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A B S T R A C T   

The century-old tuberculosis vaccine BCG has been the focus of renewed interest due to its well-documented 
ability to protect against various non-TB pathogens. Much of these broad spectrum protective effects are 
attributed to trained immunity, the epigenetic and metabolic reprogramming of innate immune cells. As BCG 
vaccine is safe, cheap, widely available, amendable to use as a recombinant vector, and immunogenic, it has 
immense potential for use as an immunotherapeutic agent for various conditions including autoimmune, allergic, 
neurodegenerative, and neoplastic diseases as well as a preventive measure against infectious agents. Of 
particular interest is the use of BCG vaccination to counteract the increasing prevalence of autoimmune and 
allergic conditions in industrialized countries attributable to reduced infectious burden as described by the 
‘hygiene hypothesis.’ Furthermore, BCG vaccination has been proposed as a potential therapy to mitigate spread 
and disease burden of COVID-19 as a bridge to development of a specific vaccine and recombinant BCG 
expression vectors may prove useful for the introduction of SARS-CoV-2 antigens (rBCG-SARS-CoV-2) to induce 
long-term immunity. Understanding the immunomodulatory effects of BCG vaccine in these disease contexts is 
therefore critical. To that end, we review here BCG-induced immunomodulation focusing specifically on BCG- 
induced trained immunity and how it relates to the ‘hygiene hypothesis’ and COVID-19.   

1. Pleiotropic protective effects of BCG vaccine 

Developed in 1921, the live vaccine Bacille Calmette-Guerin (BCG) is 
used clinically for prevention of tuberculous (TB) meningitis and 
disseminated TB disease in infants, as well as an adjunct immunotherapy 
for non-muscle invasive bladder cancer (Kaufmann et al., 2010; Colditz 
et al., 1994; Ottenhoff and Kaufmann, 2012). Since its introduction, BCG 
vaccination has been reported to reduce the occurrence, severity, and 
mortality of various non-TB infections, reflecting robust pleiotropic and 
broad-spectrum protective effects. Indeed, BCG vaccination reduced 
non-TB acute lower respiratory tract infections among children (Sten
sballe et al., 2005), hospitalizations due to non-TB respiratory infections 
(Castro, 2015), as well as first-year mortality by three-fold amongst 
newborns (Aaby et al., 2011). Furthermore, BCG-vaccination reduced 
mortality due to malaria and unclassified fever amongst children in 
Guinea-Bissau (Roth et al., 2005), as well as mortality attributed to 
malaria, sepsis, respiratory infections, and leprosy by >40% in West 
Africa (Aaby et al., 2011; Roth et al., 2005; Biering-Sørensen et al., 2012; 
Ponnighaus et al., 1992; Garly et al., 2003). BCG vaccination also 

reduced incidence of respiratory syncytial virus (RSV) infection in 
Guinea-Bissau (Stensballe et al., 2005), respiratory tract infections in 
older patients in Indonesia (Wardhana et al., 2011), protected against 
pneumonia in tuberculin-negative elderly in Japan (Takashi et al., 
2005), and reduced respiratory tract infections by as much 70% amongst 
adolescents in South Africa (Hawkridge et al., 2008). Similar evidence 
has been reported from BCG-vaccinated cohorts in the United Kingdom, 
South Asia, India, and Haiti (Shann, 2010; Higgins et al., 2016). 
Importantly, clinical trials have also failed to demonstrate a protective 
effect of BCG vaccination. For example, BCG vaccination at birth had no 
effect on infection rates in Danish children by 15 months (Stensballe 
et al., 2019), suggesting that the mechanisms of BCG-induced immu
nomodulation may be more complicated and dependent on various 
extrinsic and host factors including gestational age, caesarean delivery, 
and maternal BCG vaccination status. Identification of the immunolog
ical mediators of this non-specific protection is therefore critical for the 
effective clinical application of this agent. 
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2. BCG-induced immunomodulation 

