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ABSTRACT

Ribosome profiling, also known as Ribo-seq, has be-
come a popular approach to investigate regulatory
mechanisms of translation in a wide variety of bio-
logical contexts. Ribo-seq not only provides a mea-
surement of translation efficiency based on the rel-
ative abundance of ribosomes bound to transcripts,
but also has the capacity to reveal dynamic and local
regulation at different stages of translation based on
positional information of footprints across individual
transcripts. While many computational tools exist for
the analysis of Ribo-seq data, no method is currently
available for rigorous testing of the pattern differ-
ences in ribosome footprints. In this work, we de-
velop a novel approach together with an R package,
RiboDiPA, for Differential Pattern Analysis of Ribo-
seq data. RiboDiPA allows for quick identification
of genes with statistically significant differences in
ribosome occupancy patterns for model organisms
ranging from yeast to mammals. We show that dif-
ferential pattern analysis reveals information that is
distinct and complimentary to existing methods that
focus on translational efficiency analysis. Using both
simulated Ribo-seq footprint data and three bench-
mark data sets, we illustrate that RiboDiPA can un-
cover meaningful pattern differences across multiple
biological conditions on a global scale, and pinpoint
characteristic ribosome occupancy patterns at sin-
gle codon resolution.

INTRODUCTION

Translation of mRNA messages into proteins is a funda-
mental process to decode genetic information. Given its es-
sential function, translation is highly regulated by organ-
isms across all kingdoms of life to ensure proper protein ex-

pression in the right contexts (1,2), while mis-translation or
mis-regulation of translation has frequently been linked to
disease (3,4). Protein production itself is carried out by ri-
bosomes as well as key accessory protein complexes, which
are conserved across species (5). Molecular and genetic dis-
section of translation has revealed the details of a complex
process consisting of multiple steps, from initiation to elon-
gation to termination and recycling. Translation initiation is
perhaps the most-well characterized of these steps (6,7), al-
though regulation at later steps has also been demonstrated
to be critical (2,8–11). Importantly, cells have evolved strate-
gies to adaptively regulate translation of mRNA messages
in changing environments, including under various types of
cellular stress, such as oxidative stress and starvation (12–
18).

In the past decade, a new method called ribosome pro-
filing (or Ribo-seq) has harnessed the power of next-
generation sequencing technologies to provide a new way of
quantitatively examining translation on a gene-by-gene ba-
sis (19). With technical improvements (20,21), Ribo-seq has
allowed for more precise targeting of translational events
and has been widely applied to many organisms (22,23). Ri-
bosome profiling not only offers quantification of the trans-
lational efficiency of a gene, which is the number of ribo-
somes per mRNA molecule under a given condition, but
also important information about the distribution of ribo-
somes across a mRNA transcript (23). For instance, this
shape information has been used to identify upstream open
reading frames (uORFs) (24,25), observe stop codon read-
through (26), determine the sites of pausing during transla-
tion (27), and in many other applications.

As the popularity of ribosome profiling as a genomics
approach has increased, the computational tools to ana-
lyze Ribo-seq data have rapidly proliferated. For extensive
and excellent reviews of these tools, we refer the reader
to (21,28,29). Briefly, the purposes of these tools range
from data preprocessing (30–38), RNase footprint exam-
ination (39), data normalization (40), isoform-level foot-
print estimation (41,42), ORF discovery and annotation
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(43–53), and differential translation detection (54–61). In
this work, we are particularly interested in statistical infer-
ence of translational differences between conditions using
Ribo-seq data. The translational efficiency for each gene
is typically quantified by Ribo-seq read count normalized
by the RNA-seq gene expression. While the existing ap-
proaches for differential translation detection can provide
insight into translational efficiency, the ribosome binding
pattern along the gene body, which provides a more com-
plete picture of translational variations across conditions,
has been mostly ignored. For example, a given gene with
similar translational efficiency quantified by the ratio of
gene-wise total Ribo-seq over RNA-seq counts may have
a differential Ribo-seq read distribution pattern along the
transcript, which may be indicative of differences in trans-
lational mechanisms of interest. Nevertheless, there is yet
no existing method or tool for rigorous testing of the dif-
ferences of ribosome binding patterns. Here, we developed
a novel method together with an R package named RiboD-
iPA for differential pattern analysis in Ribo-seq data. Us-
ing a systematic simulation study and three benchmark data
sets, we demonstrate its feasibility to uncover regulatory
mechanisms of translation solely based on differential pat-
terns of ribosome footprints.

MATERIALS AND METHODS

Experimental data sets

We selected three experimental case studies to assess how
our method performs. The first one is a high quality data
set collected in yeast by Wu et al. (62). This study inves-
tigated the translational landscape of both wild type and
mutant yeast strains under various cellular stress condi-
tions. For our purposes, we compared yeast samples cul-
tured under four different growth conditions––unstressed,
osmotic stress, oxidative stress and starvation (stationary
phase growth)––and also compared wild type to eRF1
depletion and RCK2 deletion yeast strains (eRF1d and
rck2Δ). The second data set was also collected in yeast by
Kasari et al. (63) and compared wild type yeast cells to yeast
cells mutant for NEW1 (new1Δ), which is an non-essential
translation termination factor with a cold sensitivity pheno-
type. Data was collected at both 30◦C and 20◦C, but all com-
parisons in this paper are for 20◦C. The final data set comes
from a mouse study from Sugiyama et al. (64), which com-
pared wild type, heterozygous mutant, and null mouse em-
bryonic stem cells for Nat1, a translational regulator. These
data sets were selected because they represent two divergent
model organisms of typical sample size (2–3 replicates per
condition), and more importantly, have relatively high ribo-
some protected fragment (RPF) read counts.

