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Abstract

The size of sexually selected weapons and their performance in battle are both critical to

reproductive success, yet these traits are often in opposition. Bigger weapons make better

signals. However, due to the mechanical properties of weapons as lever systems, increases

in size may inhibit other metrics of performance as different components of the weapon

grow out of proportion with one another. Here, using direct force measurements, we investi-

gated the relationship between weapon size and weapon force production in two hindleg

weapon systems, frog-legged beetles (Sagra femorata) and leaf-footed cactus bugs (Narnia

femorata), to test for performance tradeoffs associated with increased weapon size. In male

frog-legged beetles, relative force production decreased as weapon size increased. Yet,

absolute force production was maintained across weapon sizes. Surprisingly, mechanical

advantage was constant across weapon sizes and large weaponed males had dispropor-

tionately large leg muscles. In male leaf-footed cactus bugs, on the other hand, there was

no relationship between weapon size and force production, likely reflecting the importance

of their hindlegs as signals rather than force-producing structures of male-male competition.

Overall, our results suggest that when weapon force production is important for reproductive

success, large weaponed animals may overcome mechanical challenges by maintaining

proportional lever components and investing in (potentially costly) compensatory

mechanisms.

Introduction

Animal weapons have a history of strong selection for large size [1–17]. This, in part, results

from their role as signals to potential mates [18–20] and rival males [19,21–26] where weapon

size functions as an honest signal that captures the genetic and environmental variation under-

lying individual fitness (hereafter referred to simply as “quality”). Large weapons make the

best signals [27,28]. However, as selection pushes weapons toward larger sizes, they face intrin-

sic, mechanical challenges that impede their performance as fighting tools [19,29–31]. This is

because animal weapons, like many other mechanical traits (e.g., jaws of fishes [32–34] or

jumping legs in insects [35–37], are lever systems, the components of which must appropri-

ately interact to achieve high performance (e.g., Fig 1C–1E).
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All lever systems are composed of a fulcrum (i.e., the pivot about which the lever turns), an

“input” lever arm (Lin), an “output” lever arm (Lout), an input force (Fin), and an output force

(Fout). (The relationships between these components are represented by Eq 1).

Fout ¼
Fin Lin

Lout
ð1Þ

The components of lever systems must remain in proportion to maintain force output

(Fout) [29,30,38]. While increased weapon size may be favored by selection acting toward more

efficient signaling or increased reach during combat, variation in the strength of selection and/

or constraint experienced by lever components may cause them to scale disproportionally with

one another. If, for example, external structures (Lout—horns, antlers, etc.) are free to become

large while internal structures (Lin and/or Fin—tendons, bone, muscle, etc.) are architecturally

constrained in their growth, as selection acts to increase overall weapon size, Lout may scale

with body size at a faster rate than Fin and/or Lin. When this occurs, the mechanical advantage

of the lever system will decrease and weapon force output (Fout) will suffer [19,29,38].

The mechanical limits of lever systems should impede overall trait performance

[19,29,30,38]. Large weapons may make compelling signals and even limit the frequency of

combat [22,26,39,40]. However, the largest males in a population will still be tested by similarly

armed opponent [22,26,39–44]. When this occurs, weapons need to perform well. If not,

Fig 1. A) Mating S. femorata (male on top, photo: D. O’Brien). B) Male N. femorata (photo: R. Boisseau). C-E)

Illustrations of lever systems. C) S. femorata hindlimb. D) Simplified machine. E) N. femorata hindlimb. Components

of lever systems color coded across all structures (Lin = input lever (brown), Lout = output lever (dark blue), Fin = force

in (orange), Fout = force out (light blue), fulcrum (light red)). All are best described as 3rd order levers.

https://doi.org/10.1371/journal.pone.0206997.g001
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animals could sustain severe damage and/or death, thereby eliminating their reproductive

potential [45,46]. Large traits that function only as signals or deterrents are not sustainable in

the context of animal contests. For this reason, animal weapons often represent a selective bal-

ance between the need for large, conspicuous signals and strong, force-generating weapons

[19,47].

To date, several studies have quantified the relationship between weapon size and mechani-

cal performance [25,29,38,48–58]. Yet, the majority of these studies have focused on one of

three ecological/evolutionary scenarios: the claws of crustaceans [49–51,55,57–59], jaws of liz-

ards [25,48,52,60], or weapons that do not function as signals [54,56]. Since the relative impor-

tance of signaling and fighting may vary considerably depending on the ecology of the species,

further work is necessary to understand how the relationship between weapon size and force

production varies across taxa and context and how this variation influences the evolution of

sexually selected weapons and signals.