BCG-induced immunomodulation appears multifaceted, with effects 
on both the innate and adaptive immune systems. One of the central 
mechanisms is trained immunity, which can be conceptualized as the 
strengthening of the innate immune system such that subsequent re
sponses are enhanced, thus representing a form of innate immunological 
memory (Mulder et al., 2019; Netea and van der Meer, 2017) (Fig. 1). 
This non-specific enhancement of innate immune responses is attributed 
with the ability of BCG vaccination to protect against a range of non-TB 
infections, supported by experimental findings. BCG-vaccination of 
severe-combined immunodeficient (SCID) mice reduces infectious 
burden from disseminated candidiasis (Kleinnijenhuis et al., 2012), 
suggesting the protective effect resides in the innate immune system. 
BCG vaccination also reduces viral load of influenza A virus (Spencer 
et al., 1977)and protects against herpes simplex virus type 2 (HSV2) 
(Starr et al., 1976). Furthermore, subcutaneous administration of mur
amyl dipeptide (MDP), a mycobacterial cell wall compound, protects 
against vaccinia virus and HSV2 infection, mediated by peritoneal 
macrophages (Ikeda et al., 1985). BCG vaccination also reduces viremia 
following vaccination with the live-attenuated yellow fever vaccine, 

mediated by upregulated monocyte IL-1β production (Arts et al., 2018). 
Various innate immune cells isolated from BCG-vaccinated patients 
display increased pro-inflammatory cytokine production (e.g. IL-1β, 
TNF-α, IL-6) upon ex-vivo re-stimulation with various pathogens (Kan
dasamy et al., 2016; Kaveh et al., 2014; Kleinnijenhuis et al., 2014, 
2012). For example, isolated peripheral blood mononuclear cells 
(PBMCs) produce increased TNF-α and IL-1β when re-stimulated with 
Staphylococcus aureus and Candida albicans (Kleinnijenhuis et al., 2012) 
and isolated natural killer (NK) cells have enhanced pro-inflammatory 
cytokine production when stimulated with various pathogens (Kleinni
jenhuis et al., 2014). Furthermore, isolated innate immune cells from 
BCG vaccinated individuals produce increased levels of the CXCR3 li
gands CXCL9, CXCL10, and CXCL11 (Joosten and Krista, 2018). 
Importantly, CXCR3 receptor blockage leads to mycobacterial over
growth, implicating these innate chemokines in BCG-induced immune 
protection (Joosten and Krista, 2018). Interestingly, these BCG-induced 
innate immune effects appear to be long-lived. For example, LPS- 
induced TNF-α and IL-1β remain elevated up to 1 year post- 
vaccination (Kleinnijenhuis et al., 2014), PBMC-derived TNF-α and IL- 
1β levels remain elevated up to 3 months (Kleinnijenhuis et al., 2012), 
and clinical protective effects attributed to trained immunity have been 