Overview of RiboDiPA flow

RiboDiPA, implemented in an R package, provides a com-
putational tool for pattern differentiation for Ribo-seq
data. Figure 1 shows a flow chart of the RiboDiPA pipeline
from exon concatenation, BAM file processing, P-site map-
ping, to differential pattern testing. The package takes
the Ribo-seq alignment file (in .bam format) and Genome
Transfer File (.GTF) as inputs, and outputs the differential

pattern (DP) analysis results with statistical significance and
supplementary pattern dissimilarity measure (T-value). In
addition, it provides additional functions for visualization
of Ribo-seq footprints with specified resolution. In terms
of computing time, it takes about 10 min to run the entire
pipeline for the wild type versus eRF1d comparison of yeast
data (four samples) at single-codon resolution on a 20-core
node on a Linux cluster. RiboDiPA can be downloaded at
github (https://github.com/jipingw/RiboDiPA). The details
of methods are described below.

Exon concatenation, P-site mapping and data binning

Since true RPFs originate from ribosomes that are actively
translating in coding regions, in cases where a gene has mul-
tiple splicing isoforms, it is difficult to distinguish which
isoform an observed Ribo-seq read comes from. Therefore,
our pattern analysis is performed on the gene-level by con-
catenating all exons from the same gene into a total tran-
script in order to get a merged picture of translation. We
first mapped all RPFs to the genome, and then identified
the P-site position of each RPF in the corresponding total
transcript (see Supplementary Materials). The aggregated
RPF count at each codon was binned at the specified bin
width for the downstream pattern analyses.

RiboDiPA allows for differential pattern analysis of
Ribo-seq data with customizable bin width. The motiva-
tion for data binning is that the read coverage in Ribo-seq
experiments sometimes can be sparse. The differential pat-
tern analysis to be proposed below requires testing differ-
ential means of read counts at each location of the tran-
script. Therefore, binning helps alleviate excessive statistical
tests on locations with zero or extremely low counts. Im-
portantly, having more position-wise tests within the same
gene increases the chance of type I error, and correction for
which may undermine the power (to be further discussed
below). In RiboDiPA the user can specify a fixed bin width
as small as a single codon (3 nt), or optionally define each
exon of a gene as a bin. In addition, we have implemented
an adaptive bin width selection approach by Freedman and
Diaconis (65) originally proposed for histogram construc-
tion. Our simulation results suggest that the Freedman-
Diaconis rule empirically outperforms several other pop-
ular approaches including Sturges’ formula (66), Doane’s
formula (67), Rice Rule (see Online Statistics Education: A
Multimedia Course of Study (http://onlinestatbook.com/).
Project Leader: David M. Lane, Rice University), Scott’s
normal reference rule (68) and an improved Doane’s for-
mula using a kurtosis criterion (69,70) (see Simulation sec-
tion). Briefly, suppose there are m P-sites mapped at loca-
tions x1, . . . , xm of a transcript. The adaptive bin width is
calculated as follows:

h = 2IQR
m1/3

, (1)

where IQR is the interquartile range of the data. In Ri-
boDiPA, we first calculate the average P-site frequency at
each position of the transcript across replicates. The adap-
tive bin width is calculated based on the average footprint
using formula (1). The common empty bins shared by all
replicates are removed after binning. In the following con-

https://github.com/jipingw/RiboDiPA
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Figure 1. RiboDiPA package workflow. Input for the RiboDiPA package are: (A) the Genome Transfer File (GTF) of the experimental organism and
(B) Ribo-seq alignment files in BAM format with one file per replicate. All exons, 5′UTR(s), and 3′UTR(s) from the same gene are concatenated to form
a total transcript. RPFs are parsed and the P-site position is calculated for each RPF. (C) Mapped P-site data representing the P-site frequency at each
nucleotide position along the total transcript (left) and the binned P-site data with customizable bin width (right). (D) Flow of differential pattern analysis
and output of RiboDiPA including P-value, q-value and T-value for each gene under testing. For users’ convenience, the package also provides more
options for adjusted P-value and complementary measure.

text, we shall refer to bin interchangeably as ‘position’ or
‘location’. Lastly, we only consider genes with at least one
Ribo-seq read in every replicate for illustration of differen-
tial pattern analysis throughout this paper.

Differential pattern analysis

We begin with two examples from a study in yeast (62)
to demonstrate the necessity to develop new methods for
differential pattern analysis in Ribo-seq data. A naive test
for differential translation is to test for mean or abun-
dance equivalence based on the gene-wise total Ribo-seq
read counts (equivalent to differential expression analysis in
RNA-seq data). To avoid confusion below, we refer to this
test as differential abundance (DA) analysis. Figure 2 shows
the distribution of ribosome footprint of two genes, plotted
in the form of mapped P-site count at each nucleotide lo-
cation (unbinned) or at each bin (adaptively binned) along
the transcript, for unstressed yeast cells and cells undergo-
ing oxidative stress, in blue and red respectively with two
replicates per condition. Neither TCB3 (YML072C) nor
ABC1 (YGR037C) showed significant differences in terms
of overall RPF abundance between conditions by DA anal-
ysis (P-value = 0.995 and 0.669 respectively). In contrast,
TCB3 shows similar ribosome occupancy patterns between
unstressed and stressed cells, while ABC1 shows a dramatic
shift in the distribution of ribosome occupancy toward the
middle of the gene under oxidative stress. Clearly, different
ribosome binding patterns cannot be necessarily inferred
by differential abundance analysis using total read counts,
therefore we set out to establish a new framework for testing
pattern differences in ribosome profiling data.

A B

Figure 2. Ribosome profiling data show examples of genes with differ-
ences in ribosome occupancy patterns, but similar abundance of RPFs.
Plotted are the ribosome profiling data for two example genes from yeast
(62), TCB3 (A) and ACB1 (B) with two replicates in unstressed conditions
(blue) and under oxidative stress (red). Both TCB3 and ACB1 do not show
a significant difference in the abundance of RPFs between conditions (via
the DA test defined in text), but ACB1 shows clear pattern difference of
ribosome occupancy across conditions, whereas TCB3 does not. For each
panel, the distribution unbinned RPF counts mapped to P-site is shown
on the left and the binned data on the right.

