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Objective. The purpose is to study the effect of tRNA-derived fragments (tRFs) on pan-cancer through bioinformatics. Methods.
The expression information of tRF-20-S998LO9D, a type of tRF-5, was retrieved through MINTbase in pan-cancer and verified by
qPCR. We preliminarily explored the effect of tRF-20-S998LO9D on cell proliferation in breast cancer and lung cancer cell lines.
Then an online KM-plotter provided by OncotRF was used to discover the prognostic significance. GO/KEGG analyses were
executed to predict the potential mechanism of tRF-20-S998LO9D in cancer. Results. We found that tRF-20-S998LO9D was
highly expressed in a variety of cancers like breast invasive carcinoma, head and neck squamous cell carcinoma, kidney renal
clear cell carcinoma, lung squamous cell carcinoma, pheochromocytoma and paraganglioma, and uterine corpus endometrial
carcinoma. Inhibition of tRF-20-S998LO9D led to reduced cell proliferation in breast cancer (MCF-7) and lung squamous cell
carcinoma (SK-MES-1) cells. Elevated tRF-20-S998LO9D indicated poor prognosis in a variety of cancers. tRF-20-S998LO9D
might be involved in multiple cancer-related pathways. Conclusion. We concluded that tRF-20-S998LO9D was upregulated and
negatively correlated with prognosis of a variety of cancers. It may be a potential cancer-promoting marker in pan-cancer.

1. Introduction

The genesis and evolution mechanisms of cancer have always
been a key focus of research. Considerable research highlights
the regulatory mechanisms of noncoding RNAs in the develop-
ment of diseases [1]. These RNAs usually do not code proteins
and are divided into long noncoding RNAs (lncRNA) and small
noncoding RNAs (sncRNA) based on their length. Studies have
revealed the significance of lncRNA andmultiple sncRNAs, like
microRNA, small interfering RNA, and transfer RNA (tRNA),
in the occurrence and development of cancer. For example,
Kong et al. found that lncRNA-CDC6 could function as com-
petitive endogenous RNA (ceRNA) via directly sponging of
microRNA-215, which further regulate the expression of
CDC6 in breast cancers [2]. Let-7, a microRNA, was downreg-
ulated in breast, colon, and lung cancers and proven to prevent
tumor development by repressing RAS orMYC [3, 4]. With the
advance in next-generation sequencing and bioinformatics
technology, a new class of small noncoding RNAs derived from
tRNAs has raised great concerns.

These tRNA-derived small RNAs are called tRFs (tRNA-
derived fragments). Since they were initially discovered in
the 1970s, tsRNAs were once considered nonfunctional in
biological processes [5]. However, there is increasing evi-
dence that tsRNAs can participate in different molecular
and physiological processes in recent years. tRFs are highly
conservative, and their biogenesis require a precise site-
specific cutting [6]. Based on the cleavage position of tRFs,
they are generally categorized as tRF-1, tRF-5, tRF-3, tRF-
2, and tiRNA [7]. Dysregulation of tRFs has been reported
to participate in tumor-promoting or suppressive activities
in several cancers [8, 9].

tRF-5s with 14-30nt in length begin at the 5′ ends of the
mature tRNAs and extend into the D-loop or the stem region
between the D-loop and anticodon loop of the tRNA [10].
tRF-5s have been considered to play important roles in various
pathophysiological processes. tRF-20-S998LO9D, a tRF-5
derived from chromosome 1 tRNA86ArgTCT, was identified
as a potential prognostic factor in patients with head and neck
squamous cell carcinoma in previous reports [11]. But its
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significance in pan-cancer remains unknown. Based on the
advancement of public data platforms and bioinformatics
technology, pan-cancer analysis methods provide the potential
to identify the common characteristics among cancers.

Here, for the first time, we preliminarily explored the
expression and prognosis significance of tRF-20-S998LO9D
in pan-cancer using MINTbase and OncotRF database. Cell
proliferation assay and the potential molecular mechanism of
S998LO9D predicted by TargetScan and DAVID Bioinformat-
ics Resources further suggested the cancer-promoting effect.

2. Methods

2.1. Retrieval of tRF Expression Data from MINTbase. The
MINTbase v2.0 database (https://cm.jefferson.edu/MINTbase/
) was employed to retrieve the tRF expression status [12]. MIN-
Tbase unique ID (“tRF-license plate”) was used for tRF nomen-
clature. The expression information was outputted in tabular
form including the tRF’s normalized abundance (in RPM)
and the tissue type. The expression differences of tRF-20-
S998LO9D in pan-cancer and matched control tissues were
organized and visualized by the R project.

