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Abstract
Enterovirus 71 (EV71) is the main pathogen responsible for hand, foot and mouth disease

with severe neurological complications and even death in young children. We have recently

identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we

investigated the structural basis for recognition of EV71 by the antibody D5. Four three-

dimensional structures of EV71 particles in complex with IgG or Fab of D5 were recon-

structed by cryo-electron microscopy (cryo-EM) single particle analysis all at subnanometer

resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution

of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures

reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature

virion, suggesting that D5 binding may rigidify virions to prevent their conformational

changes required for subsequent RNA release. Moreover, we also identified that the com-

plementary determining region 3 (CDR3) of D5 heavy chain directly interacts with the

extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and viro-

logical assays. We further showed that D5 is indeed able to neutralize a variety of EV71

genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of

EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its

uncoating receptor, the scavenger receptor class B, member 2 (SCARB2), the broadly neu-

tralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Alto-

gether, our results elucidate the structural basis for the binding and neutralization of EV71

by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-

based protection against EV71 infection.
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Author Summary

Hand, foot and mouth disease (HFMD) caused by enterovirus infection is an infectious
disease affecting millions of young children annually. Enterovirus 71 (EV71) is the major
causative agent of severe HFMD with central nervous system complications. However, no
prophylactic vaccine or therapeutic drug is available against EV71 so far. We previously
identified a murine monoclonal antibody D5 with potent neutralization effect on EV71,
yet its working mechanism remains elusive. In the current study we aim to unravel the
structural basis of D5-mediated neutralization of EV71. Relative high-resolution cryo-EM
analysis of EV71 particles in complex with IgG or Fab of D5 revealed a bivalent binding
mode of D5 across the 2-fold axis of EV71 virion. We also found that the CDR3 of D5
heavy chain bound the VP1 GH-loop of EV71, which represents a broadly neutralizing
epitope and is thought to mediate EV71 binding with its uncoating receptor SCARB2.
Based on these observations, we propose that D5 neutralizes EV71 infection through com-
peting with SCARB2 for a binding site at the VP1 GH-loop and/or inhibiting conforma-
tional change of the virus. We further showed that D5 treatment efficiently protected mice
from lethal EV71 infection. Our work provides information that may facilitate the devel-
opment of D5 antibody-derived anti-EV71 drugs.

Introduction
Enterovirus 71 (EV71) is a member of the enterovirus genus of the picornaviradae family.
EV71 infection may cause severe hand, foot and mouth disease (HFMD) associated with neu-
rological complications, such as encephalitis, neurogenic pulmonary edema, and even death in
children under 6 years old [1–3].

Cell cultures-derived EV71 exists in two icosahedral particle forms, one is the non-infec-
tious empty particle (termed E-particle or procapsid) consisting of 60 copies of VP0, VP1 and
VP3 proteins but lacking the viral genome, and the other is the infectious mature virion
(termed F-particle) bearing the RNA genome and VP1, VP3, VP2 and VP4 proteins (the latter
two result from cleavage of VP0) [4–6]. There is a surface depression called “canyon” around
the 5-fold-related plateaus of both E- and F-particles [5,6]. Viral receptors bind the canyons of
some enteroviruses such as poliovirus to trigger virus uncoating during infection [7]. Several
molecules have been identified as the cellular receptors for EV71 [8], such as the scavenger
receptor class B member 2 (SCARB-2) [9], p-selectin glycoprotein ligand-1 (PSGL-1) [10] and
heparin sulfate glycosaminoglycan [11]. However, the receptor binding sites on EV71 virions
have not been determined by structural analysis.

Passive transfer of neutralizing antisera from mice immunized with inactivated EV71 virus
or recombinant virus-like particles (VLPs) has been shown to protect recipient mice against
lethal challenge [12–15], demonstrating that antibodies are major component in EV71 immu-
nity. These results also imply the potential of developing neutralizing antibody-based drugs for
prevention and treatment of EV71 infections. Several neutralizing monoclonal antibodies
(MAbs) against EV71 have been generated and tested in mouse models [16,17], but their
potencies were only modest and their breadths of neutralization have not been determined.
Very few studies have been conducted to unravel the mechanisms underlying MAb-mediated
EV71 neutralization. Recently, it was shown that the MAb termed E18 could neutralize EV71
infection by inducing release of the viral RNA genome [18]. In previous studies, cryo-EM
structures of EV71 in complex with antibody were resolved to resolutions of 16 Å and 8.8 Å
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[18,19]. In general, the mechanisms for EV71 neutralization by MAbs remain largely
unknown, partly due to the lack of high-resolution structural information.

Previously, we obtained three neutralizing MAbs (D5, H7 and C4) from mice immunized
with recombinant EV71 VLP [20]. Among them, MAb D5 showed the most potent neutraliz-
ing activity against EV71 [20]. But the underlying structural mechanism of EV71 neutralization
by D5 antibody has remained elusive. In the current study, we presented four subnanometer-
resolution cryo-EM structures of EV71 F-particle, E-particle and VLP in complex with D5
intact IgG or its antigen-binding fragment (Fab), with the most critical F-particle-Fab structure
resolved to 4.8 Å resolution, which represents a notable improvement in cryo-EM studies of
virus-Fab/antibody complexes. Through a combination of structural, virological and biochemi-
cal analyses, we explored the binding interface between D5 and EV71 to define the D5 epitope.
Our results reveal a unique bivalent binding pattern of D5 on the enterovirus EV71, which may
neutralize EV71 infectivity by blocking its receptor binding and/or by hindering its ability to
undergo conformational changes required for release of its genetic material. We further dem-
onstrated that D5 can efficiently confer in vivo protection against EV71 infection.

Results

Cryo-EM reconstructions of D5-bound EV71 particles
To thoroughly understand the structural mechanism of how D5 binds EV71 and inhibits its
infection, we determined four cryo-EM structures of D5 full IgG or its Fab in complex with
EV71 mature virion (F-particle), procapsid (E-particle) or VLP, i.e. F-particle-Fab, F-particle-
IgG, E-particle-Fab and VLP-IgG (Fig 1A–1D and S1 Table). The reconstructions were carried
out by utilizing jspr software package [21]. In the representative micrographs, small protru-
sions are readily visible on the surfaces of EV71 particles or VLP (S1 Fig), indicating the bind-
ing of D5 IgG or Fab.

