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Abstract

Background: Curcumin, a compound derived from the root of the Curcuma longa, has been confirmed as an anticancer, chemopro-
tective, and gene/protein regulatory agent. Nanoformulation of curcumin has been developed to increase its targeting efficiency,
solubility, controlled release, and physical and chemical stability.
Objectives: This study investigated the effect of new nano-type curcumin, oleic acid-derived dendrosome (OA400 nanoparticles),
on the expression of E6 and E7 human papillomavirus oncogenes and P53 and Rb factors in the HeLa cell line. After preparing nano-
curcumin by mixing OA400 nano-carrier and curcumin, its effect was considered on the human cervical cancer cell line (HeLa cell
line RRID: CVCL_003) and normal fibroblast cells.
Methods: MTT assay and flow cytometry were used to evaluate cell viability and apoptosis. Furthermore, real-time RT-PCR and west-
ern blot analyses assessed RNA and protein expression of E6, E7, P53, and Rb. Statistical analyses were performed by GraphPad Prism
7 software.
Results: The nanoformulation of curcumin could reduce the expression of E6 and E7 oncogenes and increase P53 and Rb tumor
suppressors in HeLa cancerous cells at 15 µM concentration; however, it had no significant effect on the viability of normal fibrob-
last cells. On the other hand, curcumin altered the expression of these genes at a 50-µM concentration. Gene and protein expres-
sion analysis indicated the up-regulation of P53 and Rb factors and the down-regulation of E6 and E7 under the influence of nano-
curcumin treatment more than curcumin.
Conclusions: These data indicate the potential of curcumin-loaded OA400 nanoparticles to be considered as a treatment option in
cervical cancer investigations.
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1. Background

Curcumin, a safe and well-known natural compound,
is derived from the rhizomes of the Curcuma longa and is
used as a nutritional supplement. Curcumin affects cel-
lular pathways, and its role has been reported to induce
cell differentiation (1, 2). The compound regulates many
proliferative and oncogenic factors and chemo-resistance
associated genes or proteins, representing the anticancer
role (3). However, low solubility and poor cellular uptake
of curcumin have limited its application (4, 5). There-
fore, promising methods have been developed to increase
its solubility using polymeric nanoparticles such as den-
drosomes as low-cost, non-toxic, neutral, and biodegrad-
able agents. In this regard, oleic acid-derived dendrosome

(OA400) with a 200 nm diameter, polydispersity index
(PDI) of 0.4, z-potential of seven, and high loading effi-
ciency (87%) has been used to increase the solubility and
physical and chemical stability of curcumin and has also
demonstrated its significant anti-tumor properties in both
in vitro and in vivo studies (6-10).

Cervical cancer is the third most common cancer in
women. Five hundred sixty-nine thousand new cases and
311,000 deaths from this cancer were reported in 2018 (11).
Central risk factors for cervical cancer include human pa-
pillomavirus (HPV), smoking, and immune disorders (12).
Carcinogenic HPV types (such as HPV16 and HPV18) target
cervical epithelial cells and are responsible for almost all
cases of cervical cancer (13). Among the genes encoding
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HPV (14), E6 and E7 are the primary oncogenic factors that
target different cellular proteins. E6 protein inactivates the
P53 tumor suppressor by binding to it and eliminates the
sensitivity of cells to checkpoint and apoptosis signals (15).
E7 protein can disrupt the Rb, terminates their association
with the E2F transcription factor family, and destroys cell
cycle regularity (16). Moreover, E6 and E7 genes’ expression
increases in the full-thickness epithelial lesion in cervical
cancer (17-19).

The effect of curcumin on cervical cancer cells and
its anti-HIV property have been investigated (20). Cur-
cumin can arrest the proliferation of cervical cancer cells
depending on the time and concentration, and it is more
active in HPV-infected cells. The anticancer activity of
curcumin against cervical cells was due to the regula-
tion of telomerase activity, Ras and ERK signaling path-
ways, cyclin D1, COX-2, and iNOS activity, and mitochon-
drial pathway. Recent proteomic studies have shown that
curcumin causes significant changes in proteins associ-
ated with cell metabolism, cell cycle, and carcinogenesis in
HeLa cells. The decrease in cervical tumor volume has also
been demonstrated in the curcumin-treated mouse model
(21).