Here, we evaluate weapon performance as a function of weapon size in two species with

sexually selected hindleg weapons, frog-legged beetles (Sagra femorata: Fig 1A) and leaf-footed

cactus bugs (Narnia femorata: Fig 1B). We first demonstrate that, for both species, large weap-

ons are essential for competitive success and function as signals of male quality. In this context,

we provide the first analysis of fighting success and escalation in the frog-legged beetle. Then,

using a strain gauge force-transducer, we measure how weapon force production varies across

the natural range of weapon sizes to better understand the balance between selection for

increased weapon size and performance. In addition, we measure input lever arm length (Lin),

output lever arm length (Lout), and muscle mass (estimate of Fin) in these weapons to evaluate

patterns of constraint and compensation involved in maintaining weapon force output. We

predicted that large weapons would have relatively (if not absolutely) lower force production

than smaller ones (i.e., the “paradox of the weakening combatant” (sensu [31]). This would

result from decreasing mechanical advantage as weapons become large, which should in turn

decrease relative force production (Fout).

Materials and methods

Study species, weapon use, and fighting success

Male frog-legged beetles (Coleoptera, Chrysomelidae, Sagra femorata, Dury) have large, sexu-

ally dimorphic hindlegs that are used by males in one-on-one battle over direct access to

females (Fig 1A). During combat, males attack one another, using their hindlegs to squeeze

rival males, pry apart copulating pairs, and steal mates [61,62]. Previous work has demon-

strated that males with large weapons have greater reproductive success than smaller weap-

oned rivals [62]. However, the role weapon size plays in fighting success has never been

explicitly tested. Furthermore, it is unclear if the weapons of S. femorata also function as sig-

nals of quality and, by extension, if the paradox of the weakening combatant applies to this spe-

cies [31]. Below, we analyze 104 naturally observed competitive interactions between male S.

femorata to demonstrate that a) large weapons are essential for competitive success in this spe-

cies and b) competition escalates in a manner consistent with weapons that also function as

signals.

Observations of male-male competition were collected in tandem with measures of mating

success reported in [62]. Briefly, a wild population of frog-legged beetles was observed for two

breeding seasons. Prior to each season, adult beetles were marked with unique identification

numbers. Throughout each season, two researchers scanned the population at regular intervals

and recorded all reproductive behavior (including male-male competition). Overall, 104

antagonistic, male-male interactions were observed. Interactions began as males aggressively
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approached one another, progressed to one of five “escalation levels”, and ended when one

contestant either retreated or was forcibly removed from the fighting area. Escalation levels

were defined as follows: Level 1) non-violent interaction, Level 2) violent interaction without

full combat, Level 3) full combat of mild intensity, Level 4) full combat of high intensity where

one contestant retreats, Level 5) full combat of high intensity where one contestant is forcibly

removed from the fighting area. Escalation levels were defined prior to analysis. For each inter-

action, winner, loser, escalation level, and the body (elytra length; EL) and weapon (femur

length; FL) size of each contestant were recorded.

Male leaf-footed cactus bugs (Hemiptera, Coreidae, Narnia femorata, Stål) also have

enlarged, sexually dimorphic hindlegs that are used in male-male competition over reproduc-

tive territories (Fig 1B). During fights, rival males back up to one another and use their weap-

ons to squeeze opponents and pull them away from potential mates [26,63–65]. Overall, large

weapons offer a competitive advantage over smaller ones. Males with the largest weapons tend

to win the most fights and, as a result, have the greatest reproductive success [26,63]. The hind-

legs of leaf-footed cactus bugs also function as signals. These weapons are conditionally depen-

dent indicators of male quality [65–68] and male-male interactions escalate more frequently

when competitors are similarly matched in weapon size [26], a pattern consistent with classic

predictions for weapon-signals [39–44,69]. Similar to frog-legged beetles, the hindlegs of leaf-

footed cactus bugs act both as tools of combat and signals of quality. As a result, these weapons

are subject to selective conflict between these two functions and, by extension, the paradox or

the weakening combatant [31].

