM) are recruited
to the TIR domain after interaction of PAMPs to their cognate
TLR (Figure 2).

With the exception of TLR-3, all TLRs signal through the
MyD88-dependent pathway. In the MyD88-dependent pathway,
TLR-2 and TLR-4 require TIRAP in order to recruit MyD88
to start signal transduction while TLR-5, TLR-7, TLR-8, and
TLR-9 initiate signaling using uniquely MyD88 (121, 122). After
recruitment of MyD88, a complex is formed with interleukin-
1 receptor-associated kinase-1 (IRAK1) and IRAK4. IRAK1 is
phosphorylated and associates with TNF receptor-associated
factor 6 (TRAF6), which activates transforming growth factor-
β-activated kinase 1 (TAK1), also known as mitogen-activated
protein kinase kinase kinase 7 (MAP3K7). TAK1 activates, by
phosphorylation, two routes; the IκB kinase—nuclear factor
kappa-light-chain-enhancer of activated B cells (IKK-NF-κB)
pathway and the mitogen-activated protein kinases (MAPK)
pathway (Figure 2). In the first route, TAK-1 phosphorylates
I-kappa-B-α/β (IκBα/β). This phosphorylation leads to their
degradation through the proteasome system and the release of
NF-κB, which translocates to the nucleus, binds to DNA and
initiates transcription. In the second route, TAK1 activates the
MAPK members extracellular signal-regulated kinase (ERK), c-
Jun N-terminal kinase (JNK) and p38, which lead to activation
of the nuclear factor activator protein-1 (AP-1) (57, 123). In
plasmocytoid dendritic cells (pDCs), TLR-7, and TLR-9 activate
MyD88 signaling that leads to the phosphorylation and activation
of the transcription factor interferon regulatory factor 7 (IRF7),
which regulates the expression of IFN-α (124).

In the MyD88-independent pathway, TRIF is recruited to
TLR-3 to initiate signaling (125). Besides TLR-3, TLR-4 can

be endocytosed and signal through TRIF using the adaptor
molecule TRAM (126, 127). TRAF6 and TRAF3 are recruited
to TRIF. While TRAF6 engages IKK and MAPK, leading to the
activation of NF-κB, AP-1, and IRF7; TRAF3 recruits TBK1/IKK-
ε complex that activates IRF3 culminating in IFN-β expression
(Figure 2) (128, 129).

TOLL-LIKE RECEPTOR AGONISTS AS
LATENCY-REVERSING AGENTS

In vitro Studies
The importance of TLRs in the physiopathology of HIV was
first postulated after observations on increased plasma viral
loads seen in HIV-infected individuals exposed to vaccination
regimens, suffering of opportunistic bacterial infections or
sexually transmitted diseases, or had translocation of microbial
products from the gut (130–138). Early studies have shown that
PAMPs and their corresponding microorganisms transactivate
the HIV long-terminal repeat (LTR) promoter. For example,
it was described that purified protein derivative (PPD) of
Mycobacterium tuberculosis increased viral mRNA expression
in HIV infected monocytes (139). Furthermore, monocytic cell
lines stimulated with live M. tuberculosis or lipomannan (LAM)
increased p24 expression by 3-fold and enhanced HIV LTR
transcription (140). Additionally, it has been shown that bothM.
tuberculosis PPD from the H37Ra strain and the mycobacterial
major cell wall component mannosylated LAM (ManLAM)
activated transcription of HIV in the T cell line Jurkat. ManLAM-
induced HIV gene expression was mediated via protein kinases
that culminated in NF-κB nuclear translocation. Mutations in
the NF-κB binding sites in the HIV LTR abolished PDD-
inducedHIV expression (141, 142). These findings suggested that
microbial products could be inducing HIV transcription. The
latter discovery of TLRs as sensors of these microbial products
suggested the idea that TLR agonists could reactivate latent HIV
and could be potential LRAs.