2. Objectives

Considering the importance of cervical cancer, this
study examined the effect of nano-curcumin on the expres-
sion of E6, E7, Rb, and P53 in the RNA and protein levels of
HeLa cancer cell lines. Furthermore, the cell viability re-
duction and apoptosis induction were determined in HeLa
cells treated with curcumin-loaded OA400 nanoparticles.

3. Methods

3.1. Nanocurcumin Preparation

PEGylated dendrosomes as nano-carriers were pre-
pared according to the previously optimized protocol
(7). Briefly, an esterification reaction of oleoyl chloride
(0.01 mol) and polyethylene glycol 400 (0.01 mol) in the
presence of triethylamine (0.012 mmol) and chloroform
was performed for the synthesis of OA400. The reaction
was accomplished at 25°C for four hours. Triethylamine
hydrochloride and chloroform were removed by filtra-
tion and evaporation in a vacuum oven (40°C for four
hours). Curcumin and the prepared polymeric carriers
were mixed using different weight-weight ratios (from 1: 10
to 1: 50) and incubated overnight at 37°C. Then, absorbance
spectra were evaluated via ultraviolet spectrophotometry
(Infinite 200 PRO, Tecan, Mannedorf, Switzerland).

The best mixture of curcumin and nano-carrier was
determined using spectrophotometry at 420 nm wave-
length. The weight-weight ratio of 1: 25 was obtained as a
suitable and stable ratio (without curcumin precipitation
from the nano-carrier). Curcumin and dendrosomal carri-
ers were then mixed with this optimal ratio in acetone. Af-
ter evaporation of acetone, the curcumin/dendrosome so-
lution was sterilized using a 0.22 mm syringe filter (EMD
Millipore). The prepared nano-curcumin was stored at 4°C
and away from light (7, 8).

3.2. Cell Culture and Reagents

The human cervical cancer cell line (HeLa cell line RRID:
CVCL_003) and normal fibroblast cells were purchased
from the Pasteur Institute of Iran. DMEM growth medium
containing 10% (v: v) fetal bovine serum (FBS) and 1% (v:
v) of penicillin and streptomycin (all from GibcoBioCult,
Paisley, Scotland, UK) was used for the culture of HeLa and
fibroblast cells. Incubation condition consisted of CO2 (5%)
at 37°C. Hemocytometer and trypan blue staining defined
cell number and viabilities. These cells were passaged via
trypsin/EDTA (biosera, Franc).

3.3. 3-(4, 5- Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bro-
mide (MTT) Assay

The effects of nano-curcumin, curcumin, and OA400
on HeLa and fibroblast cells viability were detected via
3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium
bromide (MTT) assay. 3-(4, 5- dimethylthiazol-2-yl)-2,
5-diphenyltetrazolium bromide colorimetric assay is a
method that determines differences between viable cells
and necrotic ones (22).

Briefly, the number of cells was measured by a hemo-
cytometer using trypan blue staining. Approximately 104

cells were seeded in each well of 96 well-plate. After in-
cubation for 24 hours, cellular monolayers were formed,
then treatment with nano-curcumin (10 µM - 40 µM), cur-
cumin (10 µM - 70 µM), and OA400 (10 µM - 160 µM)
was performed for 48 hours. Since cancer cells are more
sensitive to curcumin than normal cells (23), fibroblast
cells were treated with higher concentrations of this com-
pound. Then, the medium was replaced with a solution
containing MTT (0.5 mg.mL-1) (Sigma Aldrich Company)
and incubated for four hours at 37°C in 5% CO2. After gen-
tly removing the supernatant, Formazan crystals were dis-
solved in 200 µL of dimethyl sulfoxide (DMSO from Sigma
Aldrich Company), and the optical density (OD) of the sam-
ples was measured at 540 nm by a plate Reader (BioTek
Company, USA). Cell survival percentage was obtained by
the absorption ratio of the treated cells to the control cells.
Inhibitory concentration (IC50) was the concentration at
which 50% of the cells were destroyed.
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3.4. Cellular Apoptosis Analysis via Flow Cytometry

The apoptosis assay treated HeLa and fibroblast cells
with curcumin (50 µM) and nano-curcumin (15 µM) ac-
cording to the IC50 value. After 48 hours, the cells were
stained with annexin V/PI (propidium iodide) apoptosis
detection kit according to the manufacturer’s instruction
(Ebioscience, Thermo Fisher Company). Cell apoptotic and
necrosis levels were detected via flow cytometry (FACS Cal-
ibur, USA). FlowJo software (version10, Treestar, USA) was
subsequently qualified for data.