Squeezing force

For analyses of squeezing force, adult S. femorata were collected from a wild population in

Matsuzaka, Mie Prefeture, Japan. Upon capture, measurements of elytra length (body size)

and femur length (weapon size [62]) were collected using digital calipers. Animals were housed

in 150 ml plastic cups at 25˚C and fed Kudzu (Pueraria spp.) leaves ad libitum. Juvenile leaf-

footed cactus bugs were initially collected from a wild population in Gainesville, Florida, USA.

Juveniles were shipped to Missoula, Montana, USA where they were housed in 500 mL plastic

cups at 28˚C and fed cactus fruit and pads (Opuntia spp.) ad libitum. Measurements of body

length (body size) and femur area (weapon size [65]) were collected for each adult using pho-

tographs and ImageJ 1.50i software (NIH, USA).

Squeezing force of hindleg weapons was collected using a full bridge, strain gauge force

transducer (S1 Fig). The transducer was composed of two needles, which were attached to par-

allel metal plates. These plates were constructed of flexible brass, which bent as the animal

squeezed the needles. Bending of the brass plates (i.e., squeezing force) was recorded using

attached strain gauges (model EA-06-062AQ-350, Vishay Measurements Group, NC USA)

and was transmitted to a computer (Dell Vosro 220, Dell, TX USA) via amplifier (model 2160

Vishay Measurements Group, NC USA) and AD converter (PowerLab 8sp, ADinstruments,

Sydney Australia). Raw values were collected as a change in voltage and converted to a mea-

sure of force (N). All measures were recorded in Lab Chart v7.2 (ADinstruments, Sydney

AUS).

The relationship between force and measured voltage was identified as non-linear during

subsequent analyses, thereby overestimating squeezing force for the largest weapons (particu-

larly large weaponed S. femorata). The force transducer was therefore calibrated across a range

of known weight (2g–100g), a curvilinear ordinary least squares (OLS) regression was fit to the

data, and the equation of the best fit curvilinear line (y = 93.362x−10.239x2 + 36; F2,4 = 1646;

Mechanical adversity in hindleg weapons
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p< 0.001) was used to correct raw voltage output to accurate force measures. Corrected mea-

sures are reported here.

During squeezing trials, animals were held by an observer at the thorax and a single hindleg

was placed near the force transducer. For both species, closing force was measured at the most

distal point of the true output lever (Lout). In S. femorata, Lout is equal to the linear distance

from the center of the femur-tibia joint (fulcrum) to the distal spine of the tibia (Fig 1C,

Figure A in S2 Fig). In N. femorata, Lout is equal to the linear distance from the center of the

femur-tibia joint (fulcrum) to the most distal point on the widened “leaf” of the tibia (Fig 1E,

Figure B in S2 Fig). Leg placement during squeezing measures aimed to mimic leg position

during male-male competition, estimated through personal observation and video recording

[D. O’Brien; Miller Lab, University of Florida]. While the animal was squeezing, a second

observer annotated each “squeeze”, sorting acceptable “maximum force squeezes” (i.e., perfor-

mance opportunities, see [70]) from inadequate ones (e.g., poor leg placement on the needles)

and removing noise (e.g., insect leg bumping into the needle rather than squeezing it). Even

so, due to a lack of cooperation from the animals (especially N. femorata), there was apprecia-

ble variation in leg placement across trials.

Maximum squeezing force was measured across two 2–4 minute trails per insect, during

which an average of 8.261 acceptable "maximum force squeezes” were collected. The mean

value of all acceptable squeezes for a single animal was calculated as that animal’s overall maxi-

mum squeezing force. This measure of maximum squeezing force was used in place of a single,

raw measure of maximum squeezing force to better account for variation in animal perfor-

mance. Insects that held onto the transducer and squeezed constantly throughout either trial

were removed from the analysis, ensuring that “squeezing endurance” was not measured in

place of maximum squeezing force.

Dissections (muscle mass and measures of Lin and Lout)

Hindleg muscle mass was collected from a subset of S. femorata (males: n = 88, females:

n = 85) and all N. femorata used in squeezing analyses. Whole hindlegs (S. femorata) and

femurs (N. femorata) were dissected, dried at 70˚C, and weighed. After initial weighing, mus-

cle was digested by fully submerging the leg in 10% KOH and incubating at 70˚C for 12

(S. femorata) or 8 (N. femorata) hours to ensure total dissolution of soft tissues [71]. After

digestion, hindlimbs were dried at 70˚C and weighed a second time. The difference between

the first and second weighing was taken as an estimate of dry muscle mass. Muscle mass was

taken from a single leg (leg used in squeezing trial when available).