The cryo-EM structures of the F-particle-Fab and E-particle-Fab complexes were recon-
structed to resolutions of 4.8 Å and 6 Å, respectively (Fig 1A and 1C and S2 Fig). In the capsid
of the F-particle-Fab map, most of the β-strands were observed to be separated and several
bulky side chains could be visualized (Fig 1F and 1G), demonstrating the resolution at the
range of 4.5–4.8 Å. This is further validated by our local resolution evaluation using Resmap
[22], showing that the capsid resolution is 4.5 Å (S3 Fig). Previously, the virus-Fab cryo-EM
structures have been limited to around 10 Å resolutions due to conformational and composi-
tional heterogeneity [18,23,24], with only a few cases having reached 6–8.8 Å resolutions [25–
29]. Moreover, to dissect the binding profile of the intact IgG of D5 with EV71, and to compare
it with that of the Fab, we also reconstructed the structures of the F-particle-IgG and VLP-IgG
complexes, which yielded overall resolutions of 7.2 Å and 5.5 Å, respectively (Fig 1B and 1D
and S2 Fig).

Analyses of these four maps indicated very similar overall structures for the F-particle-IgG
and F-particle-Fab complexes (S4A and S4B Fig). The correlation score between the two com-
plete maps was calculated to be 0.981 (S2 Table). The structure of VLP-IgG was also observed
to be very similar to that of E-particle-Fab (S4C and S4D Fig), with a correlation score of 0.984
between their maps (S2 Table). These results indicate that the presence of the Fc fragment did
not induce significant structural alternations in the bound virus particle or VLP, which there-
fore validates the feasibility of using Fab-virus structure, usually at higher resolution, to investi-
gate the structural mechanism of IgG binding to virus.

These structures demonstrate that D5 antibodies bind to the tips of the three-blade propel-
ler-like features on the surface of EV71 particle, which is located adjacent to the canyon and
near the 2-fold axis (Fig 1A and S4 Fig). Moreover, the location and geometry of bound IgG/

Cryo-EM Structure of EV71 in Complex with a Neutralizing Antibody

PLOS Pathogens | DOI:10.1371/journal.ppat.1005454 March 3, 2016 3 / 21



Fab also suggest that all 60 equivalent positions on the EV71 surface may in principle be simul-
taneously occupied by D5 IgG/Fab. In our maps, the Fab density consists of two lobes bridged
by a hollow middle region (marked by red arrow in the right panel of S4A and S4B Fig), which
is a characteristic feature of the Fab structure [30]. Notably, the two-lobed D5 Fab appears to
be bound nearly perpendicularly to the F-particle surface (highlighted by black arrow-heads in
the left panel of S4A and S4B Fig), but tilted relative to the E-particle and VLP surfaces, with

Fig 1. Cryo-EMmaps of different EV71 particles or VLP in complex with D5 Fab or intact IgG. (A) F-
particle in complex with Fab. One icosahedral asymmetric unit of the capsid is indicated by a black triangle.
(B) F-particle in complex with IgG. The color bar labels the corresponding radius from the center of the sphere
(unit in Å). (C) E-particle in complex with Fab. (D) VLP in complex with IgG. The Fab components of the
complexes are rendered in green to blue color. In the IgG bound complexes (F-particle-IgG and VLP-IgG),
the density of the Fc region of the antibody could not be resolved owning to its extremely dynamic nature. (E)
F-particle-Fab map with fitted models of six adjacent protomers around the 2-fold axis. The Fab densities
were removed. VP1, VP2 (VP0) and VP3 structures and densities are shown in blue, green and red,
respectively. Same color schema was followed throughout. Positions of the 2-fold, 3-fold and 5-fold
icosahedral symmetry axes are indicated as grey oval, triangles, and pentagons, respectively. (F) The
segmented density of the VP1 compact region from the F-particle-Fab map with the fitted model. (G)
Expanded view of a representative portion of the map and model displayed in Fig 1F.

doi:10.1371/journal.ppat.1005454.g001
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adjacent Fabs tilted in opposite directions (highlighted by black arrow-heads in S4C and S4D
Fig). This difference in Fab orientation could result from conformational differences for the
slightly expanded (~5% in diameter) E-particle and VLP compared with the F-particle [5].

A bivalent binding mode of D5 on EV71
In both the F-particle-Fab and F-particle-IgG maps, two adjacent Fabs appear to reside face-
to-face across the 2-fold axis and their upper lobes are in contact (Fig 2), indicating a bivalent
binding of intact D5 antibody on the EV71 F-particle. Intriguingly, this bivalent binding mode
could cross-link adjacent protomers across the 2-fold axis, which may potentially prevent the
viral capsid proteins from undergoing conformational changes required for viral genome
release through the 2-fold channel [31]. In contrast, the adjacent Fabs in the E-particle-Fab
and VLP-IgG are tilted further apart and their upper lobes are not in contact with each other
(indicated by black arrow heads in S4C and S4D Fig).

In order to gather further evidence of D5 bivalent binding, we compared the neutralization
potency of D5 IgG and its Fab fragment. By using a standard neutralization assay, the IC50 of
D5 IgG was determined to be 2.23 nM, whereas that of Fab was 37.40 nM (S5A Fig), indicating
that D5 IgG was 17 times more potent at neutralization than Fab in this assay. This demon-
strates that D5 IgG is much more potent than its Fab in conferring neutralization, likely due to
contribution of additional effects of the bivalent binding mode of intact IgG on F-particle.

To determine whether the increase in binding avidity plays an important role in the
increased neutralization potency by IgG over Fab, we measured the avidities of D5 IgG and Fab
for the EV71 F-particle by using a bio-layer interferometry (BLI) assay (S5C and S5D Fig). The
KD values of D5 IgG and Fab were determined to be 6 nM and 15 nM, respectively, suggesting
that the avidity of the D5 IgG only increased 2.5 times than that of the Fab. This slightly
increased avidity alone is difficult to explain the obviously higher neutralizing ability (17 times)
of D5 IgG over its Fab.

IgG is known to cause aggregation of virus particles. To test whether aggregation is the
major cause of the increased neutralization potency by IgG over Fab, we carried out a post-
attachment neutralization assay. In this assay, IgG or Fab was added after the virus had
attached to target cells, thus eliminating the possibility of aggregation of virus particles medi-
ated by intact IgG. We found that the IC50s of D5 IgG and its Fab fragment in this experiment
were 10.12 nM and 191.4 nM, respectively (S5B Fig). These data indicate that, even without the
contribution of antibody-mediated virus aggregation, neutralization by D5 IgG is still 19 times
more potent than by its Fab fragment.