Fig. 1. BCG-induced trained immunity. A) Trained 
immunity is the enhancement of innate immune re
sponses following an initial exposure such that sub
sequent responses are increased, representing a form 
of innate immunological memory. B) Mechanisms of 
BCG-induced trained immunity include the meta
bolic and epigenetic reprogramming of innate im
mune cells (e.g. macrophages, monocytes, dendritic 
cells) that enhances pro-inflammatory and anti- 
microbial effects, mediated through stimulation of 
various intracellular signaling pathways. 
Figure created with BioRender.com.   
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reported to last up to a year in different cohorts of healthy patients 
(Kleinnijenhuis et al., 2014). This is particularly interesting considering 
that monocytes typically have a lifespan of only a few days (Yona et al., 
2013). The answer to this paradox may lie in the bone marrow. Indeed, 
BCG vaccine delivered to the bone marrow increases populations of 
myeloid-based progenitor cells and long-term haematopoietic stem cells 
(LT-HSCs) (Mitroulis et al., 2018), potentially mediated through an IL- 
1β and granulocyte macrophage colony-stimulating factor (GM-CSF)- 
dependent upregulation of key cell proliferative pathways (Kaufmann 
et al., 2018). Whether systemic administration of BCG vaccine has 
similar training effects on bone marrow cell populations remains un
known. BCG-induced trained immunity is thought to be mediated, at 
least in part, by epigenetic reprogramming of innate immune cells that 
enhance anti-microbial and pro-inflammatory capacity (Arts et al., 
2016; Kleinnijenhuis et al., 2012; Saeed et al., 2014). Indeed, BCG 
vaccination increases H3K4 trimethylation at promoter sites of pro- 
inflammatory and anti-microbial genes in circulating monocytes 
(Kleinnijenhuis et al., 2012), as well as histone H3 lysine 4 mono- 
methylation (H3K4me1), trimethylation (H3K4me3), and H3 lysine 27 
acetylation (H3K27ac) via a nucleotide-binding oligomerization 
domain-containing protein 2 (NOD2)-dependent pathway at anti- 
microbial gene promoters in cultured human monocytes (Cheng et al., 
2014; Mulder et al., 2019). BCG-vaccination has also been shown to 
metabolically reprogram innate immune cells, including the selective 
alteration of metabolic regulators of histone modifying enzymes. For 
example, BCG vaccination induces a metabolic switch to glycolysis in 
dendritic cells, polarization of monocytes to a glycolytic-dependent pro- 
inflammatory phenotype, and induces glutaminolysis in innate immune 
cells, resulting in the accumulation of fumarate and inhibition of KDM5 
histone demethylases (Uthayakumar et al., 2018; Arts et al., 2016). 
Importantly, in vitro inhibition of this metabolic switch prevents BCG- 
induced epigenetic changes and cytokine upregulation upon re- 
stimulation. For example, blocking mTOR-dependent glycolysis with 
metformin diminished cytokine and lactate production from isolated 
innate immune cells (Arts et al., 2016)and inhibition of the Akt/mTOR 
pathway reduces ex-vivo glucose consumption and lactate production 
(Uthayakumar et al., 2018; Cheng et al., 2014), highlighting the 
importance of this metabolic pathway for the BCG-induced effects. 
Trained immunity responses in myeloid progenitor cells have also been 
associated with induced activation of cholesterol biosynthesis, an effect 
attributed to the capacity of cells to remodel the physiochemical prop
erties of their membranes and the lateral organization of cellular and 
lipid-protein signaling capacity (Mitroulis et al., 2018). Indeed, the 
cholesterol metabolite mevalonate has been shown to induce trained 
immunity via IGF1-R and mTOR-dependent histone modifications of 
pro-inflammatory genes (Bekkering et al., 2018). In addition to the 
reprogramming of innate immune cells, the non-specific protective ef
fects of BCG vaccination may be mediated by several other mechanisms. 
For example, cross-reactivity from vaccine-primed T-cells may protect 
against unrelated pathogens due to structural similarity between epi
topes or T-cell receptor cross-recognition (de Bree et al., 2018; Frankild 
et al., 2008), as seen with other infectious agents. For example, Epstein- 
Barr virus-specific T-cells cross-react with influenza A epitopes (Corn
berg et al., 2010) and CD8+ T-cell cross-reactivity between hepatitis C 
virus and influenzae neuraminidase sequences has been reported 
(Urbani et al., 2005). Importantly, evidence suggests that this cross- 
reactivity may be involved in BCG-induced protection. Indeed, ex-vivo 
stimulation of PBMCs isolated from BCG-vaccinated patients induce 
long-lasting heterologous TH1/TH17 responses that protect against un
related pathogens (Kleinnijenhuis et al., 2014), BCG-induced protection 
from vaccinia virus in murine models is associated with enhanced CD4+
and CD8+ T-cell responses and lost following CD4 + T-cell depletion 
(Mathurin et al., 2009), and non-mycobacterial stimulation of BCG- 
vaccinated individuals induce heterologous TH1/TH17 cytokines for up 
to 1 year post-vaccination (Kleinnijenhuis et al., 2014). These findings 
may be explained by a population of BCG-induced antigen-specific 

memory cells (e.g. memory T cells and NK cells) that undergo heterol
ogous or ‘bystander’ activation when challenged with an unrelated 
pathogen. Indeed, memory cells require less signal to be activated upon 
a second stimulus and thus would be more responsive upon re- 
stimulation (Uthayakumar et al., 2018). Therefore, the non-specific 
protective effect of BCG vaccination may be partly attributed to 
bystander activation of BCG-induced polyclonal effector T-cell pop
ulations by subsequent infectious challenge (Uthayakumar et al., 2018). 
Indeed, recently it has been shown that BCG immunotherapy for bladder 
cancer induces CD4+ T-cell-dependent tumor-specific immunity 
through tumor cell-intrinsic IFN-γ signaling (Antonelli et al., 2020). 
Another possibility is that BCG vaccination creates a cytokine and 
immunological milieu that promotes antibody generation by memory B- 
cells, thus conveying generalized protection against various pathogens 
(Uthayakumar et al., 2018). Indeed, general enhancement of antibodies 
is thought to explain the ability of live-attenuated vaccines to stimulate 
T-follicular helper (Tfh) cell polarization, which promotes B-cell matu
ration and memory cell formation (Ugolini et al., 2018). For example, 
BCG-derived RNA PAMPs activate TLR-8 signaling on monocytes and 
dendritic cells, inducing IL-12p40 production and stimulation of Tfh 
development in lymph nodes (Ugolini et al., 2018), an effect not 
observed by inactivated or non-live vaccines (Uthayakumar et al., 
2018). Epidemiological studies have also shown that hypermorphic 
TLR8 polymorphisms enhance BCG-induced protection (Uthayakumar 
et al., 2018), lending support to this theory. B-cells may also play a role 
in BCG-induced immunomodulation. Indeed, mice deficient in B-cells 
display diminished BCG-induced TH1 responses (Dockrell and Smith, 
2017; Tanner et al., 2019). This may be due to the IL-17-dependent 
regulatory role that BCG-induced B-cells have over neutrophilia, 
which if excessive can impair dendritic cell migration to lymph nodes 
and thus compromise CD4+ T-cell priming (Kozakiewicz et al., 2013). 
Fig. 2. 