Hindlegs were dissected in a subset of S. femorata (n = 27) to determine the precise internal

structure of the leg and to gain accurate measures of Lin and Lout (Fig 1C, Figure A in S2 Fig).

Lin was identified as the linear distance from the center of the femur-tibia joint to the muscle

attachment sclerite of the tibia. Lout was identified as the linear distance from the center of the

femur-tibia joint to the distal spine of the tibia. Measurements of Lin and Lout were collected

using photographs of dissected legs and ImageJ 1.50i software (NIH, USA). From these mea-

sures, the relationships between Lout and tibia length and Lin and tibia length were calculated

using ordinary least squares regression [72]. There were no significant sex differences in these

relationships (95% CI intercept Lin for males [-0.227, 0.972] and females [-0.294, 0.691], 95%

CI slope Lin for males [-0.29, 0.11] and females [-0.038, 0.135], 95% CI intercept Lout for males

[-2.144, 3.397] and females [-0.855, 1.11], 95% CI slope Lout for males [0.554, 1.197] and

females [0.776, 1.086]). Thus, male and female data were combined into the two regressions

reported here (Lin: y = 0.079x + 0.03, F1,24 = 91.26, p< 0.0001; Lout: y = 0.903x + 0.39, F1,24 =
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795.8, p< 0.0001). Equations from these regressions were then used to estimate Lin and Lout

for every beetle using measures of tibia length described above.

Similarly, hindlegs of N. femorata were dissected to identify exact measures of Lin and Lout.

Lin was identified as the linear distance from the center of the femur-tibia joint to the attach-

ment point of the flexor muscle on the tibia (Fig 1E, Figure B in S2 Fig). Lout was identified as

the linear distance from the center of the femur-tibia joint to the most distal point on the wid-

ened “leaf” of the tibia. Both Lin and Lout were directly measured in all animals using photo-

graphs of dissected legs and ImageJ 1.50i software (NIH, USA).

Statistical analyses

All statistical analyses were performed in R 3.3.2 (R Core Development Team 2016). To ana-

lyze competitive interactions between male S. femorata, “Male A” was identified as the male

approached by a competitor and the approaching competitor was identified as “Male B”.

Logistic regression was used to assess interaction outcome (Male A or B wins) in relation to

the difference in competitor weapon size (FLA − FLB). In addition, a mixed effects model (R

package lme4 [73]) was used to determine the role weapon size plays in competitive success

while controlling for repeated measures of the same individual across multiple interactions.

This model included weapon size as a fixed effect, and interaction number and competitor as

random effects. Finally, a generalized linear model (family = “Gaussian”) was used to assess

the relationship between escalation level and absolute difference in competitor weapon size (|

FLA − FLB|).

Ordinary least squares (OLS) regression was used to assess all scaling relationships [72] and

all data were log10 transformed prior to analysis. For both species and in both sexes, weapon

size (S. femorata, femur length; N. femorata, femur area), Lin, Lout, and muscle mass were

regressed on body size (S. femorata: elytra length, N. femorata: body length) in separate

models.

Maximum squeezing force was regressed on weapon size in both species and both sexes to

assess overall weapon force output. For male S. femorata, linear models with interaction terms

between weapon size and muscle mass were constructed to further explore the effect of weapon

size, muscle mass, and their interaction on squeezing force. Differences in maximum squeez-

ing force between sexes were calculated using t-tests.

To determine whether the observed increase in muscle mass relative to body size repre-

sented a compensatory mechanism, 95% confidence intervals were generated from the OLS

regression and used to compare the observed scaling relationship between muscle mass and

body size to the expected, isometric relationship (β0 = 3 for volumetric measures). If the

observed slope was greater than expected (i.e., β> 3), it was considered a compensatory mech-

anism [38].

Finally, since mechanical advantage is expected to decrease in the absence of compensation

as weapons grow large [29,38], log10 mechanical advantage ([Lin]/[Lout]) was regressed against

weapon size.