Fig 2. Close-up views of the antibody-virus junction. (A) The side and (B) top views of the cryo-EM
density of the junction between the D5 Fab (deep sky blue) and the six adjacent EV71 protomers around the
2-fold axis. Similar color schema as in Fig 1E was adopted for the capsid densities but more transparent, and
the Fab density was shown in deep sky blue.

doi:10.1371/journal.ppat.1005454.g002
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Altogether, the above results strongly suggest that effect of bivalent binding, other than
increased binding avidity or inter-particle cross-linking, is mainly responsible for the signifi-
cantly stronger neutralization potency of IgG over Fab.

Footprints of D5 on EV71 particles
We produced partial pseudo-atomic models of the complexes by fitting the crystal structures of
the EV71 F-particle (PDB ID: 3VBS) and E-particle (PDB ID: 3VBU) [5] into the correspond-
ing cryo-EM density maps. The crystal structures fit well into the cryo-EM densities of the cap-
sids (Fig 1E–1G and S2B Fig), suggesting that neither D5 Fab binding nor D5 antibody binding
induced a significant conformational change in the capsid.

We determined the footprints of D5 on the EV71 virus by projecting the Fab density onto the
surface of the F-particle (Fig 3A and 3B) as well as the E-particle (Fig 3C and 3D). The footprint
of the Fab on the F-particle is slightly different from that on the E-particle, yet they both cover
the interface between the two adjacent protomers at the same side of the 2-fold axis (Fig 3A and
3C). According to these footprints, the viral amino acid residues that, in both the F-particle and
E-particle, were determined to be covered by the binding of D5 include T210, K218, D219, and
L220 of VP1, Y100, E142, D143, P147 and Y148 of VP2, and R87, R92, G139, G140, P141, R182
and D187 of VP3 (Fig 3B and 3D). Note that VP1 residues 211–217 were missing in the E-parti-
cle crystal structure (PDB ID: 3VBU), and therefore not shown as part of the D5 footprints; how-
ever, K215, Q216 and E217 of VP1 were determined in the F-particle crystal structure and
therefore were included in the D5 footprints on the F-particle (Fig 3). Interestingly, some of the
D5 footprint amino acid residues are also involved in the interaction of EV71 with its receptors,
indicating the pre-occupancy of D5may hinder the receptor binding to EV71.

Binding interface between EV71 and MAb D5
To further inspect the D5 binding interface with EV71, we also built a pseudo-atomic model of
D5 Fab using SWISS-Model [32]. Sequence alignment of the variable regions of the heavy
chain and light chain of D5 with the corresponding MAb template reveals that the CDR3
domain of D5 heavy chain shares the lowest homology with its template (S6 Fig), which is con-
sistent with the functional role of the IgG CDR3 domain as the antigen-binding site.

In the 4.8 Å resolution F-particle-Fab map, the Fab densities in contact with capsid are well
resolved, allowing us to fit the variable domain of the D5 Fab homology model into the map
(Fig 4). The relative orientation of the variable regions of the heavy chain and light chain of D5
was determined based on the correlation score (0.642 versus 0.556), and the orientation with
the higher score (Fig 4A) was chosen for further analysis. In this orientation, the variable region
of heavy chain is facing the 2-fold axis, and all the CDR loops fit into the density unambigu-
ously. Examination of the modeled Fab-virus interface reveals a solid piece of density connect-
ing the EV71 VP1 GH-loop and the CDR3 region of D5 heavy chain (marked by the dotted
black circle in Fig 4), suggesting an interaction between these two components. Also, minor
clashes were observed in the models between these two regions after rigid body fitting, which
were eliminated by further flexible fitting (see Methods). Taken together, our structural analy-
ses combining the map and model information suggest that the interaction between D5 and
EV71 involves the CDR3 region of D5 heavy chain and the VP1 GH-loop of EV71.

Verification of the participation of heavy chain CDR3 in the binding of D5
to EV71
To determine whether the CDR3 of heavy chain indeed contributes to the binding of D5 to
EV71, we generated variants of a single-chain variable fragment (scFV) of D5 with point
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mutations in the heavy chain CDR3 loop, and evaluated their reactivities with different EV71
particles and the SP70 peptide (amino acid residues 208 to 222 of EV71 VP1) [33] correspond-
ing to the GH-loop. As shown in Fig 5, wild-type scFv (scFv-WT) efficiently bound to the F-
and E-particles, VLP, and the SP70 peptide. While the point mutant scFv-N100A did not sig-
nificantly affect the binding capacity to all antigens tested, the mutant scFv-F103A displayed
reduced binding capacity to different extents, and the other mutations, including Y101A,
W102A, D104A and F105A, resulted in significantly diminished binding capacities. Altogether,
our structural and biochemical results indicate that the heavy chain CDR3 loop of D5 is indeed
involved in the recognition of EV71.

Fig 3. D5 Fab footprints on the surface of the EV71 particles. (A-B)Overall and expanded views of the D5 Fab footprints on the F-particle. The surface of
the EV71 F-particle is shown as a stereographic projection, in which the polar angles θ and ɸ represent latitude and longitude, respectively. The D5 Fab
footprints are indicated by red contour lines. The border of one VP2 (VP0)/VP3/VP1 protomer is outlined by black line. The locations of the 2-fold, 3-fold and
5-fold icosahedral symmetry axes are indicated as black ovals, triangles, and pentagons, respectively. In the expanded view, the amino acid residues of
EV71 are denoted. The VP1, VP2 (VP0) and VP3 surfaces are shown in light blue, light green and pink, respectively. (C-D)Overall and expanded views of
the D5 Fab footprints on the E-particle.

doi:10.1371/journal.ppat.1005454.g003
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Verification of the GH-loop of VP1 as the D5 binding epitope
Based on the fitted structure, the VP1 GH-loop of EV71 forms a direct contact with the heavy
chain CDR3 of D5 (Fig 4). To further verify this structural finding, we carried out yeast display
analysis [34] to map the D5 epitope. Yeast cells displaying a combinatorial library of the poly-
peptide fragments of EV71 were incubated with D5, followed by FACS analysis and cell sorting.
Sequencing of the fragments isolated from positive yeast clones showed that the D5-reactive

Fig 4. Binding interface between the D5 antibody and EV71 F-particle in the F-particle-Fab map. (A)
Overall view of the D5-EV71 binding interface located between the D5 Fab variable region and the VP1 of
EV71. Models of heavy and light chains of the Fab, and VP1 of EV71 are shown in light purple, cyan, and
blue, respectively. Cryo-EM density is shown in grey. A solid density connecting the EV71 VP1 and the Fab
heavy chain is highlighted by dotted black circle. The visualization location with respect to the F-particle-Fab
map is illustrated using a small panel in the lower left corner. (B) An expanded view of the D5-EV71 binding
interface. Black arrows point to the CDR3 region of D5 heavy chain and VP1 GH-loop of EV71, respectively.