To define differential pattern (DP) analysis rigorously, we
propose a statistical framework as follows. Suppose we have
two conditions with n1 and n2 replicates respectively. For a
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given gene g of length J, denote the read count at position j
in the ith replicate of condition k as Xijk, for j = 1, ..., J, i =
1, ..., nk, k = 1, 2 (we omit the gene index in notations for
simplicity). We assume

Xi jk
ind.∼ NB(μi jk, ρi jk),

for i = 1, ..., nk, j = 1, ..., J, k = 1, 2, where

μi jk = q jksik,

and � ijk is the dispersion parameter. Note that sik is a gene-
and sample-specific scale factor measuring the RPF abun-
dance in the ith replicate in the kth condition, and qjk is a
position- and condition- specific relative abundance param-
eter measuring ribosome binding affinity. For a given gene,
the scale factor sik can vary across replicates and conditions
(and hence mean �ijk) due to differences in abundance level
and sequencing depth. Our differential pattern analysis for
a given gene is defined for testing the following hypothesis:

H0 : q j1 = q j2, ∀ j = 1, ..., J. VS. H1 : H0 is not true. (2)

In words, the pattern equivalence can be interpreted as hav-
ing parallel mean curves (�ijk defined for j = 1, .., J) across
different conditions.

The null hypothesis specified in (2) can be regarded as the
intersection of a set of sub-hypotheses, i.e., H0 = ∩J

j=1 H j
0

where H j
0 : q j1 = q j2, for j = 1, ..., J. This leads us to

consider a point-wise approach by first testing each sub-
hypothesis separately, i.e.,

H j
0 : q j1 = q j2 VS. H j

1 : q j1 �= q j2.

We convert this test into a standard differential expression
analysis problem by treating sik as a sample- and gene-
specific normalizing factor. Thus the first step is to estimate
the normalization factor sik for each replicate of each gene.
In RNA-seq analysis, there are many existing methods for
calculation of normalization constants. For example, An-
ders and Huber (71) and Love et al. (72) took the median
of the ratios of counts to geometric mean of counts across
samples as a normalizing constant to avoid the influence of
highly and differentially expressed genes:

ŝik = median
j

xi jk(∏2
k′=1

∏nk′
i ′=1 xi ′ jk′

) 1
n1+n2

.

For the Ribo-seq data, the read count at each location for
a given gene can still be very low even after binning, often
causing near 0 normalization constants ŝik. In contrast, we
found the total read count is a more robust measure of the
abundance level. To exclude the bins that represent the true
differential pattern, we defined an outlier bin as that whose
log2-fold change value is >1.5 interquartile ranges (IQRs)
below the first quartile or above the third quartile. Denote
the remaining non-outlier bin set as J′. The normalizing
constant is defined based on the total read counts from each
replicate for the same gene, i.e.

ŝik =
∑

j∈J ′ xi jk

median
i ′,k′

∑
j∈J ′ xi ′ jk′

. (3)

To perform a negative binomial test, one critical step is
to estimate the dispersion parameter, typically modeled as
a function of the mean. One challenge arises due to the
small sample size such that the dispersion parameter can-
not be well estimated on a gene-by-gene basis. Instead, the
gene specific dispersion parameter is estimated by aggregat-
ing information from all genes. For instance, Robinson and
Smyth (73) first estimated the gene-wise dispersion parame-
ter from the conditional maximum likelihood conditioning
on the total count for that gene, and then shrunk it towards
a consensus value by an empirical Bayes model (‘edgeR’
R package). Anders and Huber (71) assumed a locally lin-
ear relationship between dispersion and mean to borrow
information across genes (‘DESeq’ R package). As an up-
date, Love et al. (72) first used gene-wise maximum likeli-
hood estimate (MLE) of the dispersion parameter to fit a
dispersion-mean curve, the fitted value of which was fur-
ther used as the mean of a prior distribution to produce an
estimate of gene-specific dispersion parameter shrunk to-
wards the mean curve (‘DESeq2’). In this paper we adopt
the method in DEseq2 to estimate the bin-wise dispersion
parameter for its established competitive performance. For
the same gene, the relatively small bin number (median is
13 for the eRF1d data of (62); for detailed bin number dis-
tributions of all data used in this paper, see Supplementary
Figure S1 in the Supplementary Materials) makes it impos-
sible to robustly estimate the gene-specific dispersion-mean
function. Hence we pool all bins from all genes and feed the
read count xijk together with corresponding scale normal-
ization factor ŝik into DESeq2 for estimation of the com-
mon dispersion-mean function, and thereafter the disper-
sion parameter for each bin within each gene. The bin-wise
test for differential mean was subsequently carried out using
DESeq2.

Let pj be the DESeq2 P-value for the jth bin of a
given gene for j = 1, ..., J. The type I error for testing
original hypotheses H0 versus H1 defined in (2) equals
Prob(reject at least one H j

0 |H0), i.e., the family-wise error
rate for testing {H j

0 : j = 1, ..., J}. Thus to control the type
I error rate for testing H0 versus H1, we need to control the
family-wise type I error rate in the point-wise approach.

The well-known but conservative Bonferroni procedure
is to adjust every P-value pj to min(Jpj, 1). Here we fol-
low a recently proposed hybrid Hochberg–Hommel method
by Gou and coauthors (74) (implemented in R package
‘elitism’) to calculate the adjusted P-values for each sub-
hypothesis for its relatively more powerful performance.
Briefly, let p[1] ≥ . . . ≥ p[J] be the ordered P-values. The ad-
justed bin-level P-values is given by

p̃[ j ] = min
k=1,..., j

{
max

(
p[k]

ck
,

p[ j ]

dk

)}
,

with ck = (k + 1)/(2k) and dk = 1/k. The gene-level P-value
is defined as p̃ = min

j
p̃[ j ].