Subsequently increasing number of reports have
demonstrated the role of specific TLR agonists as latency
reversing agents in vitro. Equils and colleagues transfected
human dermal endothelial cells with an LTR luciferase construct
and showed that stimulation of TLR-4 with LPS leads to NF-κB
activation and transactivation of HIV-LTR (143). However,
the effect of LPS in the reactivation of the HIV promoter in
T cells has been disputed by other groups (144–146). These
divergent results could be explained by the use of contaminated
LPS formulations with other PAMPs, like bacterial lipopeptides.
Other possible reasons for the discrepancy could be variation
in the cell type used in each study, since different cells respond
differently to TLR agonists, the cell culture environment, which
component could escalate or impair an agonists effect, and/or
disparities in TLR-4 binding affinity to LPS from different
bacteria. Recently, LPS has been shown to reactivate latent HIV
in macrophages isolated from the urethra of patients under
ART (147).

The TLR-9 agonist CpG ODNs has been shown to activate
HIV replication in the chronically infected human cell lines
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U1 and ACH2 in an NF-κB dependent manner (148, 149).
Furthermore, DNA from F. nucleatum increased HIV promoter
activity through TLR-9 signaling in the THP89GFP cell line
(144). Recently, the TLR9 MGN1703 has been shown to
induced HIV RNA release in peripheral blood mononuclear cells
(PBMCs) from aviremic HIV-infected donors on antiretroviral
therapy (ART) (150).

Mycobacteria have been shown to induce HIV transcription
in a TLR-2 dependent manner. Bhat et al. observed that the
M. tuberculosis and M. smegmatis proline-proline-glutamic acid
protein Rv1168c (PPE17) interacts with TLR-2 resulting in
activation of NF-κB and HIV transactivation in the human
monocytic cell line THP1 (151). Our group has shown that
the TLR-2 agonists Pam2CSK4 and Pam3CSK4 have latency
reversal activity in CD4T cells from aviremic HIV-infected
participants and in a primary TCM cell model of latency (42, 146,
152). Finally, the component of the M. tuberculosis membrane
phosphatidylinositol mannoside 6 (PIM6) as well as whole
bacteria in co-culture reactivated HIV in a primary TCM cell
model of latency. As for previous studies with M. tuberculosis,
viral reactivation was dependent on TLR-2 (153).

R-848, a TLR-7/-8 agonist, induced p24 expression in the
latently infected monocytic cell lines U1 and OM10 (154).
Furthermore, a combination of the PKC agonist and LRA
prostratin with a TLR-8 agonist 3M-002 was tested in a coculture
of latently infected cells (J-Lat) and monocyte-derived dendritic
cells (MDDCs). The combination of protratin and 3M-002
resulted in greater reactivation of HIV latency in J-Lat than each
compounds alone. This synergistic interaction was dependent on
TNF-α and on MDDC-T cell interactions (155).

Flagellin, the structural protein in bacterial flagella and a TLR5
agonist, has been shown to reactivate latent HIV in J-Lat, a
transformed cell line latently infected with HIV derived of Jurkat
(146, 156, 157). Thibault and colleagues also shown activity of
flagellin in central memory T cells previously infected with a
VSV-G pseudotyped NL43. However, resting CD4T cells from
aviremic patients, when challenged with flagellin, failed to elicit
detectable levels of viral gene expression (157).

The TLR-3 agonist Poly(I:C) has been shown to reactivate
latent HIV via NF-κB and JNK in the monocytic cell line U38
that contains a stably integrated and silent copy of the HIV LTR
promoter linked to the chloramphenicol acetyltransferase (CAT)
gene (158).