Results

Fighting success in S. femorata
In S. femorata, large weaponed males won 69.15% of competitive interactions and this

trend held after controlling for repeated measures of contestants across multiple interactions

(β = 0.452 ± 0.155, z = 2.92, p< 0.01). In addition, the probability that the larger weaponed

male won increased as the difference in competitor weapon size increased (z95 = 2.672,

p< 0.01; Fig 2A). Overall, weapon size appears to be a key component of competitive success

Mechanical adversity in hindleg weapons
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where large, strong weapons offer an advantage over smaller ones. In addition, these weapons

seem to function as competitive signals. Across interactions, escalation level decreased as abso-

lute difference in competitor weapon size increased (F2,101 = 8.658, p< 0.001; Fig 2B). This is

consistent with classic contest theory [39–44,69] and recent empirical evidence [22,26], which

predicts distinct patterns of escalation when weapons are also used as signals. Overall, the

hindlegs of S. femorata act as both weapons of male-male battle and signals of quality and are

therefore subject to conflict between these two functions.

Squeezing force

In male S. femorata, maximum squeezing force increased hypoallometrically with weapon size

(Fig 3A; Table 1). There was no significant interaction between muscle mass and weapon size

on maximum squeezing force (t84 = 0.669, p = 0.505). In female S. femorata, there was no sig-

nificant relationship between maximum squeezing force and weapon size (Fig 3C; Table 1). In

S. femorata, maximum squeezing force was higher in males than in females (meanmale =

0.338N; meanfemale = 0.109N; t113.42 = 15.996, p< 0.0001).

In male N. femorata, there was no significant relationship between maximum squeezing

force and weapon size (Fig 3B; Table 1) [38]. In females, maximum squeezing force increased

isometrically with weapon size (Fig 3D; Table 1). There was no significant difference in maxi-

mum squeezing force between sexes in N. femorata (t96.286 = -0.0396, p = 0.693).

Morphological measures of lever components

A summary of all morphological measures is provided in S1 Table. In S. femorata, weapon size

increased hyperallometrically with body size in males and isometrically in females (Fig 4A and

4C; Table 1). Lin increased isometrically with body size in males and hypoallometrically with

body size in females (Fig 5; Table 1). Lout increased isometrically with body size in males and

Fig 2. Interaction outcome and escalation in S. femorata. A) Interaction outcome. Red line represents logistical

regression of interaction outcome (Male A or B wins) in relation to the difference in competitor weapon size (Femur

length; FLA − FLB). Positive x values indicate Male A had a larger weapon size than the opponent. Negative x values

indicate that Male B had a larger weapon size than the opponent. B) Interaction escalation. Red line represents

generalized linear model between interaction escalation level and absolute difference in weapon size (Femur length; |

FLA − FLB|).

https://doi.org/10.1371/journal.pone.0206997.g002
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hypoallometrically with body size in females (Fig 5; Table 1). There was no signifcant relation-

ship between mechanical advantage and weapon size in males or females (Fig 5; Table 1).

In N. femorata, weapon size increased hyperallometrically with body size in males and

isometrically with body size in females (Fig 4B and 4D; Table 1). Lin increased increased hyper-

allometrically with body size in both males and females (Fig 5; Table 1). Lout increased hypoal-

lometrically with body size in males and isometrically with body size in females (Fig 5;

Table 1). Mechanical advantage increased hypoallometrically with weapon size in both males

and females (Fig 5; Table 1).

In male S. femorata, muscle mass increased hyperallometrically with body size, which is

consistant with a compensatory mechanism (β = 3.406 ± 0.176, F1,86 = 387.9, p< 0.0001;

Fig 6A; Table 1). In females, muscle mass also increased hyperallometrically with body size

((β = 3.278 ± 0.251, F1,83 = 170.4, p< 0.0001; Fig 6C; Table 1).

In male N. femorata, muscle mass scaled isometrically with body size (males: β = 3.027 ±
0.745, F1,37 = 16.51, p< 0.001; Fig 6B; Table 1). Muscle mass scaled hyperallometrically with

body size in female N. femorata (β = 3.438 ± 0.304, F1,42 = 128.2, p< 0.0001; Fig 6D; Table 1).