doi:10.1371/journal.ppat.1005454.g004

Fig 5. Effect of mutation of heavy chain CDR3 on D5 scFv binding to EV71 particles and SP70 peptide.
The binding of D5 scFv variants with point mutations at heavy chain CDR3 region to (A) F-particle, (B) E-
particle, (C) VLP, and (D) SP70 peptide were determined by ELISA assay. The irrelevant hepatitis B core
protein (HBc) was used as negative control. Mean values and standard deviations of duplicate samples are
shown.

doi:10.1371/journal.ppat.1005454.g005
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fragments derived in part or entirely from the VP1 of EV71 (Fig 6A and 6B). Alignment of the
obtained sequences further revealed the consensus sequence HKQEKDLEYG (amino acid resi-
dues 214 to 223, Fig 6A and 6B), which is located within the GH-loop of VP1, consistent with
the binding-interface analysis (Fig 4). These data provide additional evidence for the D5 bind-
ing epitope residing in the VP1 GH-loop of EV71.

We generated five independent EV71 mutants that can escape the neutralization by a high
concentration (1 mg/ml) of D5. Genome sequencing in the P1 structural region of these
mutants revealed that all five mutant viruses had a single amino acid change at the position of
K218 within the VP1 GH-loop (Fig 6C). These escape mutants failed to bind D5, whereas they
still reacted efficiently with a mouse anti-EV71-VLP polyclonal antibody (Fig 6D). Neutraliza-
tion assays showed that these mutant viruses were resistant to 1 mg/ml of D5 but remained
sensitive to the 1:1,600 diluted anti-EV71 VLP serum (Fig 6C). These results further verified
that K218 within the D5 VP1 GH-loop is important for the susceptibility of EV71 to D5 bind-
ing and neutralization. Interestingly, we found that the growth of the mutants in RD cells is
slower than that of the wild-type virus by 5 to 6 times (Fig 6E), indicating impaired fitness for
the mutants. Moreover, in vitro pull-down assays showed that the mutants bound SCARB2
less efficiently than did the wild-type virus (Fig 6F), implicating that K218 is also involved in
the interaction between EV71 and SCARB2.

Broad neutralization capability of the D5 antibody
Notably, the VP1 GH-loop, here identified as the D5 binding epitope, also harbors a previously
identified neutralizing epitope SP70 (amino acids 208–220) that is identical among all EV71
subgenotypes [33], suggesting that D5 has a broad neutralization potential. We thus evaluated
the neutralization breadth of D5 using a panel of enteroviruses. This antibody was found to
efficiently neutralize all of the tested clinical isolates of the EV71 subgenotype C4, the prototype
BrCr strain belonging to genotype A, and a mouse-adapted EV71 strain termed EV71/
MAV-W, with IC50s ranging from 0.183 to 1.592 μg/ml (Table 1). In contrast, no neutraliza-
tion effect by D5 was observed on the other two HFMD-causing enteroviruses, CA16 and
CA10, even at a concentration as high as 80 μg/ml. Taken together, these data demonstrate
that D5 is a broadly neutralizing antibody against EV71.

Protective efficacy of the D5 antibody
The in vivo protective efficacy of D5 antibody was assessed in a mouse model of EV71 infec-
tion. This model is based on EV71/MAV-W, a mouse-adapted EV71 strain which is able to
efficiently infect 7-day-old mice via the i.p. route [35]. Groups of 6-day-old mice were adminis-
tered a single dose (10 μg/g body weight) of antibody or PBS, followed by inoculation i.p. one
day later with EV71/MAV-W. Subsequently, the mice were monitored on a daily basis for sur-
vival and clinical signs. As shown in Fig 7, the control mice administered PBS or an irrelevant
monoclonal antibody 3F5 gradually developed clinical signs, including reduced mobility, limb
weakness and paralysis, and eventually died with a final mortality rate of 64.3% and 53.3%,
respectively, by day 14 after infection. In contrast, 100% of the mice that had received mAb D5
survived without notable clinical signs during the whole 14-day period. These results indicate
that D5 treatment fully protected mice from EV71 infection.

Discussion
To thoroughly understand the structural basis for recognition of EV71 by a broadly neutraliz-
ing antibody D5, we determined four cryo-EM structures on the immune complexes of EV71
with the D5 intact IgG or Fab all at subnanometer resolution. We found that the intact D5 IgG
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binds to EV71 virion in a bivalent manner. Specifically, our high-resolution cryo-EM maps
reveal that D5 IgG bivalently binds the surface exposed VP1 GH-loops over the 2-fold axis on
EV71 virions. Previously, a human rhinovirus neutralizing antibody (named mAb17-IA) tar-
geting the VP1 BC-loop was reported to bind the virus bivalently across the icosahedral 2-fold
axis [36]. In addition, an anti-poliovirus monoclonal antibody C3 have been suggested to biva-
lently bind two adjacent VP1 BC-loops on the same pentameric “mesa” but not across the
2-fold axis, based on a 11 Å cryo-EM structure of the poliovirus-C3 Fab complex [37]. Clearly,
as compared to the mAbs 17-IA or C3, D5 adopts a unique bivalent binding mode in terms of
its epitope and binding pattern. The present and previous studies thus reveal the diversity of
bivalent binding modes of neutralizing antibodies to picornaviruses.

The bivalent binding of intact D5 IgG on the EV71 F-particle (Fig 2) could result in a cross-
linking of two adjacent protomers over the 2-fold axis, which may therefore stabilize the virion.
It has been suggested that the hole at the 2-fold axis in the A-particles (the uncoating interme-
diate form of EV71) increases in size upon being heated and serves as a channel through which
the viral RNA genome is released [31]. Therefore, it is possible that the cross-linking by D5 IgG
over the 2-fold axis may restrict the size expansion of the channel and block the release of viral
RNA, thereby providing an additional neutralization effect as compared to that provided by
the binding of the monovalent Fab. Indeed, we found that the intact IgG of D5 was much more
potent in neutralizing EV71 than its Fab fragment (S5 Fig), i.e., the bivalent intact IgG of D5
was found to be ~19 times more potent than was the monovalent Fab in the post-attachment
neutralization assay whereas the avidity of IgG to the F-particle was only 2.5 times higher than