3.5. RNA Extraction, cDNA Synthesis, and Real-Time RT-PCR

Total RNA was extracted from treated and untreated
HeLa and fibroblast cells with curcumin and nano-
curcumin using TRIzol reagent (Invitrogen, Cat.no: 15596-
026). Extraction steps were performed according to the
instructions of the Favorgen Biotech kit (Favorgen Biotech
Company, Taiwan), and extracted RNAs were qualified by
UV spectrophotometry.

RNA was reverse transcribed using a cDNA synthesis
kit (Favorgen Biotech Company, Taiwan). Treatment with
DNase I enzyme was performed to ensure that RNA was not
contaminated with DNA.

Quantitative measurement of E6, E7, P53, and Rb gene
expression was performed using the comparative quan-
tification method by real-time RT-PCR in ABI Step One Se-
quence Detection System (Applied Bio-systems, CA, USA).
In this method, SYBR® Premix Ex Taq™ II (TAKARA, Japan;
Cat.RR82LR) was applied according to its manufacture, and
the GAPDH gene was utilized as an internal control. Specific
primer sequences of target genes are shown in Table 1, and
their concentrations were 10 pM in the reaction. The 2-∆∆Ct

method was utilized to calculate the relative expression of
genes.

3.6. Western Blotting Analysis

The E7, P53, and Rb protein levels in curcumin (15
µM) and nano-curcumin (15 µM) treated HeLa cells and
the control group was evaluated using Western blotting.
For protein extraction, the cells were lysed in RIPA buffer
(Cell Signaling Technology, Cat No: 9803). This buffer
contains 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM
EGTA, 1% NP-40, and 1% sodium deoxycholate. Quanti-
tation of extracted protein was determined by Bradford
staining and flow cytometry. Equal volumes of protein
samples (40 µg) were disrupted at 90°C for 5 min, sub-
jected to SDS-PAGE, and transferred to polyvinylidene di-
fluoride (PVDF) filter membranes. The bovine serum albu-
min (BSA)-blocked membranes were incubated with spe-
cific primary antibodies for E7, P53, and Rb proteins (Mouse
monoclonal antibodies, prepared from Royan Institute of

Iran) at 4°C overnight according to manufacturer instruc-
tions. Horseradish peroxidase-conjugated secondary an-
tibody (HRP Rabbit Anti-Mouse (IgG) secondary antibody
purchased from Abcam Company) was employed to attach
to primary antibodies with 1: 1000 v: v concentration. Pro-
tein bands were detected with the enhanced chemilumi-
nescence (ECL) method (Biomedical Company). The inter-
nal control for this experiment was GAPDH protein. This
protein was detected by mouse GAPDH primary antibody
(1: 1000, Abcam Company) and antimouse HRC conjugated
secondary antibody (1: 1000) (from Santa Cruz). Western
blot results were qualified via Image j software (version
1.2.4 RRID: SCR_003070), and the significance of the results
was indicated by GraphPad Prism (version 7 RRID: SCR_-
002798).

3.7. Statistical Analyses

Statistical analyses were performed by GraphPad Prism
7 software. Student’s t-test was used for deference examina-
tion between two groups. Probability values were set at the
significant levels of P < 0.05 (P < 0.05 (*), P < 0.01 (**), P <
0.001 (***) and P < 0.0001 (****).