Denote p̃g as the gene-level P-value for gene g, for g =
1, ..., G. For false discovery rate control, we input the gene-
level P-value into the q-value package (75) to calculate the
q-value for each gene.
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A complementary pattern dissimilarity measure by SVD

The gene level P-value from the hybrid Hochberg–Hommel
procedure only reflects the statistical significance at one in-
dividual location that achieves the the minimum P-value
among J locations/bins. It is less indicative about the read
count scale at the differential bin(s) or how many bins have
differential patterns. To provide a supplementary and more
direct measure of pattern dissimilarity, we consider an al-
ternative approach based on singular value decomposition.

Let X1 = [Xi j1]n1×J and X2 = [Xi j2]n2×J be the count ma-
trices from condition 1 and condition 2 respectively where
each row stands for one sample and each column for one
position. It is well known that the first right singular vec-
tor from singular value decomposition (SVD) of a matrix
represents the first principal row pattern. Thus if X1 and X2
preserve the same pattern, we expect to see similar first right
singular vectors. Let v1 and v′

1 be the first right singular vec-
tors from sample X1 and X2 respectively. Define the T value
as follows:

T = 1 − vT
1 v′

1.

Note that 0 ≤ T ≤ 1 . Geometrically, it equals the 1- cosine
of the angle of v1 and v′

1 (Figure 1d). A larger T may provide
more evidence to reject H0. There are some known results
on the null distribution of T when Xijk are i.i.d. Gaussian,
which however are not applicable to non-i.i.d. count data
here. In our case, T is not a pivotal quantity under H0 and
its null distribution depends on the actual values of mean
and variance at each location. In the RiboDiPA package,
we output T value as a complementary statistic for users
to prioritize positive genes with differential patterns (anal-
ogous to fold change in differential expression analysis). We
shall demonstrate its usefulness below using both real and
simulated data.

RESULTS

Differential pattern (DP) versus differential abundance (DA)
analysis in Ribo-seq

To provide an overview of how DP analysis differs from
DA analysis, we performed both analyses on wild type un-
stressed yeast cells versus wild type cells experiencing oxida-
tive stress from (62). Scatter plots of RPF counts showed
similar patterns for both DP and non-DP groups (Fig-
ure 3A, B), though genes identified with DP tend to have
larger average RPF counts. This is not surprising as the DP
test is based on bin-wise tests, and fewer reads within a bin
may result in inadequate power for detection of differences
due to large dispersion. Figure 3C summarizes the overlap
between DP and DA genes in these comparisons. For ex-
ample, out of the 5746 genes that met our criteria for analy-
sis, 478 showed significance in DP but not in DA; and only
18 were significant in both DA and DP analyses (q-value
≤0.05). These results suggest that DP analysis can serve as
a distinct and complimentary method to differential expres-
sion analysis to uncover new aspects of translational regu-
lation.

T-value as a supplementary measure for pattern differences

RiboDiPA outputs a list of genes with statistical signifi-
cance in pattern difference. Practically, investigators may

be more interested to identify genes with DP in more
bins/positions or in bin(s) with larger read counts. The
gene-wise P-value is not informative in this regard as it is
dictated by the most significant bin/position in the gene and
it does not reveal the read count magnitude or how many
bins are DP significant. Analogous to the log fold change
used in gene expression analysis, the T-value provides a met-
ric to prioritize investigation of genes that have more pro-
nounced changes in ribosomal occupancy patterns. As a
demonstration, two example genes were selected from our
DP analysis between unstressed yeast and yeast under ox-
idative stress (Figure 3D, E): MET6 (YER091C), a gene in-
volved in methionine metabolism, and RPL39 (YJL189W),
a large-subunit ribosomal protein. While the adjusted P-
values of both genes are significant (<0.005), the T-value
of MET6 is much smaller (0.036) than RPL39 (0.265). Ex-
amining the P-site frequency from mapped RPFs of RPL39
shows a dramatic shift in occupancy away from the 3′ end
of the gene towards the interior of the gene body. There-
fore, ranking genes that test positive for DP by their T-value
could be a valuable way for investigators to focus their atten-
tion on genes with the most pronounced changes between
experimental conditions.

DP analysis uncovers global translational differences

To investigate how DP analysis can help gain biological in-
sights into global translational differences between condi-
tions, we examined four additional comparisons from (62)
including: WT osmotic stress and WT starvation response
(the latter known as stationary phase growth) versus WT
unstressed cells; and a rck2Δ strain versus WT cells in both
oxidative and osmotic stress. Rck2 is a critical kinase in-
volved in stress response, which has been shown to be in-
volved in translation regulation during osmotic stress but
not in response to oxidative stress (62). We plotted the em-
pirical cumulative distribution function (ECDF) of P-value
for all five comparisons for the DP test and the respective
number of test-significant genes as a function of q-value
threshold (Figure 4A, B). Consistent with the previous au-
thors’ findings (62), we found no significant genes with DP
in the WT versus rck2Δ comparison for oxidative stress
at q-value threshold = 0.05, while for the rest, substantial
numbers of genes with differential occupancy patterns were
identified. For example, at the same q-value threshold, the
method discovers hundreds of genes for the three stress con-
ditions compared to unstressed cells, and ∼110 genes for
the WT to rck2Δ comparison under osmotic stress (Fig-
ure 4B). The identities of the genes called in these com-
parisons are provided in Supplementary file 1. These re-
sults provide global pictures of translational differences be-
tween different biological conditions, and give investigators
an overview of the magnitude of effect for a given perturba-
tion of interest.