Fig 3. Relationship between maximum squeezing force and weapon size for A) male S. femorata, B) male N.

femorata, C) female S. femorata, and D) female N. femorata. Red lines represent OLS regression. Shaded areas

represent 95% confidence intervals around OLS regressions. Lines omitted for non-significant regressions.

https://doi.org/10.1371/journal.pone.0206997.g003
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Discussion

We measured weapon force output as a function of weapon size in two wild, sexually selected

weapon systems, frog-legged beetles (S. femorata) and leaf-footed cactus bugs (N. femorata). In

frog-legged beetles, weapon force output increased hypoallometrically (β = 0.630 ± 0.135) with

weapon size, suggesting large weaponed males have relatively lower, but absolutely higher,

force production than smaller rivals (Fig 3A; Table 1). As weapons grow large, mechanical

advantage (and therefore weapon force output) is predicted to decrease in the absence of com-

pensation and limit the relationship between weapon size and weapon force output(Eq 1;

[29,38]In frog-legged beetles, however, mechanical advantage was maintained across all

Table 1. Models for squeezing force analyses (y ~ x format). SE = standard error. R2 = adjusted R2. S. femorata: weapon size = femur length, body size = elytra length.

N. femorata: weapon size = femur area, body size = body length.

Weapon size

Model Intercept SE Slope SE n R2 F(df) p value

S. femorata (male) weapon size ~ body size -0.443 0.048 1.267 0.042 95 0.906 903.6 1,93 < 0.0001

S. femorata (female) weapon size ~ body size -0.29 0.063 1.036 0.057 99 0.769 327 1,97 < 0.0001

N. femorata (male) weapon size ~ body size -2.143 0.199 2.849 0.1967 39 0.846 209.8 1,37 < 0.0001

N. femorata (female) weapon size ~ body size -1.516 0.1491 2.12 0.141 44 0.841 227.6 1,42 < 0.0001

Muscle mass

Model Intercept SE Slope SE n R2 F(df) p value

S. femorata (male) muscle mass ~ body size -2.912 0.199 3.46 0.176 88 0.819 387.9 1,86 < 0.0001

S. femorata (female) muscle mass ~ body size -2.975 0.278 3.278 0.251 85 0.672 170.4 1,83 < 0.0001

N. femorata (male) muscle mass ~ body size -0.382 0.756 3.027 0.745 39 0.252 16.51 1,37 < 0.001

N. femorata (female) muscle mass ~ body size -0.936 0.322 3.438 0.304 44 0.71 128.2 1,42 < 0.0001

Lin

Model Intercept SE Slope SE n R2 F(df) p value

S. femorata (male) Lin ~ body size -1.316 0.179 1.023 0.159 95 0.301 41.56 1,93 < 0.0001

S. femorata (female) Lin ~ body size -0.481 0.728 0.166 0.066 100 0.051 6.327 1,98 0.014

N. femorata (male) Lin ~ body size -1.795 0.246 1.324 0.243 39 0.421 29.66 1,37 < 0.0001

N. femorata (female) Lin ~ body size -2.036 0.204 1.483 0.192 44 0.576 59.39 1,42 < 0.0001

Lout

Model Intercept SE Slope SE n R2 F(df) p value

S. femorata (male) Lout~ body size -0.248 0.178 1.016 0.157 95 0.302 41.7 1,93 < 0.001

S. femorata (female) Lout~ body size 0.582 0.722 0.164 0.065 100 0.051 6.318 1,98 0.014

N. femorata (male) Lout~ body size -0.085 0.111 0.719 0.11 39 0.526 43.15 1,37 < 0.0001

N. femorata (female) Lout~ body size -0.469 0.139 1.048 0.131 44 0.596 64.29 1,42 < 0.0001

Mechanical advantage

Model Intercept SE Slope SE n R2 F(df) p value

S. femorata (male) mechanical adv. ~ weapon size -0.957 0.367 -0.101 0.372 13 -0.087 0.074 1,11 0.791

S. femorata (female) mechanical adv. ~ weapon size -0.786 0.329 -0.382 0.444 13 -0.022 0.742 1,11 0.408

N. femorata (male) mechanical adv. ~ weapon size -1.268 0.052 0.227 0.07 39 0.206 10.6 1,36 0.002

N. femorata (female) mechanical adv. ~ weapon size -1.221 0.068 0.157 0.093 44 0.042 2.855 1,41 0.01

Squeezing force

Model Intercept SE Slope SE n R2 F(df) p value

S. femorata (male) Squeezing force ~ weapon size 1.183 0.134 0.63 0.135 95 0.18 21.68 1,93 < 0.001

S. femorata (female) Squeezing force ~ weapon size 1.531 0.01 0.153 0.116 100 0.007 1.736 1,98 0.191

N. femorata (male) Squeezing force ~ weapon size -1.592 0.306 0.353 0.409 39 -0.007 0.756 1,36 0.39

N. femorata (female) Squeezing force ~ weapon size -2.241 0.272 1.289 0.369 44 0.211 12.21 1,41 < 0.01

https://doi.org/10.1371/journal.pone.0206997.t001
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animals and absolute force production increased with weapon size (Figs 3A and 5; Table 1).