Fig 6. Mapping of the D5 epitope to VP1 region and identification of critical residue for D5 binding. (A) A yeast library expressing a combinatorial
library of the entire polyprotein of EV71 on the surface was screened for D5 binding by fluorescence activating cell sorter (FACS) analysis. D5-positive yeast
clones were isolated, and 34 of them were sequenced for the insertion. This panel shows the representative results of two rounds of sorting. (B) Alignment of
the sequences obtained from the D5-positive yeast clones. The consensus region (HKQEKDLEYG) encoded by the VP1 gene is highlighted in red. (C)
D5-resistant mutants were generated by passage of EV71/G082 in the presence of D5 antibody (1 mg/ml) and subsequent plaque purification. Five
independent D5-resistant clones were recovered. This panel shows the susceptibility of wild-type and D5-resistant viruses to neutralization by D5 or anti-
EV71 VLPmouse sera. (D) Binding activity of wild-type and D5-resistant viruses to D5 or anti-EV71 VLP mouse sera determined by ELISA. An irrelevant
protein, BSA, serves as the negative control in the assay. Mean values and standard deviations of triplicate wells are shown. (E) Fitness of the D5-resistant
mutants. Same amount (viral RNA genome copy number) of mutant or wild-type viruses was added to RD cells and incubated at 37°C for periods of time as
indicated. The data are relative values of viral RNA copy normalized with GAPDHmRNA copy for each treatment. Means ± SD of triplicate wells were shown.
Statistical significance was analyzed by two-way ANOVA using GraphPad Prism version 4. (F) Binding ability of D5-resistant mutants to SCARB2. Same
amount of mutant or wild-type viruses was incubated with SCARB2-Fc and anti-human Fc IgG conjugated beads at 4°C as described in Methods. The pulled-
down viruses were quantified by qRT-PCR. Y axis indicates the percentage of the viral RNA copy number of D5-resistant mutants to that of the wild-type
virus. The data are Means ± SD of triplicate wells. Statistical significance was analyzed by the Student’s t-test using GraphPad Prism version 4.

doi:10.1371/journal.ppat.1005454.g006

Table 1. Neutralization activity of D5 on a panel of enteroviruses.

Virus strains EV71 Subgenotypes Neutralization concentration a (μg/ml) IC50 b (μg/ml)

EV71/BrCr A 0.625 0.233

EV71/G081 C4 0.625 0.219

EV71/G082 C4 0.313 0.183

EV71/FY573 C4 1.25 0.790

EV71/SZ98 C4 0.625 0.326

EV71/MAV-W Mouse-adapted 2.5 1.592

CA16/SZ05 - >80 ND

CA10/M.K. - >80 ND

a Neutralization concentration was determined as the lowest antibody concentration required to fully prevent CPE that is observed by eye.
b IC50 was determined as the lowest antibody concentration that inhibits 50% cell death as measured by an MTT assay.

ND, not determined.

doi:10.1371/journal.ppat.1005454.t001
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that of Fab. These data strongly suggest that the bivalent binding of D5 IgG may neutralize
EV71 by restricting conformational changes of the capsid required for release of viral RNA.

Enterovirus entry involves virus attachment to target cells, internalization and the receptor
mediated uncoating and release of viral RNA. The molecule SCARB2 has been identified as an
uncoating receptor for EV71 [9]. Although the exact binding site for SCARB2 on EV71 has not
been accurately identified, GH-loops of VP1 and VP3 of EV71 have been shown to interact
with SCARB2 [38]. Interestingly, in the present study, we identified the VP1 GH-loop as the
binding epitope of D5; meanwhile, the footprint of D5 on the F-particle also covers the GH-
loop of VP3 (R182, D183, and G184) (Fig 3B). Therefore, upon binding EV71, D5 may preoc-
cupy the SCARB2-binding site and thus inhibit uncoating of EV71. In addition, the footprint
of D5 also covers K149 of VP2 (Fig 3B), which has been shown to be critical in the binding of
EV71 to another identified receptor, PSGL1 [10,39]. Thus, it is conceivable that the binding of
D5 to EV71 may sterically hinder access of PSGL1 to its binding site. In agreement with the

Fig 7. In vivo protective efficacy of antibody D5.Groups of mice were administered i.p. with PBS or the
indicated mAbs, and one day later, inoculated i.p. with 5 × 105 TCID50 of EV71/MAV-W. The mice were
monitored daily for (A) survival and (B) clinical signs for a period of 14 days. Clinical scores were graded as
follows: 0, healthy; 1, reduced mobility; 2, limb weakness; 3, paralysis; 4, death. The data shown are survival
rates and mean clinical scores for each group at the indicated time points. The logrank test was used to
compare the survival rate between each mAb group and the PBS control group. Statistical significance is
indicated as follows: n.s., P� 0.05; *, P<0.05; **, P<0.01.

doi:10.1371/journal.ppat.1005454.g007
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above speculations, it has been recently reported that pretreatment of EV71 with D5 was
indeed able to inhibit the binding of SCARB2 as well as of PSGL1 to EV71 in an antibody dose-
dependent manner [40]. Moreover, in the present study we found that D5-resistant mutant
viruses carrying a single mutation at the position of K218 within the VP1 GH-loop exhibited
impaired binding to SCARB2 (Fig 6F), indicating that the K218 residue, as a part of the D5 epi-
tope, is involved in the interaction between EV71 and SCARB2. Overall, our data reveal that
inhibition of receptor binding on EV71 is likely one of the neutralization mechanism of D5.

In summary, using cutting-edge cryo-EM technology in combination with a number of bio-
chemical and virological approaches, we have elucidated the structural basis for recognition of
EV71 by the highly potent antibody D5. Our studies clearly depict a unique bivalent binding
pattern of intact D5 IgG on the VP1 GH-loop of the EV71 F-particle. Based on our results, we
propose that D5 neutralizes EV71 infection through two mechanisms, including the blocking
of receptor binding and the potential inhibition of conformational changes of the EV71 capsid.
In addition, our results demonstrate that D5 is broadly neutralizing in vitro and highly protec-
tive in vivo. These findings should enhance our understanding of antibody-based protection
against EV71 infections and facilitate the development of D5-derived anti-EV71 drugs.

Materials and Methods

Cells and viruses
RD (ATCC, CCL-136) and Vero (ATCC, CRL-1586) Cells were maintained as described previ-
ously [14]. EV71 strains used in this study include EV71/BrCr (ATCC, VR-1775), EV71/G081,
EV71/G082, EV71/FY2, EV71/SH98, and a mouse-adapted virus termed EV71/MAV-W,
which have been described previously [35]. CA16/SZ05 (GenBank accession no. EU262658)
and CA10/M.K. (Kowalik strain, ATCC, VR-168) strains have been described previously [15].
All viruses were titrated for the 50% tissue culture infectious dose (TCID50) as described previ-
ously [41].