The selective TLR-7 agonist GS-9620 induced extracellular
HIV RNA release in the supernatants of PBMCs isolated from
HIV-infected participants on ART but not in purified CD4T
cells (159). In this study, Tsai and colleagues attributed this
viral reactivation to type I IFN produced by pDCs. Therefore,
this last finding suggests two complementary mechanisms of
latency reversal mediated by TLR agonists. One that requires a
subset of immune cells to be activated with the TLR agonist and
these cells release soluble factors with latency reversal activity.
And a second mechanism in which the TLR agonists have a
direct effect on latently infected CD4T cells. Based on this
idea, we have recently characterized the mechanisms of viral
reactivation mediated by the TLR-2 agonist Pam2CSK4 and the
TLR-7 agonist GS-9620 and compared with that of synthetic dual

TLR-2 and TLR-7 agonists (dual TLR-2/7 agonists). We found
that TLR-2 and TLR-7 agonists reactivate latency by two distinct
and complementary mechanisms. TLR-2 agonists reactivate HIV
by directly inducing NF-κB activation in memory CD4T cells,
while TLR7 agonists induced the secretion of soluble factors that
can reactivate latent HIV in CD4T cells. Our results suggests
that TNF-α but not type-I IFN secreted by monocytes and
plasmacytoid dendritic cells (pDCs) promotes viral reactivation
in CD4T cells (42).

TLR agonists have also shown to reactivate latent HIV in other
cell subsets besides CD4T cells and monocytes/macrophages.
Poly (I:C) and bacterial ribosomal RNA induced HIV
reactivation through TLR-3 in a latency model using
immortalized human primary microglia with simian virus-
40 (SV40) large T antigen and human telomerase reverse
transcriptase (160). Furthermore, stimulation with TLR-2,
TLR-4, or TLR-9 agonists induced HIV replication in a primary
latency model using human progenitor mast cells (161).

In vivo Studies: From Small Animals to
Clinical Trials
Mouse models have been a tool to study the role of TLR
agonists on the pathogenesis of HIV. Initial studies were done
using a transgenic mouse model that contains intact copies
of HIV proviral DNA (162). Infection of these animals with
Mycobacterium avium or Toxoplasma gondii increased viral
production in monocytes/macrophages (163, 164). Using ex vivo
spleens from these transgenic mice, Equils and colleagues
demonstrated that ligands for TLR-2 (soluble Mycobacterium
tuberculosis factor or STF), TLR-4 (LPS), and TLR-9 (CpG)
increased viral production and that combination of LPS with
either STF or CpG increased viral production in an additive
manner (165). Furthermore, Bafica and colleagues crossed this
HIV transgenic mouse with either a TLR-2-deficient or a control
mouse to investigate the role of TLR-2 in the activation of
HIV expression. Culture filtrate proteins, phosphatidyl-inositol
mannoside from M. tuberculosis and the synthetic lipopeptdide
Pam3CSK4 induced p24 expression in spleen cells from HIV
transgenic mouse expressing TLR-2 but not the TLR-2 deficient
mice (166).

Several studies have specifically looked at the effects of TLR
agonists on the latent reservoir in vivo (Table 1). A study using
a humanized mice model of HIV latency demonstrated that
the TLR-3 agonists poly(I:C) can reactivate latent HIV in vivo
(167). In this study, the co-administration of poly(I:C) with a
vaccination regimen including recombinant anti-human CD40
antibody fused to 5 HIV peptide regions (αCD40.HIV5pep)
reduced the levels of cell-associated HIV DNA and delayed 1
week viral rebound after ART interruption in these animals
(167). The selective TLR-7 small-molecule agonist GS-9620 has
demonstrated antiviral activity in animal models of hepatitis B
virus, good safety profiles and has progressed to clinical testing
(171–173). As such, TLR-7 agonists have also been tested as
LRAs in SIV-infected rhesus macaques. So far, there has been
4 different studies on the administration of GS-9620 or its
analog GS-986 in infected macaques under suppressive ART.

Frontiers in Immunology | www.frontiersin.org 6 October 2019 | Volume 10 | Article 2450

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


M
a
c
e
d
o
e
t
a
l.