2.2. Clinical Tissues. Cancer and para-cancer tissues of 15
BRCA (breast invasive carcinoma), HNSC (head and neck
squamous cell carcinoma), KIRC (kidney renal clear cell
carcinoma), LUSC (lung squamous cell carcinoma), PCPG
(pheochromocytoma and paraganglioma), and UCEC (uter-
ine corpus endometrial carcinoma) were obtained at the Third
Xiangya Hospital. Fresh tissues were preserved in liquid
nitrogen. All patients provided informed consent.

2.3. Cell Culture and Viability Assay. Human breast tumor
cell line MCF-7 and lung squamous cell carcinoma cell line
SK-MES-1 were gifts from Cancer Institute of Central South
University. Cancer cells were cultured according to the rec-
ommended protocols. MCF-7 and SK-MES-1 were trans-
fected with small interfering RNA (GTCCATTGCGCCAC
AGAGA) using Lipofectamine™ 3000 (Invitrogen, MA,
USA). For viability assay, cells were incubated in 96-well
plates (2 × 104 cells/well) for 48 hours. Cell Count Kit-8
reagent (Sigma Aldrich, St Louis, Missouri; 10μL) was added
to each wells, followed by incubation for 4 hours. Absor-
bance of the solution was measured at 450 nm using an
ELx800 microplate reader (Winooski, Vermont, USA).

2.4. RNA Extraction and qPCR. We extracted total RNA
from clinical samples with TRIzol (Invitrogen, USA) based
on the instruction manual. RNA samples were quantified
by NanoDrop ND-1000 (NanoDrop, USA). Reverse tran-
scription was carried out with PrimeScript RT Reagent
Kit (Takara, China). qRT-PCR was executed with ViiA 7
Real-Time PCR System (Applied Biosystems). The 2-ΔΔCt

method was used for calculating relative expression levels
of tRF-20-S998LO9D. The forward primer sequence for
tRF-20-S998LO9D is 5′-TCTCTGTGGCGCAATG-3′,
and the reverse primer sequence is GGTCCAGTTTTTTT
TTTTTTTTGTC.

2.5. tRF Prognostic Data Retrieved in the OncotRF Database.
An online KM-plotter provided by OncotRF (http://
bioinformatics.zju.edu.cn/OncotRF/), which collated RNA
sequencing data and prognostic information of patients from
TCGA, was used to discover the prognosis significance of
tRF-20-S998LO9D in pan-cancer [13]. Patients were classified
into low-expression or high-expression groups according to
the median tRF level. The OS and DFS information of tRF-
20-S998LO9D in different cancers were summarized.

2.6. Functional Analysis of tRF-20-S998LO9D by
Bioinformatics. TargetScan algorithm, which is based on
searching for the 8mer and 7mer sites that match the seed
region of noncoding RNA, was used to predict biological
targets of the tRF-20-S998LO9D [14]. DAVID Bioinformatics
Resources 6.8 (https://david.ncifcrf.gov/home.jsp), a func-
tional annotation website, was used for GO and KEGG func-
tion enrichment analysis [15]. The prediction results were
visualized by GraphPad Prism 8.0.1 and Cytoscape 3.7.2.

2.7. Statistical Analysis. Shapiro-Wilk tests were used to
assess data normality. For normally distributed data, a two-
tail unpaired Student’s t-test was used. For nonnormally dis-
tributed data, a nonparametric test (Mann-Whitney test)
was taken. P value < 0.05 was considered significant.

3. Results

3.1. Aberrant Expression of tRF-20-S998LO9D in Pan-Cancer.
The information on the expression level of tRF-20-
S998LO9D was retrieved in 31 types of cancers (Figure 1).
Among them, ten cancer datasets contained normal controls
(sample size ≥3). tRF-20-S998LO9D was significantly highly
expressed in a variety of cancers like BRCA (P = 0:0397),
HNSC (P = 0:0008), KIRC (P = 0:0153), LUSC (P = 0:0026),
PCPG (P = 0:0105), and UCEC (P = 0:0045). Unfortunately,
normal controls were missing in many cancer datasets. But
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Figure 1: Expression of tRF-20-S998LO9D in pan-cancer. BLCA:
bladder cancer; CESC: cervical cancer; CHOL: bile duct cancer;
COAD: colon cancer; DLBC: large B-cell lymphoma; ECSA:
esophageal cancer; KIRP: kidney papillary cell carcinoma; LGG:
lower grade glioma; LIHC: liver cancer; OV: ovarian cancer;
PAAD: pancreatic cancer; PRAD: prostate cancer; READ: rectal
cancer; SARC: sarcoma; SKCM: melanoma; STAD: stomach
cancer; TGCT: testicular cancer; UVM: ocular melanomas (ns: P
> 0:05, ∗P < 0:05, ∗∗P < 0:01, ∗∗∗ P < 0:001, ∗∗∗ ∗P < 0:0001).
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overall tRF-20-S998LO9D expression showed a trend of an
increased level in pan-cancer tissues. To further confirm the
dysregulation status of tRF-20-S998LO9D in pan-cancer, we
collected clinical specimens from patients with BRCA, HNSC,
KIRC, LUSC, PCPG, and UCEC. We found a significant
upregulation of expression of tRF-20-S998LO9D in all these
cancers (P value was 0.0048, <0.0001, 0.0044, 0.0123, 0.0024,
and 0.0047, respectively) (Figure 2).