RiboDiPA for single-codon resolution DP analysis

While the adaptive binning method may help improve the
power to detect genes that have differential patterns in rel-
atively large regions, the resulting bin sizes will vary from
gene to gene, thus making it harder to assess details at key
regions like the start and stop codons. Alternatively, Ri-
boDiPA can perform DP analysis at single-codon resolu-
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Figure 3. Differential pattern (DP) versus differential abundance (DA) analysis. The data shown compare WT unstressed yeast cells and WT cells respond-
ing to oxidative stress from (62). (A) Scatter plots of average Ribo-seq read counts in each condition for genes with DP and (B) without DP (at q-value
≤ 0.05). (C) Table for number of genes tested significant/insignificant in DP/DA analysis. Among 5746 genes analyzed, 5250 genes had no differential
pattern (of which 5210 were DA negative), however 496 genes had a significant differential pattern (of which 478 were DA negative). Panels (D) and (E)
present the P-site footprints before (left) or after (right) binning, with WT unstressed replicates in blue and WT oxidative stress in red. The large change in
pattern in (E) is reflected in a larger T-value relative to (D), and shows that T-value can be used as a supplementary measure to identify genes with larger
pattern differences beyond statistical significance measure P-value or q-value. Bins colored in black are those having significant adjusted P-value ≤0.05 in
the DP test.
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Figure 4. DP analysis shows global differences in translational activities between conditions. Plotted are (A) the empirical cumulative distribution function
(ECDF) of P-value for DP analysis for five different comparisons of stress conditions from (62), and (B) the corresponding number of discoveries under
different q-value threshold values for each comparison.

tion to identify fine pattern differences between conditions.
To illustrate this, we turned to a different data set from the
study by Wu et al. (62), which compares WT yeast cells
(unstressed) to a Eukaryotic Release Factor 1 (eRF1) de-
pletion strain (unstressed). eRF1 is a key factor in transla-
tion termination from all three stop codons in yeast, and it
was previously shown that eRF1 depletion causes accumu-
lation in ribosome occupancy at two locations near the stop
codon on a genome-wide scale (62). Consistent with the pre-
vious finding, DP analysis with adaptive binning showed
many genes had significant pattern differences towards the
3′ end of the gene (Supplementary Figure S2). To pinpoint
the exact location of differential patterns, we carried out
a single-codon DP analysis and examined the 50 codons
downstream and upstream of the start and stop codons re-
spectively. Figure 5A plots the number of genes that have
significant DP at each given codon (adjusted codon-level P-
value ≤ 0.05), where the positive direction indicates enrich-
ment of RPF counts in eRF1d relative to WT (red), and the
negative for down-regulated occupancy in eRF1d (cyan).
RiboDiPA precisely identified two large spikes at the sec-
ond and twelfth codons upstream from the stop codon, with
all significant genes at these positions showing an increase
in occupancy in the eRF1d condition relative to wild type.
We speculate that this pattern of occupancy corresponds
to ‘stacked’ ribosomes immediately adjacent to one another,
and we show P-site counts of two genes, SUI3 and TEF2,
to illustrate this (Figure 5B, C).

To further our analysis of the genes showing pattern dif-
ferences near the stop codon upon depletion of eRF1, we
analyzed the identities of the 643 genes that exhibit signifi-
cant DP at the –12 or –2 codon position (stop codon defined
as –1 position). Given eRF1’s role in translation termina-
tion, we first examined the stop codons of DP genes. Con-
sistent with the results shown previously (62), there was no

enrichment for DP genes with particular stop codons being
affected by eRF1 depletion, compared to all stop codons
genome-wide in yeast (Figure 5D). Additionally, there was
no enrichment of particular nucleotide sequences in the
vicinity of the stop codon in these DP genes as visualized
by pLogo analysis (76) (Figure 5E).

Next, we turned to Gene Ontology (GO) term enrich-
ment analysis to examine eRF1d DP genes, and found sig-
nificant enrichment for terms associated with translation,
including initiation, elongation, and termination (Supple-
mentary Figure S3a). We note that RiboDiPA is more pow-
ered to detect DP genes with larger read counts. We fur-
ther compared the GO term results of DP genes to those of
the top 643 most abundant genes in wild type (Supplemen-
tary Figure S3b). Both lists were enriched for translation-
associated GO terms (marked in red), though the list of
the abundant gene set was much broader, and included
many metabolism-related terms. We note 317 genes in com-
mon between the two lists (Supplementary Figure S3c), in-
dicating substantial overlap, but also identified GO terms
that were specific to DP genes and not found among the
most abundant genes. For example, ‘formation of transla-
tion preinitiation complex (GO:0001731)’ was enriched in
the eRF1d DP list, and of the thirteen genes in yeast asso-
ciated with this term, eight were pulled out in single-codon
DP analysis (Figure 5F), of which SUI3 is a member (Fig-
ure 5B). All six of the genes associated with ‘translation
reinitiation (GO:0002188)’ were also returned by single-
codon DP analysis (Figure 5G). When performing addi-
tional DP analyses on different Ribo-seq datasets, we noted
that the pattern difference is not dictated by RPF counts al-
though DP genes are often enriched with genes with higher
read counts due to statistical power. The overlap between
the most abundant gene set and DP gene set varies case by
case (see additional comparisons in Supplementary Figures
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Figure 5. RiboDiPA for single-codon resolution DP analysis: eRF1 depletion (A) Comparison of WT unstressed yeast cells versus eRF1 depletion strain
(unstressed) from (62) shows significant enrichment of P-sites at the –12 and –2 codon position in the eRF1d cells (stop codon defined as -1 position),
while no significant differential pattern is present around the start codon. Plotted in the vertical axis is the number of genes that have adjusted P-value
≤0.05 at each given codon, with positive direction for enrichment in eRF1d, and negative direction for depletion. Panels (B) and (C) show two example
genes, SUI3, an eIF2� homolog, and TEF2, an eEF1A homolog respectively. Wild type data is shown in blue, while eRF1d data is shown in red, with
significantly different bins highlighted in black. (D) Distribution of stop codons for DP genes in eRF1d data and for all yeast genes respectively. (E) Analysis
of the positions in the vicinity of the stop codon in eRF1d DP genes shows no enrichment for particular sequences. Sequences are represented as a pLogo
plot, with a log-odds score of ±3.28 representing enrichment or depletion with P-value ≤0.05. (F) GO term analysis found that the term ‘formation of
translation preinitiation complex (GO:0001731)’ was enriched in DP genes (red), with eight out of a possible thirteen genes in yeast represented. Gene
names and homologs, if known, are listed. (G) The GO term ‘translation reinitiation (GO:0002188)’ was also enriched, with six out of six genes annotated
in yeast represented.