This suggests frog-legged beetles employ one or more compensatory mechanism, which par-

tially mitigates the mechanical limits predicted to hinder large weapon sizes.

Here, we identified two potential compensatory mechanisms, proportional growth of

weapon/hindleg lever components and disproportionate growth of femur muscle mass. Over-

all, male frog-legged beetles do not experience mechanical disadvantage as weapons grow

large, since they compensate for the increase in output lever length associated with increased

in weapon size by similarly increasing input lever length. Male frog-legged beetles display lon-

ger input and output levers than females, which result in constant mechanical advantage across

weapon sizes and between sexes (Fig 5; Table 1; S1 Table).

In addition, in male frog-legged beetles, femur muscle mass (Fin) increased hyperallometri-

cally with body size (β> 3; Fig 6A; Table 1), which is consistent with compensatory mecha-

nisms identified in other systems [38]. It should be noted, however, that both absolute and
relative weapon force output should increase with weapon size, given disproportionate muscle

growth and the observed maintenance of mechanical advantage (Fig 5; Table 1). Clearly, there

are as-yet undiscovered limits to weapon force production in this system (mechanical and/or

Fig 4. Relationship between weapon size and body size for A) male S. femorata, B) male N. femorata, C) female S.

femorata, and D) female N. femorata. Red lines represent OLS regression. Shaded areas represent 95% confidence

intervals around OLS regressions.

https://doi.org/10.1371/journal.pone.0206997.g004
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behavioral), and further work is necessary to uncover why exactly weapon force output scales

hypoallometrically in the frog-legged beetle.

Male leaf-footed cactus bugs showed no significant relationship between weapon force out-

put (Fout) and weapon size (Fig 3B; Table 1). This result was surprising given the observed

increase in mechanical advantage with weapon size (Fig 5; Table 1). However, leg muscles

remained proportional across all weapon sizes (Fig 6B; Table 1), which may explain why

weapon force output did not increase with weapon size in males of this species. This result was

unexpected given the established role hindleg weapons play in male-male competition [26,63],

and the maintenance of mechanical advantage across weapon sizes. One explanation for this

trend is that these hindlegs may be under relatively weak selection for increased force produc-

tion in the context male-male combat. Instead, the hindlegs of leaf-footed cactus bugs may

serve a greater role as intersexual signals of male quality, a behavioral context in which weapon

force output is not an important component of fitness and hindlimb area, rather than force

production, is under strong selection for increased size. Indeed, previous work suggests hind-

leg area is an honest indicator of overall quality [65–68] and recent studies have detected direc-

tional selection for increased hindleg area in the wild [63]. If true, then focal animals may have

been unwilling to perform at full capacity during squeezing trails, since their hindlegs function

primarily as display signals rather than weapons.

Alternatively, the ability to squeeze an opponent between both femurs, rather than between

the femur and tibia of a single leg (as measured here), may be the most relevant metric of fight-

ing success in this system (personal observation; Miller lab, University of Florida). Either

Fig 5. Relationships between lever components/mechanical advantage and body size for A) S. femorata males, B)

S. femorata females, C) N. femorata males, and D) N. femorata females. Top: Lin vs. body size. Middle: Lout vs. body

size. Bottom: mechanical advantage vs. body size. Red lines represent OLS regression. Shaded areas represent 95%

confidence intervals around OLS regressions. Lines omitted for non-significant regressions.

https://doi.org/10.1371/journal.pone.0206997.g005
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scenario would result in an underestimation of weapon force output and could explain the

observed non-significant relationship between weapon size and weapon force output. While

we maintain our measures of weapon size, Lin, and Lout, are relevant in this system and to

understanding the forces produced by these weapons, further investigation is necessary to

establish exactly how weapon length and force production influence the outcome of male-

male competition in the leaf-footed cactus bug, and what role, if any, these traits play in overall

reproductive success.