3. BCG vaccine and the ‘hygiene hypothesis’ 

The majority of human immune system evolution has been charac
terized by recurrent infection with numerous non-pathogenic microbes, 
a consequence of exposure to micro-organism-rich environments (e.g. 
farms, animals, untreated water sources, etc.) (Bach, 2018; Guarner 
et al., 2006). The effective elimination of these ‘microbial allies’ from 
industrialized populations due to improved hygiene and medical care 
has been robustly associated with a dramatic rise in autoimmune and 
allergic conditions, as described by the ‘hygiene hypothesis’ (Strachan, 
1989; Guarner et al., 2006; Bach, 2018). Indeed, over the past four de
cades rates of autoimmune and allergic conditions have increased 
significantly in industrialized countries (Kotz et al., 2011) and have 
begun affecting patients at younger ages (Patterson et al., 1996; Kar
vonen et al., 1999), reflecting increased disease severity. Extensive 
research has revealed the remarkable capacity of microbial species to 
manipulate human immune responses (White and Artavanis-Tsakonas, 
2012; Harn et al., 2009; Zakeri et al., 2018), however even more 
interesting is the finding that microbial stimulation appears critical to 
the proper development and function of the immune system (Bach and 
Chatenoud, 2012; Gent et al., 1994; Guarner et al., 2006). Under
standing this relationship requires consideration of the equilibrium 
model of immune function, which conceptualizes the immune system as 
a dynamically regulated entity that maintains balance between antag
onistic responses through cross-repressive mechanisms (Sansonetti, 
2004; Sansonetti and Di Santo, 2007; Eberl, 2016). When one arm of the 
immune system is stimulated, competing responses are cross-repressed 
by various mechanisms, including type-specific regulatory T-cells 
(Tregs) (Eberl, 2016; Guarner et al., 2006). Consideration of the ‘hygiene 
hypothesis’ within this framework is important for therapeutic devel
opment. For example, induction of TH1 responses could protect against 
viral infections or reduce tumor growth, accomplished by either direct 
stimulation or indirectly through suppression of TH2 responses and 
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release of cross-repression (Eberl, 2016). Indeed, the historic use of 
Streptococcus pyogenes as a cancer therapy and the current use of BCG 
vaccine for non-invasive bladder cancer exploit this principle (Buffen 
et al., 2014; Ikeda et al., 2002; Silverstein, 1974). A similar approach 
could be used to attenuate autoimmune and/or allergic conditions, such 
as type-1 diabetes mellitus (T1DM) or multiple sclerosis (MS). This 
approach has the theoretical advantage over the current use of anti- 
inflammatory medications as it restores immune balance and 
strengthens immune function, in contrast to the suppression of immune 
effector molecules (e.g. histamine, TNF-α) (Eberl, 2016). For example, 
administration of TH1-inducing microbes could be used to suppress pro- 
allergic TH2 responses or type 3-driven autoimmune conditions. This 
approach has been extensively studied using helminth-derived products 
(HDPs) (Finlay et al., 2014; Gause and Maizels, 2016; Harn et al., 2009; 
Zakeri et al., 2018). BCG vaccination could be a form of this therapy as it 
has been reported to reduce the incidence of allergic and autoimmune 
conditions (Bilenki et al., 2010; Gouveia et al., 2017). Indeed, BCG 
vaccination induces a robust TH1/TH17 response (Soares et al., 2008; 
Kleinnijenhuis et al., 2014; Kagina et al., 2010; Smith et al., 2017), thus 
could be an effective means of promoting cross-repression of pro-allergic 
and/or autoimmune responses (Eberl, 2016; Guarner et al., 2006), 
potentially mediated through the training of dendritic cells. Alternative 
maturation states of dendritic cells will preferentially drive naïve T-cells 
to different effector phenotypes (e.g. TH1, TH2, TH17 cells), thus shaping 
the subsequent adaptive immune response (Carvalho et al., 2009). For 
example, helminth parasites and HDPs have been shown to induce tol
erogenic dendritic cells, characterized by reduced expression of classic 
maturation markers (e.g. CD-40, CD-80, CD-86, MHC-II) and reduced 
pro-inflammatory responses to LPS provocation (Carvalho et al., 2009; 
Zakeri et al., 2018; Maizels et al., 2004). Importantly, these tolerogenic 
cells demonstrate a propensity to drive Treg differentiation when 
exposed to naïve T-cells (Aranzamendi et al., 2012; Falcón et al., 2010). 
As BCG vaccine is cheap, widely available, and safe, it would be an ideal 
therapeutic candidate for mimicking this effect in conditions of immune 
dysregulation. Indeed, mycobacterial components protect against 
autoimmune conditions in mouse models via TLR-dependent activation 
of dendritic cells (Bilenki et al., 2010; Gouveia et al., 2017; Akbari et al., 
2001), BCG vaccination alters dendritic cell cytokine production and 
migration (Chen et al., 2009; Ritz et al., 2008), and mucosal BCG 
vaccination confers protection in the lung parenchyma by inducing 
tissue resident memory T-cells via conditioning of dendritic cells 
(Sharpe et al., 2016). Importantly, intravesical administration of BCG 
vaccine for bladder cancer has been reported to enhance Tregs (Fenner, 
2018; Chevalier et al., 2018) and in vitro administration of BCG induces 