T
L
R
A
g
o
n
ists

a
s
L
R
A
s

TABLE 1 | Summary of in vivo studies using TLR ligands as LRAs.

Administration Study arms Specie Viral blips Effects on reservoir References

Poly I:C

(TLR3)

Two doses 2.5 weeks apart,

half IP half IM

PBS

Poly I:C

αCD40.HIV5pep/ Poly I:C

NRG

hu-

mice

Yes (US/7) Reduction on cell-associated DNA in lymphoid tissue (4/4)

Delayed rebound (αCD40.HIV5pep/Poly I:C 1 week)

(167)

Poly-ICLC

(TLR3)

Two consecutively daily

doses, SC

Randomize (3:1) vs placebo Human 0/12 Reduction on cell-associated DNA (0/12) (168)

GS-986

(TLR7)

Ten doses two weeks apart,

OG

Sham

Ad26/MVA

GS-986

GS-986/Ad26/MVA

Rhesus

macaque

Sham (0/9)

Ad26/MVA (0/9)

GS-986 (0/9)

GS-986/Ad26/MVA (1/9)

Reduction on cell-associated DNA in lymph nodes week 70

(Sham 1/9, Ad26/MVA 1/9, GS-986 4/8; GS-986/Ad26/MVA 6/8)

Reduction on cell-associated DNA in PBMCs week 70

(Sham 3/9, Ad26/MVA 9/9, GS-986 4/8; GS-986/Ad26/MVA 6/8)

Virologic control

(Sham 0/9, Ad26/MVA 0/9, GS-986 0/8, GS-986/Ad26/MVA 3/8)

(39)

GS-9620

(TLR7)

Ten doses two weeks apart,

OG

Sham

PGT121

GS-9620

GS-9620/PGT121

Rhesus

macaque

Sham (0/11)

PGT121 (0/11)

GS-9620 (0/11)

GS-9620/ PGT121 (0/11)

Reduction of viral DNA in lymph nodes week 120

(Sham 4/11, PGT121 7/11, GS-9620 3/11, GS-9620/PGT121

11/11)

Virologic control

(Sham 0/11, PGT121 3/11, GS-9620 1/11,

GS-9620/PGT121 5/11)

(40)

GS-986

(TLR7)

Dose scalation 2 weeks apart,

OG

Sham

GS-986

Rhesus

macaque

Sham (0/3)

GS-986 (4/4)

Reduction of viral DNA in memory CD4T cells from PBMCs (3/4),

LNMCs (4/4) and GMMCs (4/4)

(41)

GS-9620

(TLR7)

Ten doses 2 weeks apart, OG Sham

GS-9620 0.05 mg/kg

GS-9620 0.1 mg/kg

GS-9620 0.15 mg/kg

Rhesus

macaque

Sham (0/3)

GS-9620 0.05 mg/kg (3/3)

GS-9620 0.1 mg/kg (3/3)

GS-9620 0.15 mg/kg (3/3)

Reduction of viral DNA in memory CD4T cells from PBMCs

(Sham 2/2, GS-9620 0.05 mg/kg 3/3, GS-9620 0.1 mg/kg 3/3,

GS-9620 0.15 mg/kg 3/3)

Reduction of viral DNA in memory CD4T cells from LNMCs

(Sham 1/2, GS-9620 0.05 mg/kg 1/3, GS-9620 0.1 mg/kg 2/3,

GS-9620 0.15 mg/kg 1/3)

Reduction of viral DNA in memory CD4T cells from GMMCs

(Sham 0/2, GS-9620 0.05 mg/kg 2/3, GS-9620 0.1 mg/kg 3/3,

GS-9620 0.15 mg/kg 3/3)

Virologic control

(Sham 0/2, GS-9620 0.05 mg/kg 0/3, GS-9620 0.1 mg/kg 1/3,

GS-9620 0.15 mg/kg 1/3)

(41)