Compensatory muscle growth and honest signaling in the frog-legged

beetle

Sexually selected weapons act as signals of quality and weapons of male-male battle. In both

contexts, honesty is essential. Weapon size must honestly display quality to potential mates

[18–20] and fighting ability to rival males [19,21–24,26,48] and, when tested in combat by sim-

ilarly armed opponents, large weapons must produce sufficient force [69]. If not, receivers are

predicted to focus to other, more reliable indicators of quality/fighting ability and selection for

large weapons/signals should relax. Honesty in sexually selected weapons can be maintained

Fig 6. Relationship between hindlimb muscle mass and body size for A) male S. femorata, B) male N. femorata, C)

female S. femorata, and D) female N. femorata. Red lines represent OLS regression. Shaded areas represent 95%

confidence intervals around OLS regressions.

https://doi.org/10.1371/journal.pone.0206997.g006
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through several mechanisms, including exquisite sensitivity to stress [74], parasite load

[75,76], environmental condition [77], and intrinsic cost associated large structures [78,79].

The latter is particularly relevant to weapon systems where large, conspicuous structures often

hinder the animals that bear them [80–85]. When present, the costs of sexually selected weap-

ons typically increase with trait size, so only the largest animals can develop and wield large

weapons and high quality signals are restricted to high quality males [28,78,79,86].

We suggest the compensatory muscle growth identified in frog-legged beetles comes at a

cost and, through that cost, functions as mechanism of honesty. Muscle is notoriously expen-

sive to develop [87–89] and maintain [80,82,90–94]. In preserving absolute weapon force out-

put through compensatory muscle growth, frog-legged beetles may experience added

metabolic [80,94] and locomotor [80,82] strain. For example, fiddler crabs with large, muscu-

lar claws suffer from disproportionally high resting metabolic rates [80,94], while stag beetles

with large mandibles experience decreased flight performance resulting from their heavy, mus-

cular jaws [82]. Such costs are consistent with theoretical models of handicap and indicator

traits, where cost helps maintain the honesty/integrity of sexually selected traits as signals

[78,79,86,95–98]. We therefore suggest that compensation for mechanical disadvantage

through muscle growth may contribute to the integrity of weapon size as an honest indicator

of quality and fighting ability in this system.

Conclusion

The size of sexually selected weapons is critical to their role as honest signals. Weapons signal

overall quality to potential mates and display fighting prowess to rival males. In both contexts,

large traits are favored. However, selection for large, conspicuous signals is likely balanced by

the need for weapons to perform well during combat. Here, we analyzed the relationship

between weapon size and weapon force production (i.e., performance) in two systems, frog-

legged beetles (S. femorata) and leaf-footed cactus bugs (N. femorata). In male frog-legged bee-

tles, weapon force output scaled hypoallometrically with weapon size. This is partially consis-

tent with lever theory, where both absolute and relative force output are predicted to decrease

as weapons become large [29,38]. However, absolute force output appears to be maintained in

this system through the maintenance of mechanical advantage across all weapon sizes and a

disproportionally steep scaling relationship between leg muscle mass and body size. Alterna-

tively, male leaf-footed cactus bugs showed no relationship between weapon size and force

production, potentially reflecting the importance of hindleg area as an intersexual display of

male quality rather than a force-producing weapon of male-male competition.

Overall, we suggest that when weapon force production is an important component of

reproductive success, and animals experience mechanical limits to weapon force production,

the evolution of compensatory mechanisms is likely (reviewed in [99]). We also suggest that

some compensatory mechanisms, such as muscle growth in the frog-legged beetle, could

enhance signal honesty in the context of sexual selection, both by disproportionately increas-

ing metabolic or other costs associated with the largest male weapons and by maintaining fight

performance at even the largest weapon sizes. Clearly, more work is required to understand

the realized cost of heavily muscled weapons, how this influences individual fitness in the wild,

and the ubiquity of the trends described here.
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S1 Fig. Schematic of constructed force transducer. A) Rigid metal bar used to stabilize the

transducer stationary during trials. B) Flexible, brass arms that bend during squeezing trials.

C) Needles that the animals squeeze during trials. Squeezing force (red) causes deformation in

brass arms (B). Deformation is recorded by strain gauges (blue) in a full bridge configuration,

as they are placed under tension (T1 and T2) and compression (C1 and C2).

(TIFF)

S2 Fig. Lever components of A) Sagra femorata and B) Narnia femorata hindlimbs.
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