Treg marker expression in cultured human PBMCs (Boer et al., 2014). 
Non-PRR mechanisms of dendritic cell activation are also likely 
involved. For example, the receptor protein Programmed Death-1 (PD-1 
or CD-279) and its ligands PD-L1 (B7-H1) and PD-L2 (B7-DC) are 
important regulators of dendritic cell and naïve T-cell interactions (Keir 
et al., 2008; Gouveia et al., 2017). Interestingly, M. tuberculosis induces 
Treg differentiation via a PD-1-dependent mechanism (Periasamy et al., 
2011; Trinath et al., 2012). BCG-induced metabolic reprogramming of 
dendritic cells may also be involved. Indeed, metabolic shifts in innate 
immune cells are implicated in the BCG-induced suppression of 
inflammation in autoimmune conditions (Ristori et al., 2018). BCG 
vaccination has also been shown to induce apoptosis of autoreactive T- 
cells in an IFN-γ-dependent manner (Dalton et al., 2000) as well as 
promote B-cell IL-10 secretion and suppression of autoimmune re
sponses (Lampropoulou et al., 2008). Despite these findings, more 
investigation is required to interrogate the effects of BCG on autoim
mune and allergic conditions. Assessment of BCG-conditioned dendritic 
cells, including expression of various maturation markers, cytokine 
production, and gene expression changes followed by a series of adop
tive transfer experiments in established animal models of autoimmune 
conditions (e.g. NOD, EAE mice) could reveal important mechanistic 
details of the immunomodulatory capacity of BCG. 

4. BCG vaccination and COVID-19 

In addition to a role in autoimmune and allergic conditions, BCG 
vaccine has gained significant attention as a potential agent in the global 
fight against COVID-19 (O’Neill and Netea, 2020; Redelman-Sidi, 2020; 
O’Connor et al., 2020). As mentioned previously, BCG vaccination has 
been shown to protect against a variety of non-TB infections, including 
several respiratory viruses (e.g. RSV, influenza A, HSV2) (Stensballe 
et al., 2005; Wardhana et al., 2011; Takashi et al., 2005), attributed at 
least in part to training of innate immune cells (Buffen et al., 2014; 
Kleinnijenhuis et al., 2014; Arts et al., 2018). Furthermore, a recent 
randomized trial demonstrated an 80% reduction of respiratory tract 
infections in BCG vaccinated elderly patients (Giamarellos-Bourboulis 
et al., 2020). Based on this, BCG vaccination has been proposed as a 
potential preventative measure against SARS-CoV-2 infection and a 
means of reducing the morbidity and mortality of COVID-19 (O’Neill 
and Netea, 2020; Redelman-Sidi, 2020; Netea et al., 2020; Gursel and 
Gursel, 2020). In theory, inducing trained immunity in healthy in
dividuals should boost anti-microbial defence, inhibit viral replication, 
reduce viral load, lower systemic inflammation, and thus reduce 
severity, duration, morbidity, and mortality associated with SARS-CoV- 