4. Results

4.1. Curcumin, Nanocurcumin, and Nanocarrier Effect on Hela
and Fibroblast Cells Viability

3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium
bromide assay results of nano-curcumin, curcumin, and
nano-carrier treatments with different concentrations on
the survival of the HeLa cell line are shown in Figure 1.
As shown in this figure, the increasing concentrations of
nano-curcumin (10 - 40 µM) in the media in the cancer-
ous HeLa cell line can significantly decrease the percent-
age of viable cells after 48 hours. The IC50 value of nano-
curcumin for the HeLa cell line within 48 hours was about
15 µM (Figure 1A1). This growth inhibitory effect of cur-
cumin is much less than nano-curcumin. The value of IC50
for HeLa cells treated with curcumin for 48 hours has been
increased to about 50 µM (Figure 1B1). Oleic acid-derived
dendrosome nano-carrier has no inhibitory effect on HeLa
cell growth. In this experiment, cells were treated with
nano-carrier up to 160 µM, but at none of the concentra-
tions, cell survival reached 50% (Figure 1C1).

Interestingly, nano-curcumin has a non-significant ef-
fect on the growth of normal fibroblast cells. The IC50
value was observed at very high concentrations (about 160
µM, Figure 1A2). Pure curcumin and nano-carrier also had
no significant inhibitory effect on fibroblast cell growth
(Figure 1B2 and C2).
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Table 1. The Primer Sequences Used in qRT-PCR Experiments

Gene Forward Primer Reverse Primer

E7 5’-CAATTAAGCGACTCAGAGGAAG-3’ 5’-ACCACGGACACACAAAGG-3’

Rb 5’-CAGATGAAGCAGATGGAAGTAAA-3’ 5’-AGAGACAATGAATCCAGAGGTG-3’

E6 5’-GCGACCCTACAAGCTACCTGAT-3’ 5’-GCACCGCAGGCACCTTATTA -3’

P53 5’-GCCGCAGTCAGATCCTA-3’ 5’-CTGGGAGCTTCATCTGGA-3’

GAPDH 5’-CCGAGCCACATCGCACAG-3’ 5’-GGCAACAATATCCACTTTACCAG-3’

A1. Nanocurcumin/I IeLa cells A2. Nanocurcumin/Fibroblast cells

B1. Curcumin/HeLa cells

C1. Nanocarrier/HeLa cells C2. Nanocarrier/Fibroblast cells
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Figure 1. 3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay to evaluate cell viability; MTT assay result of HeLa cells treated with A1, Nanocurcumin; B1,
Curcumin; and C1, Nanocarrier, and fibroblast cells treated with A2, Nanocurcumin; B2, curcumin; and C2, Nanocarrier. Error bar lines indicate the standard deviation level of
samples. The control samples include cells that have not been treated.
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4.2. Nanocurcumin Effect on Apoptosis in HeLa and Fibroblast
Cells

Anxin-PI staining and flow cytometry were accom-
plished to evaluate the effect of nano-curcumin and cur-
cumin on the apoptosis of HeLa and fibroblast cells. Flow
cytometry results showed that 46.5% of HeLa cells treated
with 15 µM nano-curcumin were destructed through the
apoptosis process. Free curcumin with a higher concentra-
tion (50 µM) could induce apoptosis in 25.9% of cells (Fig-
ure 2).

The apoptosis test for fibroblast cells indicated that
nano-curcumin (15 µM) and curcumin (50 µM) had no sig-
nificant effect on the cellular apoptosis of the normal cells
(Figure 2).

4.3. Nanocurcumin Regulation Effect on E6, E7, P53, and Rb
mRNA Expression

The expression of E6, E7, P53, and Rb genes was mea-
sured in HeLa cells. Due to the absence of E6 and E7 onco-
genes in fibroblasts, expression of P53 and Rb was mea-
sured in these cells under curcumin and nano-curcumin
treatment. The results showed that E6 and E7 expressions
decreased after 48 hours of curcumin and nano-curcumin
treatment in HeLa cells, whereas P53 and Rb expressions
were enhanced after this time at mRNA level with P < 0.05
(Figure 3A and B). These findings represented the positive
regulatory effect of nano-curcumin on cancer cell apopto-
sis. The expression of P53 and Rb genes was not significantly
altered in nano-curcumin-treated fibroblasts (Figure 3C).
Therefore, nano-curcumin did not lead normal fibroblast
cells to the apoptosis process.