Preparation of inactivated EV71 particles
Inactivated EV71 particles were prepared as described previously [42]. The resulting inacti-
vated EV71 preparations were assessed for purity by SDS-PAGE andWestern blotting as
described previously [43]. Cryo-EMmicroscopy revealed that the inactivated EV71 prepara-
tions contain both immature empty particles (E-particles) and mature virions (F-particles)
(S1A and S1B Fig). In addition, E- and F-particles were prepared separately as described previ-
ously [14].

Preparation of EV71 VLP
Recombinant VLP were produced in transgenic Pichia pastoris yeast as described previously
[35]. The final VLP preparation was analyzed by SDS-PAGE, Western blotting and ELISA as
described previously [15].

Preparation of D5 IgG, Fab and scFv
D5 IgG was purified as previously described [20]. To prepare the Fab fragment, D5 IgG anti-
body was digested with papain at a weight ratio of 200:1 in 100 mM phosphate buffer (pH 7.0)
containing 20 mM L-Cys and 1 mM EDTA for 10 h at 37°C before adding 25 mM iodoaceta-
mide to stop the reaction. The resulting Fab fragment was purified using a Hitrap Protein G
column (GE Healthcare, NJ, USA) followed by size-exclusion chromatography with a
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Sephacryl S-100 column (GE Healthcare). Purified D5 Fab monomer was quantified by using a
Bradford assay and stored at -80°C before use.

To clone the genes encoding the D5 antibody, RNA was isolated from D5 hybridoma cells
using Trizol (Invitrogen) and converted to cDNA by reverse transcription. The variable regions
of the heavy chain and light chain were amplified by PCR using 5’ RACE system (Invitrogen)
according to the manufacturer’s instructions. The final PCR products were cloned into the
pGEM-T vector (Promega) for sequence determination. To produce a wild-type single-chain
antibody fragment (scFv), coding sequences for variable regions of heavy chain (VH, 1–118 aa)
and light chain (VL, 1–113 aa) were joined through an 11-amino acid residue (GGGGS)2G
linker by overlap PCR. The resulting PCR product, designated VH-(GGGGS)2G-VL, was ligated
into pET28b to yield the plasmid pET28b-D5-scFv-wt. To produce the scFV mutants, point
mutations (N100A, Y101A, W102A, F103A, D104A or F105A of VH) were engineered into the
plasmid pET28b-D5-scFv-wt by overlap PCR. The resulting plasmids were verified by sequenc-
ing. For scFv expression, the plasmids were individually transformed into E. coli strain BL21.
After induction, the transformed E. coli cells were lysed by sonication. The His-tagged target
protein was purified from the soluble fractions of the lysate using a Ni-NTA resin. Purified
scFv was quantified by the Bradford assay.

Cryo-EM imaging
Immune complexes were prepared by mixing EV71 VLP (1.4 mg/ml) or inactivated virus (0.8
mg/ml) with 1.2-times saturated D5 antibody or Fab fragment, equivalent to a molar ratio of
1:72, and then incubated at 37°C for 2 h. An aliquot of a 2 μl sample was deposited onto a glow
discharged holey carbon Quantifoil Cu grid (R1.2x1.3, 200 mesh, Quantifoil Micro Tools),
which was covered with a thin layer of home-made continuous carbon film. After 2 s blotting
to remove extra sample, the grid was plunge-frozen into liquid ethane using a FEI Mark IV
Vitrobot. Specimens were examined under low-dose conditions at 300 kV with a FEI Titan
Krios transmission electron microscope equipped with a Cs corrector. Images were recorded
on a Falcon II direct electron detector in the 7-frame movie mode. The electron dose rate was
set to ~16 e−/Å2・s and the exposure time was 1.1 s. All the images were recorded at a nominal
magnification of 37,000, corresponding to a pixel size of 1.79 Å, and with the defocus ranging
from 2 to 3.5 μm.

Cryo-EM single particle 3D reconstruction
To correct the drift and beam-induced motion, the 7 frames in each movie were aligned to gen-
erate a single micrograph using Motioncorr [44]. Due to the sticky nature of the sample, parti-
cles were manually boxed using the e2boxer.py program from the EMAN2.1 package [45]. CTF
fitting was automatically performed using the fitctf2.py program in jspr package [46], then visu-
ally validated and adjusted using EMAN1.9 ctfit program [47]. The structure factor was deter-
mined by computational fitting of multiple micrographs (http://blake.bcm.edu/emanwiki/
EMAN1/FAQ/StructureFactor). Reference-free 2D analysis and initial model building were
performed in EMAN2.1 [45]. The gold standard 3D reconstruction procedure was followed
using the jspr package [21], with the datasets split into two halves in the very beginning of the
iterative refinement. The jspr package was developed on the basis of EMAN1 and EMAN2, but
more customized to handle virus system with great gain in efficiency. The further refinement
of defocus, astigmatism and magnification of individual particle was all carried out in jspr [21].
The map resolutions were assessed in jspr [21] using gold standard criteria of 0.143 FSC cutoff.
After reconstruction, the maps were sharpened with structure factors to boost the density map
Fourier amplitudes, and then low pass filtered to the assessed overall resolution using e2proc3d.
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py in EMAN2.1 [45]. To better visualize and compare the Fab/IgG densities, usually at relative
lower resolution than that of the capsid region, we also showed the original unsharpened maps
that is usually more dominated by low-resolution features [48] (S4 Fig). The absolute pixel size
and handedness were confirmed by the good fitting of EV71 mature virus and empty particle
crystal structures (PDB ID: 3VBS and 3VBU) into the corresponding maps using UCSF Chi-
mera [49].

Local resolution was estimated using ResMap [22]. The local resolution evaluation of the F-
particle-Fab map reveals that the resolution of the Fab/IgG portion, especially that of their dis-
tal region, is lower than that of the capsid portion (S3 Fig), which is consistent with a previous
cryo-EM study on virus-Fab complexes [26]. This can be mainly attributed to the intrinsic
dynamic nature of Fab/IgG especially of their distal region. In addition, the potential sub-stoi-
chiometric occupancy of Fab/IgG on the particle surface could also contribute to the overall
lower resolution of the Fab/IgG compared to that of the capsid.