3.2. tRF-20-S998LO9D Promoted the Proliferation of Tumor
Cells In Vitro. Preliminary exploration of the function of
tRF-20-S998LO9D was conducted in breast and lung cancer,
two of the most common cancers in adults. Firstly, we
constructed cell lines with lower expression of tRF-20-
S998LO9D in breast cancer (MCF-7) and lung squamous cell
carcinoma (SK-MES-1) cells. The successful transfection was
observed by qPCR in both cell lines (P value was 0.0449 and
0.0368, respectively) (Figures 3(a) and 3(c)). As shown in cell
proliferation curve, inhibition of tRF-20-S998LO9D in MCF-
7 cells led to decreased cell proliferation rate, and the OD value
of the NC group was about 1.5 times that of the siRNA group
at 96h (P = 0:0086) (Figure 3(b)). A consistent trend was
observed in SK-Mes-1 cells (P = 0:0086) (Figure 3(d)).

3.3. The Prognostic Significance of tRF-20-S998LO9D in Pan-
Cancer. To evaluate the prognostic value, we assessed the
correlation between abnormally expressed tRF-20-S998LO9D

and clinical outcome with KM-plotter. Highly expressed tRF-
20-S998LO9D was significantly associated with poor overall
survival (OS) in ACC (adrenocortical carcinoma), HNSC,
LIHC (liver hepatocellular carcinoma), LUAD (lung adenocar-
cinoma), MESO (mesothelioma), THCA (thyroid carcinoma),
UCEC, and UCS (uterine carcinosarcoma) (Figure 4). In
ACC, KICH (kidney chromophobe), KIRC, MESO, THYM
(thymoma), and UCEC, tRF-20-S998LO9D was significantly
associated with poor disease-free survival (DFS) (Figure 5).

3.4. Function Prediction of tRF-20-S998LO9D. TargetScan
algorithms were used to predict the potential function of
tRF-20-S998LO9D. 369 conserved targets were obtained.
The target genes were shown in Figure 6(a). DAVID databases
were used for functional enrichment analysis of putative target
genes of tRF-20-S998LO9D. Gene ontology (GO) enrichment
analysis indicated that 89 GO terms were enriched (P < 0:05)
for target genes of tRF-20-S998LO9D. The most enriched
terms of target genes of tRF-20-S998LO9D were “positive
regulation of transcription from RNA polymerase II pro-
moter” and “regulation of transcription, DNA-templated” in
biological process (BP) category, “nucleus” and “cytoplasm”
in cellular component (CC) category, and “protein binding”
and “zinc ion binding” in molecular function (MF) category
(Figure 6(b)). 13 pathways were obtained in the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway analysis,
and the ten most significant were displayed in Figure 6(c).
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Figure 2: Relative expression of tRF-20-S998LO9D in BRCA, HNSC, KIRC, LUSC, PCPG and UCEC by qPCR.
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The most enriched pathways like pathways in cancer, signal-
ing pathways regulating pluripotency of stem cells, and Hippo
signaling pathway have been reported to participate in the
genesis and evolution of cancer. Other enriched pathways
include TGF-Beta signaling pathway, ubiquitin-mediated pro-
teolysis, FoxO signaling pathway, non-small-cell lung cancer,
melanoma, endometrial cancer, central carbon metabolism
in cancer, and chronic myeloid leukemia which are also con-
sidered to be closely related to the occurrence and develop-
ment of tumors.

4. Discussion

Although dysregulation of tRFs has been described in cancers,
their commonalities remain poorly investigated. Here, we inves-
tigated the expression of tRF-20-S998LO9D in pan-cancer, as
well as its prognostic potential and downstream pathways.

Our results showed that tRF-20-S998LO9D was upregu-
lated in a variety of cancers. Since the MINTbase v2.0 only
comprises tRFs with an abundance ≥ 1.0 RPM, tRFs with
expression levels that are either zero or just under the
threshold are not recorded. On the other hand, the overall
read-counts of tRFs are relatively low, and the population

of normal controls is relatively small. These may lead to lim-
ited available normal control samples. Despite these limita-
tions, it is reasonable to conclude that dysregulation of
tRFs may be a universal phenomenon in pan-cancer.