4.4. Nanocurcumin Regulation Effect on E7, P53, and Rb Proteins

The expression of E7, P53, and Rb proteins was analyzed
via western blot assay. The results showed that the E7 pro-
tein level was reduced in nano-curcumin-treated HeLa can-
cer cells after 48 hours (P < 0.05). The Rb and P53 proteins
increased in these cells (P < 0.05) (Figure 4).

5. Discussion

Curcumin is also well-known as an anti-inflammatory
and chemopreventative agent (24). Studies in the last
three decades about curcumin indicate poor bioavail-
ability, hydrophobicity, poor cellular uptake, and rapid
metabolism of this component (25). Various experiments
have been performed to solve this problem, many of which
have performed nano-carriers (26). Nanotechnology em-
ploys curative agents at the nanoscale level to develop
nanomedicines. Nanostructures could be utilized to de-
liver drugs to target tissues, specifically with controlled

cell release. Also, in treating cancers, they can increase
drug absorption inside tumor cells and improve biodistri-
bution and accumulation in tumor sites (27, 28).

Previous studies have examined the anticancer prop-
erties of nano-curcumin made by curcumin and OA400
nano-carrier in various cancers (6, 10, 29). This curcumin
nanoformulation can affect different cellular pathways, in-
cluding differentiation and cell proliferation (2, 30). In
vivo studies indicated that treating BALB/c tumor-bearing
mice with nano-curcumin could more effectively and effi-
ciently reduce tumor size than curcumin (10). Due to the
high prevalence of cervical cancer, drug resistance, and sys-
temic toxicity of conventional chemotherapy and radia-
tion therapy, it is necessary to identify safe, effective, and
chemopreventive anticancer natural compounds. There-
fore, in the present study, we investigated the potential
therapeutic effects of the new nano-curcumin on cervical
cancer. In this regard, we evaluated the expression of E6
and E7 human papillomavirus oncogenes and P53 and Rb
factors in the HeLa cell line.

Moreover, cell viability and apoptosis rate were as-
sessed in normal and cancer cell lines. Our findings indi-
cated that nano-curcumin could increase cellular apopto-
sis and reduce cell viability in human cervical cancer HeLa
cells. Moreover, the significant overexpression of P53 and
Rb genes and under-expression of E6 and E7 was found in
HeLa cells treated with nano-curcumin in lower concen-
trations than curcumin; however, in fibroblast cells that
treated by nanocurcumin, the expression of P53 and Rb
genes did not altered significantly.

Based on a comparison between the effects of cur-
cumin and nano-curcumin on HeLa cell viability and apop-
tosis, it was found that nano-curcumin is much more effec-
tive than curcumin. Nanocurcumin progressed the apop-
tosis process in HeLa cancer cells; however, it had no sig-
nificant effect on normal fibroblast cells. This finding has
been demonstrated in previous studies for other cancer
cells (6, 8, 31, 32) and may happen because nano-curcumin
has higher cellular uptake and biostability than curcumin.
Furthermore, HeLa and fibroblasts were treated separately
with an OA400 nano-carrier, and it was observed that the
carrier had no significant effect on cell apoptosis or cel-
lular viability. The non-toxic function of the nano-carrier
proves its safety. This component at very high concentra-
tions (160 µM) reduced fibroblast cell viability by approx-
imately 50%. This amount was not a functional concentra-
tion. Therefore, it can be concluded that nano-curcumin
is safe for normal cells at the studied concentration. Sev-
eral reasons explain why curcumin does not affect normal
cells. It has been shown that the reduction of intracellu-
lar glutathione in cancer cells by buthionine sulfoximine
increases ROS levels and makes these cells more sensitive
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Figure 2. Flow cytometric diagram obtained from annexin/PI test to evaluate cellular apoptosis: A, Apoptosis assay results for cancerous HeLa cells after treatment with 15µm
of nano-curcumin and 50 µm of curcumin. Apoptosis assay results for fibroblast cells in the same condition. B, 46.5% of HeLa cells treated with 15 µM nano-curcumin were
destroyed through apoptosis. Free curcumin at a higher concentration (50 µM) could induce apoptosis in 25.9% of cells. The apoptosis test for fibroblast cells showed that
nano-curcumin (15 µM) and curcumin (50 µM) had no significant effect on cell apoptosis of normal cells. (Significant at * P < 0.05, ** P < 0.01, *** P < 0.001).
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Figure 3. By real-time RT-PCR, the expression analysis of E6, E7, P53, and Rb genes in cancerous HeLa cells and fibroblast cells. A and B, A significant decrease in the expression
of E6 and E7 genes and increase in the expression of P53 and Rb genes were observed in HeLa cells; C, No significant variation was occurred by nano-curcumin treatment of Rb
and P53 genes expression in normal fibroblast cells (significant at * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001).