GS-9620

(TLR7)

First course of twelve doses 2

weeks apart, OG

Second course of five dose 2

weeks apart, OG

Sham

GS-9620

Rhesus

macaque

Sham (0/2)

GS-9620 (0/4)

No effects in viral HIV DNA (169)

GS-9620

(TLR7)

Tablet(s) administered orally

once every 2 weeks

Randomized, blinded,

placebo-controlled

dose-escalation study

Human Completed trial Completed trial NCT02858401

(Continued)
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The first study combined the therapeutic vaccine Ad26/MVA
(recombinant adenovirus serotype 26 (Ad26) prime, modified
vaccinia Ankara (MVA) boost) with GS-986. They found that this
combination resulted in decreased levels of viral DNA in lymph
nodes and peripheral blood, and improved virologic control and
delayed viral rebound following discontinuation of antiretroviral
therapy (39). In another study from the same group, GS-9620
was combined with the V3 glycan-dependent bNAb PGT121 in
rhesusmonkeys during ART (40). This combination delayed viral
rebound after ART discontinuation. Interestingly, 5 out of 11
monkeys did not show viral rebound even after CD8-depletion
or adoptive transfer of PBMCs and LNMCs into naïve monkeys
(40). In a third study, repeated administration of GS-9620 or
its analog G-986 to SIVmac251-infected rhesus macaques under
ART was associated with transient plasma viremia that peaked 24
to 48 h after dosing (41). Furthermore, TLR-7 agonists induced
a reduction in cell-associated SIV DNA in sorted memory CD4T
cells obtained from peripheral blood, gastrointestinalmucosa and
lymph nodes (41). Finally, a recent study also evaluated the effects
of repeated doses of the TLR7 agonist GS-9620 in SIV-infected
rhesus macaques receiving ART (169). The rhesus macaques
that received GS-9620 during ART presented with immunologic
effects due to the TLR-7 agonist, such as upregulation of IFN-
stimulated genes in both blood and tissues, an increase in
different plasma cytokines such as IFN-α and IL-1RA, and
changes in CD8, NK andmacrophage activation. In contrast with
the study from Lim and colleagues, GS-9620 did not result in a
measurable increase in plasma viremia or changes in viral RNA–
to–viral DNA ratio in PBMCs or tissues, nor decreases in viral
DNA in PBMC or tissues (169). Several differences can account
for the discrepancies in these two studies. First, ARTwas initiated
at different times after initial infection (65 vs. 13 days). Second,
GS-9620 was administrated at different times post-ART initiation
(60 vs. 75 weeks). Third, the SIV strain used in each study
were different (SIVmac251 vs. SIVmac239X). Forth, the route of
inoculation was also different (intrarectally vs. intravenously). All
of these differences could lead to variations in the formation of
viral reservoirs and their sensitivity to TLR-7 agonists. Further
studies are warranted to fully understand the discrepancies of
these two studies.