Fig. 2. Effects of BCG-induced trained im
munity. BCG vaccination results in increased 
production of pro-inflammatory cytokines 
(e.g. IL-6, IL-1β, TNF-α) and chemokines (e. 
g. CXCL9, CXCL10, CXCL11) by innate im
mune cells, conveys protection against 
various viral infections (e.g. HSV-2, RSV, 
influenza A, vaccinia virus), reduces non- 
specific infectious load and viremia 
following infectious challenge, promotes 
alternative maturation states of dendritic 
cells that alter polarization of naïve T-cells, 
and increases populations of bone marrow 
stem cells, including long-term hematopoi
etic stem cells (LT-HSCs) and myeloid-based 
progenitor cells, attributed with the 
longevity of the effects. Figure created with 
BioRender.com.   
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2 infection (O’Neill and Netea, 2020; Gursel and Gursel, 2020). 
Intriguingly, preliminary epidemiological studies on the pandemic have 
reported lower infection rates and mortality in BCG-vaccinated pop
ulations (Miller et al., 2020; Gursel and Gursel, 2020; Hegarty et al., 
2020). Importantly, these studies suffer from several inherent biases 
related to differences in case reporting, public health measures, and 
diagnostic criteria between regions and thus need to be considered 
carefully (O’Connor et al., 2020; O’Neill and Netea, 2020). BCG vaccine 
is widely available, safe, relatively cheap, immunogenic and it has 
immense potential for rapid clinical translation as a bridging therapy 
until a specific vaccine can be developed. To that end there are currently 
more than 15 randomized clinical trials currently ongoing around the 
globe to assess BCG vaccination as a potential therapy for COVID-19. 
Importantly, this protection should not be limited to the BCG vaccine, 
as any inducer of trained immunity should be effective. These include 
the oral polio vaccine, the newly developed BCG-based VPM1002 vac
cine, the live-attenuated MTBVAC vaccine, and the MMR vaccine, all of 
which may be important options for bridging therapy to a specific 
COVID-19 vaccine (Franklin et al., 2020; O’Neill and Netea, 2020; Netea 
et al., 2020). Indeed, a recent report claimed that MMR vaccination may 
provide protection from COVID-19, attributed to non-specific protective 
effects (Franklin et al., 2020). Despite the promise, there are several 
important issues that must be investigated prior to widespread admin
istration of BCG vaccine, which are being addressed by the clinical trials 
currently underway. In addition to bridging therapy, another potential 
use of BCG vaccine is as a recombinant vector for the introduction of 
immunogenic viral antigens. BCG has several advantages in this regard 
including safety of administration, relative ease and low cost of pro
duction, temperature stability, and self-adjuvant activity (Dockrell and 
Smith, 2017; Kilpeläinen et al., 2018; Covián et al., 2019). Indeed, 
several recombinant BCG strains (rBCG) expressing heterologous viral 
antigens have been developed. For example, administration of rBCG 
vaccine expressing a nucleocapsid protein of measles virus (rBCG-MV) 
significantly reduced viral titres in brain homogenates and mortality in a 
mouse model of measles-induced encephalitis, as well as enhanced 
proliferation of antigen-specific T-cells in vitro (Fennelly et al., 1995). 
Moreover, administration of rBCG-MV in macaque monkeys reduced 
lung pathology and induced paracortical lymph node hyperplasia after 
viral challenge, suggesting a T-cell-mediated effect (Zhu et al., 1997). 
Similar approaches have been attempted with HIV antigens in pre- 
clinical mouse models. For example, a rBCG vaccine expressing the 
Env capsid protein of HIV induced a TH1 response, however failed to 
promote HIV-specific antibody production (Yu et al., 2007), a rBCG 
vaccine expressing HIV viral antigens in combination with a viral vector 
elicited HIV-specific T-cell responses (Chapman et al., 2013), and rBCG- 
HIVA, expressing the H and P epitopes of the Env capsid protein and 
viral polymerase of HIV, induced activation of HIV-specific T-cells 
(Hopkins et al., 2011a, 2011b). Interestingly, combining rBCG-HIVA 
with a recombinant viral vector induced a robust T-cell response 
against HIV and M. tuberculosis (Hopkins et al., 2011a, 2011b). rBCG 
vaccines have also been developed to express antigens from human 
metapneumovirus (hMPV), a major cause of acute lower respiratory 
tract infections in children and the elderly (Lay et al., 2015). For 
example, a rBCG vaccine expressing the phosphoprotein of hMPV 
(rBCG-P-hMPV) induced humoral and TH1 immune responses, reduced 
viral load in the lung parenchyma, (Soto et al., 2018; Céspedes et al., 
2017), blocked T-cell infiltration, and conferred protection against 
hMPV in mouse models (Palavecino et al., 2014). rBCG vaccines have 
also been developed for human respiratory syncytial virus (hRSV) in
fections, one of the leading causes of acute lower respiratory tract in
fections and hospitalizations in children under 5 years of age (Shi et al., 
2017; Mazur et al., 2018). A rBCG vaccine expressing the nucleoprotein 
(N) of hRSV (rBCG-N-hRSV) protects against hRSV in mouse models, 
reducing pathological damage and lung neutrophil infiltration (Soto 
et al., 2018; Céspedes et al., 2017). Interestingly, the vaccine induces 
secretion of viral-specific neutralizing antibodies, correlated with 