Figure 4. Western blotting results of E7, P53, Rb, and GAPDH protein (as control) in nano-curcumin and curcumin-treated HeLa cells. A, Nanocurcumin treatment can decrease
E7 protein expression and increase P53 and Rb proteins in cancerous HeLa cells more than curcumin significantly; B, Data has quantified by ImageJ software, and the significance
of protein alterations was determined (significant at * P < 0.05, ** P < 0.01, *** P < 0.001).

to curcumin (23). Curcumin also has target molecules that
are more common in cancer cells (33). In previous studies,
the capability of nano-curcumin to induce cancerous and
undifferentiated cell apoptosis was detected in a time and
dose-dependent manner, while on normal cells, no signifi-
cant effects were observed (6, 31, 34). HeLa cells are derived
from a woman’s aggressive glandular cervical cancer and
are used in many studies to evaluate cervical cancer treat-
ment methods (35). E6 and E7 oncogenes in the HeLa cell

line are derived from the HPV genome. The integration of
HPV type 16 or 18 DNA into the HeLa cells genome has been
proven in previous studies. Human papillomavirus type 18
transcripts in the 8q24 chromosome region of the HeLa cell
line (36).

E6 and E7 play a central role in the pathogenesis of
HPV. These genes encode proteins that bind to P53 and Rb
tumor suppressors, respectively, and suppress them. This
phenomenon disrupts cell cycle regulation. The expres-
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sion of these two viral oncogenes is essential for cervical
cancer tumorigenesis (37). In this study, the expression
of E6 and E7 viral genes was significantly reduced in HeLa
cells during treatment with nano-curcumin compared to
curcumin. As expected, following the down-regulation of
E6 and E7 genes, the expression level of P53 and Rb tu-
mor suppressors increased both at the RNA and protein
levels. Thus, nano-curcumin provides a condition for the
progression of apoptosis in HeLa cancer cells and can be
considered a safe complementary drug for cervical cancer.
In line with our findings, another type of nano-curcumin
(poly (lactic-co-glycolic acid) based curcumin nanoparticle
formulation) has been applied to apoptosis induction in
cervical cancer. Results indicated that this type of nano-
curcumin effectively inhibits the growth of cervical can-
cer cell lines in 20 µM and 25 µM, abrogates expression
of E6 and E7 oncogenes, and leads them to apoptosis (21).
In another study, curcumin concentrations above 40 µM
induced apoptosis in HeLa cancer cells (38). However, in-
consistent with the present study that revealed the func-
tional effect of nano-curcumin in a low concentration (15
µM), other studies activated apoptosis with higher con-
centrations. This observation may confirm that the nano-
curcumin was made using the OA400 nano-carrier works
more effectively and has more cellular uptake than cur-
cumin.

5.1. Conclusions

According to the results of the present study, nanofor-
mulation of curcumin containing OA400 nano-carrier can
suppress HPV oncogenes, restore P53 and Rb proteins and
induce apoptosis of human cervical cancer HeLa cells more
than curcumin. Therefore, this nanostructure of curcumin
has significant potential to be used as a complement drug
for cervical cancer treatment. The improvement of the
anti-proliferative function of curcumin in different cancer
cells can occur by using nano-types. Nanocurcumin, as a
safe and herbal drug, may have the potential to be used
as a supplement along with common cervical cancer treat-
ment strategies such as chemotherapy drugs.
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