S4 and S5). In contrast to DP analysis of eRF1 depletion,
we found no significant enrichment of GO terms in two ad-
ditional comparisons (Supplementary file 2).

To extend our single codon analysis, we also applied the
RiboDiPA pipeline to data collected from yeast lacking
New1, a distinct translation termination regulator, which
was published by Kasari et al. (63). NEW1 is a non-essential
gene with a cold sensitivity knockout phenotype. Single

codon DP analysis revealed 103 genes with DP at single-
codon resolution, and a similar pattern of ‘stacked’ ribo-
somes as in eRF1 depletion (Figure 6A), while only 54 genes
were shared with the eRF1d DP genes. We show triose phos-
phate isomerase (TPI1) and guanylate kinase (GUK1) as
examples of genes with significant changes at the –12 and –
22 positions upstream the stop codon (Figure 6B, C). When
we examined the identity of the C-terminal amino acids in
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Figure 6. RiboDiPA for single-codon resolution DP analysis: NEW1 deletion (A) Single-codon DP analysis of data from (63), comparing wild type yeast
to a NEW1 deletion strain at 20◦C. Counts of genes that show DP at a particular codon near the start or stop codon are plotted, with genes with a positive
log fold change in the new1Δ condition relative to the WT condition in red, and negative log fold change in cyan. (B, C) Binned RPF counts mapped to
P-sites in wild type (blue) and new1Δ (red), shown as a representative examples of genes affected by NEW1 deletion for Triose phosphate isomerase (TPI1)
and Guanylate kinase (GUK1) respectively. Positions with significant changes in pattern are labeled in black. (D) For DP genes in the new1Δ condition, the
amino acid position immediately upstream of the stop codon was strongly enriched for lysine, arginine, and asparagine, as visualized by pLogo analysis,
compared to the same positions for all genes in yeast genome-wide. Sequences exceeding a log-odds score of ±3.60 represent enrichment or depletion with
P-value ≤0.05. (E) pLogo analysis revealed no enrichment in particular amino acids for genes called by single-codon DP analysis in the eRF1 depletion
condition.

the new1Δ condition called as having DP, we found a pro-
nounced enrichment for lysine, arginine, and asparagine, in
direct accordance with the previous authors’ findings (Fig-
ure 6D). We found no such amino acid identity enrichment
in the eRF1 depletion data (Figure 6E) though, which con-
firms that the eRF1 and New1 perturbations affect distinct
sets of genes. The identities of all genes called as having
DP in either the eRF1 or New1 perturbation conditions are
included in Supplementary file 1. Taken together, these re-
sults demonstrate that DP analysis at single-codon resolu-
tion can discover differential patterns with fine details of
ribosome positions.

DP analysis for higher organism

RiboDiPA can be readily applied to other model organisms,
including mammals. To demonstrate this, we examined data

from Sugiyama et al. (64) in mouse embryonic stem cells,
and were able to discover many genes that showed differ-
ential patterns when comparing Nat1 null cells to wild type
cells. Supplementary Figure S6 in the Supplementary Ma-
terials shows four significant examples. Lefty1 and Epop,
which are, respectively, a TGF� family ligand and a Poly-
comb Repressive Complex 2-associated gene, show signifi-
cant changes, in addition to the genes Keratin42 and Macf1,
which is a cytoskeletal-associated factor.

Lower coverage can be an issue for single-codon resolu-
tion analysis for large genomes, as too many bins may have
extremely low RPF counts. Therefore, we recommend to use
single-codon DP analysis only when coverage permits, and
use the default adaptive binning when coverage is sparser,
or treat each exon as a bin if rich in multi-exonic genes, as
is frequently the case in ribosome profiling experiments in
mammalian systems.
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Simulation studies

To further assess the performance of the proposed ap-
proach, we carried out two simulation studies as follows. In
the first simulation, we constructed a two-condition Ribo-
seq comparison experiment with m = 2, 3, 4 replicates
within each condition respectively. To mimic the gene length
and read count distributions observed in the real data, we
selected the top 4000 genes that had largest total read counts
under comparison of WT cells versus eRF1 depletion strain
as templates. To avoid true differential patterns assigned to
sparse regions frequently, we randomly chose 400 whose
total RPF count was >10 000 as alternative genes, and
the rest 3600 genes as the null. For a given selected gene
designated as the template for the null gene, we generated
ribosome footprint data at the codon level by simulating
the read count for each codon within each replicate using
a negative binomial model NB(�ijk, � ijk) where i, j, k are
indices for replicate, codon and condition respectively. To
do that, we first calculated the relative mean qj for the jth
codon based on all replicates. To generate the gene- and
replicate-specific abundance/sequencing depth normalizing
constant sik defined in (3) in a m versus m comparison
(i.e. i = 1, ..., m, k = 1, 2), we first generated 2m ran-
dom values from uniform [1,5] for each gene separately.
Denote these random values as s ′

ik. The normalizing con-
stant sik is given by sik = s ′

ik/mediani,k(s ′
ik). In this way, we

allow a possible range of abundance fluctuation between
0.2 and 5 for each gene. The mean parameter is given by
�ijk = sikqj. In the second step, we generate the disper-
sion parameter � ijk by plugging qj into the fitted dispersion-
mean curve function obtained from the wild type vs.
eRF1 depletion comparison using the DESeq2 package
(i.e. output from ‘estimateDispersionsFit’ R function within
DESeq2).

For the 400 alternative genes, we randomly chose 200
genes to contain 10% of codons with differential patterns,
and the other 200 genes to bear 20% of codons with dif-
ferential patterns. For a given selected template gene, we
treated qj for the jth codon of all replicates as the relative
mean for the first condition, i.e. qj1. Considering that differ-
ential codons tend to be clustered in real data, we applied
a Markov Chain model to simulate a sequence of the no-
change or up-/down-regulated state path (see Supplemen-
tary Methods). If the codon is chosen to have a differential
pattern with up-regulation, the relative mean for condition
2 is given by qj2 = cqj1, where c = 2, 4, 8 (or c = 1/2, 1/4,
1/8 for down-regulation) in three separate simulation set-
tings. If a codon is chosen to have no differential pattern,
then qj2 = qj1. The dispersion parameter was generated in
the same way as for the null genes.