reduced lung viral titres (Soto et al., 2018; Céspedes et al., 2017). 
Furthermore, administration of rBCG-N-rRSV to mice induces a TH1/ 
TH17 memory response that mediates virus clearance and reduces lung 
tissue damage (Céspedes et al., 2017). Therefore, rBCG vaccines repre
sent a novel preventative approach for viral respiratory infections. 
Importantly, it remains unclear if rBCG vaccines convey the same broad 
spectrum protective effects as the unaltered strain (Covián et al., 2019). 
Furthermore, the lack of clinical trial data poses a major hurdle to the 
rapid clinical translation of any potential findings. Despite these limi
tations however, the development of a rBCG-SARS-CoV-2 vaccine 
combining the innate immunological boost of BCG vaccine for short- 
term protection with SARS-CoV-2 antigens for induction of a specific 
adaptive immune response for long-term immunity should theoretically 
convey increased protection, thus represents an intriguing area for 
further research. 

5. Immunotherapeutic potential of BCG vaccination 

Therapeutic utilization of microbe-induced immunomodulation 
could be a viable approach for conditions of immune dysregulation 
attributable to reduced infectious burden by mimicking the ‘natural’ 
exposure that has been removed from development. Indeed, evidence 
from clinical trials supports this assertion. For example, the prevalence 
of atopy is increased following helminthiases treatment (LYNCH et al., 
1993) and S. pneumoniae vaccination (Klugman et al., 2003), the 
occurrence of atopic dermatitis is reduced by probiotic administration to 
pregnant women and newborns (Pelucchi et al., 2012; Kalliomäki et al., 
2001, 2003), and disease progression of MS is attenuated by infection 
with Trichuris suis (Fleming et al., 2011; Correale and Farez, 2013). 
Exploiting the immunomodulatory capacity of BCG vaccine holds great 
promise as an immunotherapy (Mulder et al., 2019). Indeed, BCG vac
cine is currently used as an immunotherapy for non-muscle invasive 
bladder cancer, with potential application for other malignancies (Sokal 
et al., 1974; Silverstein, 1974; Morton et al., 1974; Mulder et al., 2019). 
BCG vaccinated newborns have reduced rates of melanoma (Pfahlberg 
et al., 2002)and childhood leukemia (Morra et al., 2017), childhood BCG 
vaccination is associated with reduced risk of lung cancer in American 
Indigenous and Alaskan native populations (Usher et al., 2019), BCG 
induces tumor regression in non-invasive urothelial carcinoma (Herr 
et al., 1988; Herr and Morales, 2008), and direct injection of BCG vac
cine induces regression of melanoma nodules (Morton et al., 1974). This 
anti-cancer effect has been attributed to trained immunity. Indeed, BCG 
induces the transcriptional reprogramming of tumoral macrophages that 
enhances pro-inflammatory responses and increased T-cell infiltration 
into the tumor (Lardone et al., 2017), thought to oppose the cancer- 
induced anti-inflammatory state (Prescott et al., 1992; de Boer et al., 
1991; Böhle et al., 1990). Interestingly, BCG vaccine also induces 
bladder tumor cells to express antigen-presenting and co-stimulatory 
molecules, thus making them more visible to immune cells (Ikeda 
et al., 2002). In addition to cancer, BCG vaccination has been proposed 
as an immunotherapeutic for autoimmune conditions (Covián et al., 
2019). Initial trials of BCG vaccine in type-1 diabetes mellitus (T1DM) 
patients reported disease remission when administered within the first 
month of diagnosis (Shehadeh et al., 1994). However, a subsequent trial 
reported no change in hemoglobin A1c (HbA1c) levels (a measure of 
blood glucose) or endogenous insulin production (Allen et al., 1999). In 
a phase 1 clinical trial, multiple doses of BCG vaccine in patients with 
long-term T1DM reduced HbA1c levels and promoted death of insulin 
autoreactive T-cells, associated with a systemic glycolytic shift in 
metabolism (Faustman et al., 2012). Similarly, BCG vaccination in long- 
term T1DM patients was reported to stabilize HbA1c levels without an 
increase in hypoglycemia, an effect that persisted for up to 8 years post- 
vaccination (Kühtreiber et al., 2018). Furthermore, in non-obese dia
betic (NOD) mouse models of T1DM, BCG vaccination reduced insulitis 
and disease progression (Sadelain et al., 1990), mediated by TNF- 
α-induced destruction of insulin autoreactive T-cells (Kodama et al., 
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2003). BCG vaccination has also been proposed as a treatment for 
multiple sclerosis (MS), a disease characterized by neurological 
dysfunction due to autoimmune-mediated CNS demyelination. Inter
estingly, BCG vaccination reduced frequency of active lesions (Ristori 
et al., 1999) and 5 year risk of developing clinical disease when 
administered following the first demyelinating episode (Brenner et al., 
2014). In the MS mouse model of experimental autoimmune encepha
litis (EAE), injection of extended freeze-dried (EFD) BCG attenuates 
disease severity, reduces spinal cord infiltration of CD45+ cells, and 
reduces Tregs in secondary lymphoid organs, consistent with attenuated 
disease severity (Lippens et al., 2018). BCG vaccine has also been pro
posed as an immunotherapeutic for use in neurodegenerative diseases, 
predominately Alzheimer’s dementia (AD) (Gofrit et al., 2019a, 2019b). 
Indeed, bladder cancer patients treated with intravesical BCG vaccine 
are less likely to develop AD as compared to those not administered BCG 
therapy (Gofrit et al., 2019), attributed to induction of Tregs that sup
press neuroinflammation (Gofrit et al., 2019) through IL-10 production 
(Kinney et al., 2018). Furthermore, there is an observed inverse corre
lation between BCG vaccination and AD/dementia in epidemiological 
studies (Gofrit et al., 2019) and BCG vaccination improves brain pa
thology and cognitive performance in the APP/PS1 mouse model of AD 
(Zuo et al., 2017). Further prospective data will be needed to unravel 
this intriguing connection. 