D5 Fab homology model building
There is no atomic-resolution structure available for antibody D5 yet. We thus carried out a
sequence Blast search for the variable regions of the heavy and light chains of antibody D5.
Two structures, the heavy chain of the R218 antibody (PDB ID: 4K2U) [50] and the light chain
of the MAb 1479 (PDB ID: 3U9U) [51], which share high sequence identity with their counter-
parts in D5 (S6 Fig), were chosen as templates. The heavy chain of D5 shares 85% sequence
identity with that of R218, with similar CDR1 and CDR2 regions but divergent CDR3 regions
(S6A Fig). The light chain of D5 shares 93% sequence identity with that of MAb 1479, and they
have identical CDR1 and CDR2 regions and also similar CDR3 regions (S6B Fig). The subse-
quent homology model building was performed through the SWISS-Model server [32].

Fitting of Fab and Roadmap calculation of Fab Footprint
Crystal structures of EV71 mature and immature virus (PDB code: 3VBS and 3VBU) [5] were
fitted into the corresponding maps utilizing UCSF Chimera’s Fit in Mapmodule [49]. Since
the distal end of the Fab density was less well resolved due to its high flexibility, only the vari-
able domain of this D5 Fab model was fitted into the corresponding map as a rigid body, also
using Fit in Mapmodule in Chimera [49]. This rigid-body fitting resulted in minor clashes
between the CDR3 loop of D5 heavy chain and the GH-loop of EV71 VP1. We then carried
out further flexible fitting on the models of the variable domains of the heavy and light chains
of D5 Fab together with the contacting VP1 of EV71 with the restraint of the cryo-EM density
map, using the molecular dynamics flexible fitting (MDFF) program [52]. Only the heavy
chain variable domain of D5 Fab was allowed to move while the other portions remained fixed
in this procedure.

The Fab density in the difference maps were projected on a stereographic sphere using
RIVEM [53]. The D5 Fab footprints were generated by projecting the radial density corre-
sponding to the interface between D5 Fab and the EV71 particles onto the particle surface. The
atomic coordinates from EV71 F-particle or E-particle crystal structures are represented as
roadmap.

Binding ELISA
For binding ELISA, 96-well plates were coated with 20 ng/well of EV71 E-particle, F-particle or
VLP, or 100 ng/well of SP70 peptide diluted in PBS buffer, and subsequently incubated at 4°C
for 12 h. The plate was washed five times with PBST buffer (PBS with 0.05% Tween-20) after
the above and each of the following steps. The wells were blocked with 200 μl/well of 5% nonfat
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milk in PBST for 1 h at 37°C, incubated with 50 μl/well of serially diluted scFv antibody or the
irrelevant protein HBc for 2 h at 37°C, and then incubated with 50 μl/well of HRP-conjugated
anti-His monoclonal antibody (ProteinTech) for 1 h at 37°C. After color development, the
absorbance was determined at 450 nm in a 96-well plate reader.

In vitro neutralization assay
The standard neutralization assay was performed as described previously [20]. Briefly, 100
TCID50 of EV71 G082 virus was incubated with serially diluted D5 IgG or Fab in a 96-well
plate at 37°C for 1 h, then 1.5�104 of RD cells in 100 μl medium were added to each well and
cultured at 37°C for 72 h. The cell viability was measured by using a MTT assay. The percent of
protection was calculated using the following formula: protection% = (OD490 of a given sam-
ple－average OD490 of virus only control) / (average OD490 of cells only control－average
OD490 of virus only control)�100. The 50% inhibition concentration (IC50) of D5 IgG and
Fab were calculated using GraphPad Prism 5.0.

Post-attachment neutralization assay was performed as described previously [43]. Briefly,
100 TCID50 of EV71 G082 virus was incubated with pre-seeded RD cells in 96-well plate at
4°C for 1 h followed by the washing away of the unbound virus. Next, serially diluted D5 IgG
or Fab was added to the virus-bound cells and incubated at 37°C for 1 h; then the unbound D5
IgG or Fab was also washed away and the cells were cultured at 37°C for 72 h. The IC50 of D5
IgG and Fab were determined as described above.

Bio-layer interferometry binding assay
The binding avidities of D5 IgG and Fab to the EV71 F-particle were analyzed by bio-layer
interferometry on an Octet RED 96 system (ForteBio) in kinetics buffer (PBS buffer supple-
mented with 0.1% BSA and 0.02% Tween-20) at room temperature. The inactivated EV71 F-
particles were labeled with biotin using the EZ-Link Sulfo-NHS-LC-LC-Biotin kit (Thermo Sci-
entific). After a brief rinse in kinetics buffer, the streptavidin (SA) biosensor tips were dipped
into 0.066 μg/ml of EV71-biotin solution for 10 min. Following a rinse in kinetics buffer, the
EV71-immobilized SA biosensors were allowed to associate with D5 IgG or Fab at different
concentrations (40, 8, 1.6, 0.32, 0.064 and 0.0128 μg/ml) for 25 min and then dissociate in
kinetics buffer for 10 min. EV71-bound biosensor was also allowed to associate with kinetics
buffer alone (without D5 IgG or Fab) to serve as a loading control. In addition, an empty sensor
tip (without EV71) was allowed to associate with 40 μg/ml of D5 IgG or Fab to assess non-spe-
cific binding. Data were processed using Octet Data Analysis v6.4 (ForteBio).

Yeast display assay
A yeast display technique described previously [34] was employed to map the D5 epitope.
Briefly, a pool of yeast (S. cerevisiae) expressing a combinatorial library of the P1 protein of
EV71 on the surface was constructed. After growth and induction, the yeast cells were mixed
with D5 to allow binding. Afterwards, antibody-treated yeast cells were subjected to immuno-
fluorescence staining and sorting of positive yeast by FACS. Finally, the plasmids from positive
yeast clones were isolated and sequenced. The results were analyzed using Sequencher 4.9
(Gene Codes Corp., Ann Arbor, MI).

Generation and sequencing of D5-escaping mutants
Briefly, antibodies (400 μg/ml) were mixed with 1×108 TCID50 of EV71/G082 virus, and the
mixtures were incubated at room temperature for 1 h and then at 37°C for 2 h. The virus/
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antibody mixtures were added to 2x106 RD cells, followed by incubation for two days at 37°C.
The cultures were harvested and subjected to three freeze-thaw cycles. Virus titer was deter-
mined by applying a micro-titration assay. After that, a second round of infection in the pres-
ence of D5 was performed as above except that the antibody concentration was increased to 1
mg/ml. After two rounds of selection, the resulting D5-resistant viruses were plaque purified
on Vero cells. The P1 region of the plaque-purified, D5-resistant mutants was amplified by
RT-PCR as described previously [43] using primers (forward 5’-GGCCATCCGGTGTGCAA-
CAG-3’ and reverse 5’- AGCAAGTCGCGAGAGCTGTC-3’) and subsequently verified by
sequencing.