In summary, our simulation is a 3 × 3 design, three dif-
ferent samples size (m) by three different log2-fold change
(lfc) with 10% true positive genes. We investigate how sam-
ple size, effect size and scale of differential patterns may af-
fect the performance of the proposed approach.

We performed differential pattern analysis on both adap-
tively binned and un-binned data. We first examine the
power achieved at nominal FDR level 0.05 of each set-
ting (Figure 7). For both binned and un-binned data, the
power consistently improves as sample size (m) or log2-

fold change (lfc) increases, while the DP analysis based on
binned data achieves significantly better power than the
codon-level analysis in each setting (Figure 7A). For ex-
ample, the codon-level analysis achieved 43% power when
the mean difference was 4 fold (lfc = 2) with 2 replicates
and 88% with four replicates, whereas the binned analy-
sis achieved 67% and 93% power respectively at the same
settings. While at lfc = 1 and m = 2, only 4% and 13%
power were achieved in the un-binned and binned analyses,
suggesting small difference is difficult to decouple from the
larger dispersion at small sample size and typical sequenc-
ing depth in current Ribo-seq studies.

We further split the power curve for the alternative genes
with 10% and 20% differential codons (Figure 7b). Unsur-
prisingly genes with 20% of codons with differential pat-
terns achieved larger power to be detected at the given sam-
ple size at nominal FDR level 0.05. Note the gene-level
P-value from the multiple comparison procedure is deter-
mined by the minimum adjusted codon-level P-value across
all codons within the same gene. In each simulation setting,
regardless that the log2-fold change of q was fixed, more dif-
ferential codons tend to result in more extreme minimum
adjusted codon-level P-value and thus smaller gene-level P-
value and larger power.

This simulation study provides new insights on the use
of T-value as a complementary measure for pattern differ-
ences beyond statistical significance. A larger pattern dif-
ference could be defined as a larger change of the relative
mean qjk at one given codon/bin, or it can refer to more
codons/bins/regions that had differential ribosome occu-
pancy. The gene-level P-value is a sensitive measure for
the first situation while T-value is informative for the lat-
ter. We compared ECDF or gene-level P-value and the T-
value of the true alternative genes with 10% and 20% dif-
ferential bins in all nine settings in our simulation (Supple-
mentary Figure S7). At lfc = 1, ECDF curve of P-value
from the 20% group shows a leap over the 10% group at
the left lower end (Supplementary Figure S7a, d, g), same
for the T-value ECDF at larger T-value end (Supplemen-
tary Figure S7j, m, p). While the distinction of P-value
curves diminishes at lfc = 2 and 3 (Supplementary Figure
S7b, e, h), the T-values of the 20% group maintain a sig-
nificant gap over the 10% group. This demonstrates that T-
value can be used as a complementary measure to identify
genes that have differential patterns over relatively larger
regions.

We also compared Freedman-Diaconis rule with other
binning methods including Sturges’ formula, Doane’s for-
mula, Rice Rule, Scott’s normal reference rule, and the
improved Doane’s formula. The ROC curve plots show
that Freedman-Diaconis rule consistently outperforms all
other methods under consideration in all simulation set-
tings (Supplementary Figure S8).

We did a second simulation to further investigate how se-
quencing depth may affect statistical power for detection
of differential patterns. Simulation II has the same settings
as Simulation I except: (i) the alternative genes were com-
pletely randomly selected from the 4000 template genes; and
(ii) the sequencing depth (RPF/codon) was varied up to
200-fold of original sequencing depth to evaluate how it af-
fects the power behavior. Supplementary Table S1 in Sup-
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Figure 7. Simulation I results. (A) Power comparisons between binned and unbinned data (codon-level) in the simulation at nominal FDR level 0.05. (B)
Power comparisons between groups of genes with 10% and 20% differential codons. The log2 fold change (lfc) of relative means between conditions of
the true positive set was varied from 1 to 3, the number of biological replicates (m) was varied from 2 to 4. The presented results were averaged over ten
repeated simulations.

plementary materials tabulates the average RPF counts per
codon required based on 100 simulations for targeted statis-
tical power at 0.50, 0.75, 0.90 and 0.95. As expected, at lfc
= 1, the average RPF/codon required is prohibitive if we
only have two replicates (m = 2) per condition (‘NA’ stands
for no actual power was achieved around the target level
given a simulation setting). However when replicate num-
ber increases from m = 2 to m = 4, the required RPF/codon
dramatically decreases in all simulation settings. For exam-
ple, for target power= 50% and lfc = 2, from m = 2 to m =
4, the required count decreases from 48 RPF/codon to 13
for the 10% differential proportion (dp) group. For target
power 90%, to detect lfc = 2, the required RPF/codon for
20% dp group drops from 146 to 35; and at lfc = 3, from 46
to 13 respectively. These simulation results imply that at the
experimental design stage, researchers should consider to
increase the number of replicates instead of only increasing
sequencing depth for each given replicate for better power

efficiency if they aim to discover differential patterns in ri-
bosome footprints.

DISCUSSION

In this paper, we have developed a new statistical framework
for differential pattern analysis for Ribo-seq data. Our DP
analysis is defined for testing parallel mean curve between
different conditions. This test allows for quick identifica-
tion of genes that exhibit differential ribosome binding pat-
terns with rigorous quantification of statistical significance.
We demonstrated that DP analysis can effectively uncover
global differences in the translation landscape between con-
ditions, as well as discover fine-detail pattern differences up
to single-codon resolution in genes that may be regulated at
distinct steps of translation.