Unlimited proliferation is an important sign of malig-
nancy. Tumor microenvironment, dysregulation of onco-
gene/oncogene, epigenetic abnormalities, and many other
factors have been considered to be associated with cancer
cell proliferation [16–19]. The study of proliferation charac-
teristics can improve our understanding of the cell cycle and
the pathogenesis of malignant tumors. In the previous stud-
ies, tsRNAs have been found to regulate tumor cell prolifer-
ation and colony formation in various tumors such as lung
cancer, colorectal cancer, prostate cancer, breast cancer,
ovarian cancer, leukemia, and lymphoma [7, 9, 20, 21].
However, the role of tRF-20-S998LO9D in tumor prolifera-
tion remains unknown. Our study suggested a positive cor-
relation between tRF-20-S998LO9D expression level and
tumor cell proliferation. These phenomenon indicates that
tRF-20-S998LO9D may be involved in the regulation of the
progression of multiple tumor types.

Numerous studies have indicated that tRFs may be ideal
biomarkers for the prognosis of cancers of the breast, ovaries,
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Figure 3: Role of tRF-20-S998LO9D in tumor cell proliferation regulation. (a) After siRNA transfection, tRF-20-S998LO9D expression in
MCF-7 cells was inhibited (P = 0:0449); (b) inhibition of tRF-20-S998LO9D reduced the proliferation of MCF-7 breast cancer cells
(P == 0:0086); (c) siRNA transfection successfully inhibited the expression of tRF-20-S998LO9D in SK-MES-1 lung squamous cell
carcinoma cells (P = 0:0368); (d) inhibition of tRF-20-S998LO9D reduced the proliferation of SK-MES-1 cells (P = 0:0247).
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lung, prostate, colorectum, and other organs [22–26]. The
prognostic value of tRF-20-S998LO9D in HNSC patients has
also been confirmed in previous reports [11]. Our study
further illustrated the prognostic significance of tRF-20-
S998LO9D in pan-cancer. This phenomenon suggests that
tRF-20-S998LO9D may be extensively involved in the pro-
gression or treatment response of a variety of tumors. To date,
tsRNAs dysregulation in serum, urine, sperm, and other body
fluids have been identified in cancer and some other diseases
[21, 27, 28]. These indicate that tsRNAs can be taken as a

tumor circulation molecule and thus suggest the prospect of
tsRNAs as clinical noninvasive biomarkers.

Although the biological roles of tRFs have been revealed in
various pathophysiological processes, their potential mecha-
nisms are largely unknown and require further elucidation. In
general, the role of tsRNAs can be summarized as RNA silenc-
ing, translation regulation, and epigenetic regulation [29]. Stud-
ies have indicated that tRFs can interact with RNA-binding
proteins and regulate gene silencing by directly targeting
mRNAs like miRNAs [30]. Gu et al. reported that tRF-20-
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Figure 4: The relationship between tRF-20-S998LO9D and OS in ACC, HNSC, LIHC LUAD, MESO, THCA, UCEC, and UCS.
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S998LO9D might bind to eIF4B and SRSF1 according to pre-
dictions from RNA-Binding Protein DataBase (RBPDB) [11].
On the other hand, the roles of eIF4B and SRSF1 in cancer have
been widely elucidated. These suggest the potential of tRF-20-
S998LO9D in tumorigenesis and development.

KEGG pathway prediction showed that tRF-20-S998LO9D
might be involved in cancer hallmark pathways. For instance,
Hippo signaling has been demonstrated to play a crucial role
in cell proliferation and contribute to cancer progression [31].
Dysregulation of the TGF-β signaling pathway can promote
tumorigenesis, including metastasis and chemoresistance
[32]. The proteolysis mediated by ubiquitin is vital for cell-
cycle regulation through recognition, interaction, and ubiquiti-
nation or deubiquitination of key proteins. The abnormally
high accumulation or illegitimate degradation of tumor sup-
pressor proteins and oncoproteins results in tumorigenesis
[33]. FoxO signaling pathways are also critical to cancer cell
biology through implicating in cell differentiation, apoptosis,
proliferation, DNA damage, and repair [34]. Altogether, these
suggest the potential mechanism of tRF-20-S998LO9D in
tumorigenesis and development.

We note a few limitations to this study. Firstly, due to the
small sample size of available normal controls, differential
expression data cannot be fully obtained in all cancer groups.
Secondly, the underlying mechanism of tRF-20-S998LO9D
in cancer has not been experimentally validated.

5. Conclusion

tRF-20-S998LO9D was dysregulated and associated with
poor prognosis in a variety of cancers. It may act as a
cancer-promoting biomarker in pan-cancer.
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