TLR agonists have also reached clinical testing in ART-
suppressed participants (Table 1). The TLR-9 agonist CpG-ODN
7909, a class B CpG ODN, was administered as adjuvant in
HIV-infected individuals (174). Interestingly, those participants
receiving the TLR9 agonist as adjuvant in the immunization
protocol had some decrease in the HIV proviral reservoir
compared the control group (170). This led to the idea of using
TLR-9 agonists to reduce the latent reservoir. As such, two
different clinical trials aimed toward HIV eradication have been
done using the TLR-9 ligand MGN1703. In the first clinical
trial, a single-arm, open-label study in which 15 (13 male, 2
female) virologically suppressed HIV infected individuals on
ART received 60mg MGN1703 subcutaneously twice weekly
for 4 weeks (43). In this study, they characterized pDC, NK,
and T-cell activation using flow cytometry on baseline and
after 4 weeks of treatment. Additionally, HIV transcription was
quantified by measuring plasma HIV RNA. MGN1703 treatment
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increased the activation of pDCs, upregulated levels of cytokines,
and enhanced activation of cytotoxic NK cells and effector
CD8+ T cells. Furthermore, treatment with MGN1703 induced
plasma HIV RNA blips up to >1,500 copies/mL in 6 of 15
participants (43). From this trial, biopsies from sigmoid colon
were collected from 11 participants. Increased in solely type-
1 interferon response but not a broad inflammatory response
was observed in intestinal mononuclear cells. Interestingly,
increased transcription of either TLR9 or IFNAR1 before
MGN1703 administration was associated with improved efficacy
in eliminating HIV DNA-containing cells in the intestine during
the course of treatment (175). In the second clinical trial, the
same group enrolled HIV-infected individuals on ART for an
exploratory, single-arm clinical trial that tested the safety and
immune enhancement effects of 24-weeks of MGN1703 (60mg
2 weekly) therapy (44). A total of twelve individuals completed
the treatment phase and nine underwent analytical treatment
interruption (ATI). MGN1703 led to potent T-cell activation and
increased HIV-specific T-cell responses, however there were no
changes in CD4T cells containing viral DNA nor differences in
the time to rebound after ATI. In this study, a single patient was
able to control viremia for 150 days after ATI. This participant
had strong HIV-specific cellular and antibody-mediated immune
responses, however as the study did not contain a placebo
arm, the delayed viral rebound cannot exclusively be associated
to MGN1703 treatment (44). The TLR-3 agonist Poly-ICLC
(Hiltonol R©) has also been tested in a randomized, placebo-
controlled, double-blinded trial in ART-suppressed participants
(168). In this study, participants received two daily doses of
Poly-ICLC subcutaneously. Both, Poly-ICLC and placebo control
were observed for adverse events, immune activation, and viral
replication. As for other TLR agonists, Poly-ICLC administration
lead to transient innate immune stimulation without generalized
immune activation. While no effects of Poly-ICLC in reversing
HIV latency or on the size of the viral reservoirs were observed;
Poly-ICLC was reported safe and well-tolerated (168). Finally,
the TLR7 agonist GS-9620 is currently being evaluated in clinical
trials in HIV infected controllers (NCT03060447) and in those
on suppressive ART (NCT02858401). These studies will provide
information regarding safety and biological activity, including
their impact on viral reservoirs, in HIV-infected patients.

MODULATION OF HIV-HOST IMMUNE
RESPONSES BY TLR STIMULATION

Besides their potential ability to reactivate latent HIV, TLR
agonists have been shown to have immunostimulatory and
antiviral properties to modulate anti-HIV immune responses.

The TLR-2 agonist Pam3CSK4 has been shown to prime
latently-infected CD4T cells for CD8T cell recognition (176).
We have characterized that TLR-2 and dual TLR-2/7 agonists,
besides reactivating latent HIV, they can activate NK cells and
induce IL-22. We demonstrated a protective role for IL-22 in
both cell-free and cell-to-cell HIV infection of CD4T cells (42).
Whether TLR-2 agonists enhance the ability of NK cells to kill
HIV-infected cells has not been demonstrated yet. Furthermore,

the dual TLR-2/7 agonist PamadiFectin has been shown to
enhance humoral responses in a mouse model immunized with
p24 coupled to nanoparticles (119).

The TLR-3 agonist poly(I:C) enhanced the generation of HIV-
specific T cell responses in BALB/c mice and in humanize mouse
vaccination models (167, 177). In vitro, the TLR-7 agonist GS-
9620 has been shown to both inhibit HIV replication in an IFN-
α-mediated mechanism as well as enhance the anti-HIV activity
of CD8T and NK cells (159, 178). The TLR-7/8 agonist 3M-
012, an analog of R-848, has been given as vaccine adjuvant in
combination with HIV Gag antigen to non-human primates. The
addition of 3M-012 to the Gag vaccine substantially enhanced
Gag-specific T helper 1 and CD8T cell responses compared to
animals given the Gag protein alone (179). Furthermore, TLR-
7/-8 activation through ssRNA or R-848 interfered with HIV
replication cycle in lymphocyte cultures (154). In addition, The
TLR-7/8 agonists 3M-002 and R-848 were able to promote HIV
control in vitro in HIV-infected PBMCs through the activation of
CD8T cells and NK cells (180).