One particular challenge in the DP analysis of Ribo-seq
data arises due to small sample size and low read counts
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per codon. Currently available Ribo-seq experiments often
contain one or two replicates per condition. Our first simu-
lation showed that with two replicates and 2-fold change (lfc
= 1) of relative mean pattern difference, we only achieved
4% and 13% statistical power (sensitivity) for unbinned
(codon-level) and binned data respectively when control-
ling the nominal FDR ≤ 0.05 (Figure 7A). Multiple fac-
tors may contribute to the poor statistical power. First, it
is difficult to decouple the small effect size from the large
variance when the sample size is small. Second, the fitted
dispersion-mean curve typically has larger dispersion for
small means, which may further exacerbate the power for
genes with small read counts (even after binning). We define
the differential pattern in terms of the relative mean at every
individual codon/bin in the entire coding region. An advan-
tage of this framework is to enable one to pinpoint differ-
ential patterns at any specific bin/location. A downside is
that the codon-wise/bin-wise read counts can be too low
to detect true difference. Furthermore, the point-wise test-
ing procedure requires a family-wise type I error correction
for gene-level P-value calculation. The hybrid Hochberg–
Hommel procedure improves over Bonferroni and some
other correction methods in power, but still tends to be
conservative overall (74). Our Simulation II results (Sup-
plementary Table S1) point out a direction that researchers
should consider if they aim to improve the power to iden-
tify fine-scale differential patterns of ribosome footprint.
Instead of only increasing sequencing depth per replicate,
increasing the replicate number from 2 to 4 per condition
can result in significant power gain under the same total
sequencing effort. For example, at lfc = 2 and m = 2, 48
RPF/codon is required to achieve 50% power, whereas at
m = 4, 25 RPF/codon (at about the same total sequencing
effort) may achieve 75% power.

In RiboDiPA we proposed a T-value divergence mea-
sure based on singular-value decomposition as a supple-
mentary statistic and illustrated its usefulness to prioritize
statistically significant DP genes. It should be noted that
T-value itself does not reflect statistical significance as its
distribution depends on parameters of underlying distribu-
tion of the read counts. There are a few other well-known
measures in the literature for divergence of distributions in-
cluding Kolmogorov–Smirnov (K–S) statistic (77,78) and
Jensen–Shannon (J–S) statistic (79,80). Nevertheless for dis-
crete distribution, it is known that the K–S test statistic does
not follow a fixed asymptotic distribution as in the contin-
uous case (see Dufour, J. M. and Farhat, A. (2001), Exact
nonparametric two-sample homogeneity tests for possibly
discrete distributions, unpublished manuscript). The actual
distribution of K–S in the discrete case depends on the pa-
rameters of underlying distribution of read counts. Directly
using the P-value of K-S test from continuous distribution
may lead to erroneous interpretation of statistical signifi-
cance for the Ribo-seq data. J–S statistic is also well known
for measuring the divergence of two multinomial distribu-
tions, while its application in two-sample hypothesis test-
ing is not well-established. There was recent work by Ann
Marie Stewart (PhD thesis, 2019, (81)) on the asymptotic
distribution of Jensen–Shannon divergence measure in the
multinomial case. But this work appears to be unpublished
yet. In our problem the read count follows the negative bi-

nomial distribution at each codon, not multinomial distri-
bution. Furthermore our testing problem concerns two con-
ditions that each has multiple samples. Both K–S and J–S
divergence are generally defined for two samples. Their ap-
plication to two-condition comparison that concerns mul-
tiple samples is not well known in the literature. Our sim-
ulation study in the Ribo-seq data suggested that P-value
from both K–S (based on continuous distribution assump-
tion) and J-S (from (81)) appear to be over small (results
not shown). Thus we do not recommend using K-S and J-
S for testing the pattern similarity before they are further
verified rigorously. In RiboDiPA we pool all samples from
the same condition and also output K–S and J–S statistics
as two supplementary measures for pattern dissimilarity in
addition to T-value.

RiboDiPA provides a new angle to investigate transla-
tional regulation based on the position information of ri-
bosome footprints. Unlike most existing methods that use
total read counts to quantify translation efficiency, Ribo-
DiPA examines the ribosome footprint distribution along
the transcript, which can provide additional insights into
co-translational regulatory mechanisms. As an example,
when we compared data from WT with eRF1 depleted yeast
cells, approximately 600 genes were found to have signifi-
cant differences at –12 or –2 codons upstream of the stop
codon (see Figure 5A). The ternary complex formed by
eRF1 with eRF3 and GTP plays an essential role in trans-
lation termination, and eRF1 recognizes all three canoni-
cal stop codons in yeast (82). Since all protein-coding tran-
scripts require this complex in order to terminate transla-
tion, a priori it was possible that the genes with DP in the
eRF1d strain would reflect the most highly translated genes
in yeast. In contrast, we found many genes with significant
DP were not the most highly expressed genes in yeast (i.e.
top 643 genes by RPF abundance in wild type), although
there was some overlap, suggesting that the identities of this
subset of genes are not merely a reflection of higher-level
expression. We speculate that translation dynamics, such as
ribosome pausing or changes in the translation elongation
rate, might result in genes with lower abundance showing
DP when eRF1 is removed, although further investigation
will be necessary to explore this hypothesis.

Our analysis of both data sets in yeast revealed overlap-
ping but distinct sets of genes affected by perturbing the
translation termination regulators eRF1 and New1. Inter-
estingly, both sets of DP genes exhibited patterns of ribo-
some occupancy that correspond to ‘stacked’ ribosomes
near stop codons (see Figures 5A and 6A). In eukary-
otes, collided ribosomes are an important trigger of the
Ribosome-associated Quality Control (RQC) pathway (83)
(reviewed in (12,84–87), which results in ribosome subunit
dissociation, mRNA degradation, and nascent polypep-
tide degradation. As demonstrated in our two case stud-
ies, we anticipate that RiboDiPA will be very useful to fa-
cilitate identification of genes regulated by the RQC and
discovery of new features of translation dynamics imposed
by the RQC during ribosome stalling stress. With more
and more high-quality Ribo-seq data becoming available,
we hope the computational tool presented in this study
will aid in elucidating new mechanisms of translational
regulation.
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into Bioconductor later.
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