Fitness determination of the D5-resistant mutants
EV71 wild-type and mutant (K218E and K218T) viruses were quantified by qRT-PCR assay. A
plasmid pIEXBac-P1 which contains the entire P1 gene of EV71 [43] was used as the standard
for calculation of viral genome copies. To determine the fitness, same amount of viruses (con-
taining 9.45 x 106 copies of viral RNA genome) was added to 3 x 105 RD cells preseeded 1 day
ahead in a 24-well plate and incubated at 4°C for 1 h. After removing unbound virus, fresh
medium were added to the cells and cultured at 37°C. Samples (both medium and cells) were
collected at 0, 3, 6, 12 and 24 h post infection, respectively, and then subjected to RNA extrac-
tion. The resulting RNA was analyzed for viral genome copy number by qRT-PCR. GADPH
mRNA of the samples was also determined, serving as the internal control. Data analysis was
performed using the 2-ΔCT method.

In vitro pull-down assay
The binding of EV71 variants to SCARB2 was determined by an in vitro pull-down assay.
Briefly, same amount of the EV71 wild-type or mutant viruses (2.23 x 107 copies of viral RNA
genome per treatment) were mixed with 1 μg of SCARB2-Fc (Catalog 1966-LM-050, R&D)
and 15 μl of anti-human Fc IgG conjugated agarose beads (Catalog A3316-5ML, Sigma) in
500 μl DMEMmedium plus 2% FBS, and then incubated at 4°C for 3 h with gentle rotation.
The unbound virus was removed by washing with PBS buffer. The virus-bound beads were
treated with 200 μl of Trizol reagent and mixed thoroughly with 100 μl CHO lysate for total
RNA extraction. The samples were analyzed for viral RNA genome and mouse β-actin mRNA
(as the internal control) by qRT-PCR. Data analysis was performed using the 2-ΔΔCT method.
The results were shown as the percentage of the EV71 genome copy numbers of the mutant
viruses in relation to that of the wild-type one.

In vivo protection assay
Groups of six-day-old suckling ICR mice were i.p. administered with PBS or a single dose
(10 μg/g body weight) of the control mAb or D5 mAb. One day later, the mice were inoculated
i.p. with 5×105 TCID50 of EV71/MAV-W and then monitored daily for survival and clinical
signs for a period of 14 days. Clinical scores were graded as follows: 0, healthy; 1, reduced
mobility; 2, limb weakness; 3, paralysis; 4, death. The mouse experiments were approved by
IACUC at Institut Pasteur of Shanghai. Animals were cared for according to the institutional
guidelines.

Accession numbers
The cryo-EM density maps of EV71 F-particle-Fab, F-particle-IgG, E-particle-Fab, and
VLP-IgG have been deposited in the Electron Microscopy Data Bank under accession codes of
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EMD-6366, EMD-6365, EMD-6383 and EMD-6384, respectively. The model covering the
EV71 VP1 GH-loop and the variable region of D5 Fab refined against the cryo-EM density
map of F-particle-Fab was deposited in the Protein Data Bank under accession code of 3JAU.

Supporting Information
S1 Fig. Representative cryo-EM images. (A) EV71 (including both the E- and F-particles) in
complex with D5 Fab. (B) EV71 (including both the E- and F-particles) in complex with intact
D5 IgG. (C) VLP in complex with D5 IgG. The red arrows indicate the EV71-bound Fab or
intact IgG. The black and white arrow-heads indicate F-particles and E-particles, respectively.
Scale bar = 50 nm. These images also indicate the sticky nature of the samples.
(TIF)

S2 Fig. Cryo-EMmap resolution evaluations. (A) Resolution evaluation of the cryo-EM
reconstructions by Fourier shell correlation (FSC) at 0.143 criterion. (B) The structural features
of segmented VP1 compact regions (fitted model in blue) in F-particle-IgG, E-particle-Fab and
VLP-IgG maps are shown.
(TIF)

S3 Fig. Local resolution evaluation of the F-particle-Fab map. Local resolutions estimated by
Resmap were rendered by four representative discrete 2D slides of the map. The color bar on
the left labels the corresponding resolution (unit is Å), with the dark blue representing 4.5 Å
and deep red representing 7.0 Å resolution.
(TIF)

S4 Fig. Unsharpened cryo-EM density maps and corresponding cut-away views of the
immune complexes. (A) F-particle-Fab complex. The complete particle is shown on the left.
To better render the relative location of the bound Fabs/IgGs, the corresponding cut-away view
of the central slice is also displayed on the right. (B) F-particle-IgG complex. (C) E-particle-
Fab complex. (D) VLP-IgG complex. The same radial colour scheme from the centre of a
sphere is used as in Fig 1A–1D. The icosahedral 5-fold, 3-fold and 2-fold symmetry axes are
indicated in the cut-away view. The black arrow-heads on the left panels indicate a pair of adja-
cent Fab densities across the 2-fold axis, and the red arrows on the right panels indicate a hol-
low middle region between the two lobes in a Fab density.
(TIF)

S5 Fig. Comparison of the neutralizing capacity and binding avidities of intact IgG and the
Fab fragment of D5. (A) IC50s determined by the standard neutralization assay. (B) IC50s
determined by the post-attachment neutralization assay. The error bars indicate standard devi-
ations of triplicate wells at each concentration. IC50s were calculated by GraphPad Prism 5.0.
(C) Bio-layer interferometry analysis of D5 IgG. (D) Bio-layer interferometry analysis of D5
Fab.
(TIF)

S6 Fig. Sequence alignment of D5 Fab with corresponding templates. (A) In the variable
region of heavy chain, antibody D5 shows high sequence identity with antibody K218 (PDB
ID: 4K2U) in the CDR1 and CDR2 regions, but not in the CDR3 region. (B) In the variable
region of light chain, D5 shows high sequence identity with antibody 1479 (PDB ID: 3U9U) in
not only the CDR1 and CDR2 regions, but also the CDR3 region.
(TIF)
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S1 Table. Number of images and particles, and final resolution for the cryo-EM reconstruc-
tions.
(DOCX)

S2 Table. Correlation scores between cryo-EM density maps� of different immune com-
plexes, calculated by the Chimera Fit In Mapmodule. � For the correlation calculation, the
entire density maps were used (including the IgG/Fab).
(DOCX)
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