A randomized controlled vaccine trial conducted with 95
HIV-infected subjects investigated the impact of TLR-9 agonist
as an adjuvant for pneumococcal vaccine. The trial showed
that the TLR-9 agonist, CpG-ODN 7909, enhanced vaccine
immunogenicity in the experimental group compared with the
control group (174). Post-hoc analyses of the vaccine trial
confirmed that patients that received TLR-9 ligand as adjuvant
expressed more CD107a and macrophage inflammatory protein
1β (MIP1β) markers in CD8T cells. The increase in these
markers was associated with a reduction in HIV proviral load
(170). Furthermore, the TLR-9 agonist CpG-ODN 2216 has been
shown to activate NK cells in a pDC-mediated mechanism and
enhance NK lysis of autologous HIV-infected CD4T cells (181).
In addition, TLR ligands such as Imiquimod (TLR-7), R-848
(TLR-7/8), CpG ODN (TLR-9), and Poly(I:C) (TLR-3) have been
also shown to enhance the generation of HIV-specific CD8T cells
in vitro (182).

CONCLUDING REMARKS

The use of TLR ligands as LRAs has shown promising results in
efforts toward HIV eradication either alone or in combination
with other therapeutic strategies because of their ability to
reactivate latent HIV, to enhance immune responses and promote
antiviral responses. Several TLR agonists are under investigation
both in pre-clinical models of HIV latency as well as in clinical
trials (Figure 1). These preclinical and clinical studies have
shown a wide variety of response even in studies using the
same TLR agonists (Table 1). Why such differences are currently
unknown. Based on these studies, we can speculate several factors
that may be influencing the response to TLR agonists including
the time of ART initiation, the length of ART treatment, the
cellular composition of the latent reservoir, or the strain of SIV
or HIV. There are also other factors that may influence the
activity of these agonists that will need to be considered in
future cure strategies. First, TLRs contain polymorphisms that
influence their activity (183, 184). How these polymorphisms
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affect the efficacy of different TLR ligands in HIV eradication
approaches has not been characterized. Second, it is well-known
that biological sex influences the responses of certain TLRs, in
particular TLR-7 (185, 186). The in vivo evaluation of GS-9620
or other TLR-7 agonists will need to take this into account.
As research progresses, emphasis also needs to be done in
understanding whether these TLR agonists can reach all the
different tissue compartments where HIV may hide, including
lymph nodes, intestinal mucosal, and brain [reviewed in (187–
191)]. Furthermore, HIV has been shown to reside latent in other
cell types besides CD4T cell (147, 192). As such, it is possible that
a single TLR agonist may not be sufficient to reactivate all latent
virus present in different cellular compartments as the expression
of TLRs differs among different cell subsets. Additional research
is warranted to fully understand which TLR agonists reactivate
latent HIV in each cell compartment. Also, it will be important
to address whether reactivation is due to a direct targeting of the
TLR in the reservoir cell or whether other soluble factors secreted
by other cells are required for efficient viral reactivation. The
mechanisms involved in HIV latency are complex and involve

a plethora of cellular factors as well as epigenetic mechanisms
(193). As such, TLR agonists may need to be combined with
other LRAs with different mechanisms of action to efficiently
reactivate all latent viruses. Finally, recent studies using animal
models suggest the use of additional strategies, such as bNAbs,
might be required to generate meaningful remission. Therefore,
it is important to continue the investigation of TLR agonists as
potential adjuvants for novel HIV cure strategies.
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