6. Conclusion 

Despite being introduced more than a century ago BCG vaccine re
mains highly relevant today. Exploitation of BCG-induced immunomo
dulation has widespread therapeutic potential, including the mitigation 
of autoimmune and allergic conditions attributed to reduced infectious 
exposure, the treatment of several types of cancers and neurodegener
ative conditions, and in the prevention of the spread of SARS-CoV-2 
infection and COVID-19 disease. Only further research will reveal the 
true potential of this multi-faceted immunomodulatory agent. 
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Calmette-Guréin priming against measles. J. Infect. Dis. 172 (3), 698–705. 

Fenner, Annette, 2018. BCG enriches Treg cells. Nat. Rev. Urol. 15 (10), 591. https://doi. 
org/10.1038/s41585-018-0075-0. 

Finlay, C.M., Walsh, K.P., Mills, K.H.G., 2014. Induction of regulatory cells by helminth 
parasites: exploitation for the treatment of inflammatory diseases. Immunol. Rev. 
259 (1), 206–230. https://doi.org/10.1111/imr.12164. 

Fleming, J.O., Isaak, A., Lee, J.E., Luzzio, C.C., Carrithers, M.D., Cook, T.D., Field, A.S., 
Boland, J., Fabry, Z., 2011. Probiotic helminth administration in relapsing–remitting 
multiple sclerosis: a phase 1 study. Mult. Scler. 17 (6), 743–754. https://doi.org/ 
10.1177/1352458511398054. 

Frankild, Sune, de Boer, Rob J., Lund, Ole, Nielsen, Morten, Kesmir, Can, 2008. Amino 
acid similarity accounts for T cell cross-reactivity and for ‘holes’ in the T cell 
repertoire. PLoS ONE 3 (3), e1831. https://doi.org/10.1371/journal.pone.0001831. 

Franklin, Robin, Adam Young, Bjoern Neumann, Rocio Fernandez, Alexis Joannides, 
Amir Reyahi, Yorgo Modis. 2020. Homologous protein domains in SARS-CoV-2 and 
measles, mumps and rubella viruses: preliminary evidence that MMR vaccine might 
provide protection against COVID-19. MedRxiv, April, 2020.04.10.20053207. 
https://doi.org/10.1101/2020.04.10.20053207. 
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Guérin alters melanoma microenvironment favoring antitumor T cell responses and 
improving M2 macrophage function. Front. Immunol. 8 https://doi.org/10.3389/ 
fimmu.2017.00965. 
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