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ABSTRACT The production of an L1 metallo-�-lactamase and an L2 serine active-
site �-lactamase precludes the use of �-lactams for the treatment of Stenotrophomo-
nas maltophilia infections. Preclinical data suggest that cefiderocol is the first ap-
proved �-lactam with reliable activity against S. maltophilia, but data on strains
resistant to current first-line agents are limited, and no studies have assessed
cefiderocol-based combinations. The objective of this study was to evaluate and
compare the in vitro activity of cefiderocol alone and in combination with levofloxa-
cin, minocycline, polymyxin B, or trimethoprim-sulfamethoxazole (TMP-SMZ) against
a collection of highly resistant clinical S. maltophilia isolates. For this purpose, the
MICs of cefiderocol, ceftazidime, levofloxacin, minocycline, polymyxin B, and TMP-
SMZ for 37 S. maltophilia isolates not susceptible to levofloxacin and/or TMP-SMZ
were determined. Nine strains with various cefiderocol MICs were then tested in
time-kill experiments with cefiderocol alone and in combination with comparators.
The only agents for which susceptibility rates exceeded 40% were cefiderocol (100%)
and minocycline (97.3%). Cefiderocol displayed the lowest MIC50 and MIC90 values
(0.125 and 0.5 mg/liter, respectively). In time-kill experiments, synergy was observed
when cefiderocol was combined with levofloxacin, minocycline, polymyxin B, or
TMP-SMZ against 4/9 (44.4%), 6/9 (66.7%), 5/9 (55.5%), and 6/9 (66.7%) isolates, re-
spectively. These data suggest that cefiderocol displays potent in vitro activity
against S. maltophilia, including strains resistant to currently preferred agents. Future
dynamic and in vivo studies of cefiderocol alone and in combination are warranted
to further define cefiderocol’s synergistic capabilities and its place in therapy for S.
maltophilia infections.
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The development of novel antimicrobials has improved the efficacy and reduced the
toxicity associated with treating some important multidrug-resistant (MDR) Gram-

negative pathogens, such as carbapenem-resistant Enterobacterales (1–3) and Pseu-
domonas aeruginosa (4–6). However, although Stenotrophomonas maltophilia is the
most prevalent carbapenem-resistant Gram-negative bloodstream pathogen in the
United States and is associated with significant morbidity and mortality (7, 8), treatment
strategies for this pathogen have not advanced in more than a decade (9). This is due
in large part to the myriad resistance mechanisms possessed by S. maltophilia, includ-
ing aminoglycoside-modifying enzymes, multidrug efflux pumps, and two intrinsic,
inducible �-lactamase enzymes, the L1 metallo-�-lactamase and the L2 serine active-
site �-lactamase (9). This broad array of resistance mechanisms has confined treatment
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to agents with increasing reports of resistance, high toxicity, and limited data with
which to guide optimal dosing strategies (10–15).

Cefiderocol is a novel catechol-substituted siderophore cephalosporin with potent
activity against MDR Gram-negative pathogens producing an array of �-lactamases,
including both serine enzymes and metalloenzymes (16). Multiple studies including
approximately 1,000 isolates have reported promising results on the in vitro activity of
cefiderocol against S. maltophilia, consistently demonstrating MIC90 values from 0.12 to
0.5 mg/liter (17–21). Additionally, in vivo murine thigh and lung infection models
confirm the potent efficacy of cefiderocol against S. maltophilia (22, 23). Unfortunately,
these in vivo analyses included few levofloxacin- and/or trimethoprim-sulfamethoxazole
(TMP-SMZ)-resistant isolates and no minocycline-resistant isolates, and they did not eval-
uate the activity of cefiderocol relative to that of clinically relevant comparators such as
levofloxacin, minocycline, or TMP-SMZ. Additionally, the role of cefiderocol-based combi-
nation regimens has not been explored to assess the potential for in vitro synergy against
this difficult-to-treat pathogen. As such, the objective of this study was to evaluate and
compare the in vitro activity of cefiderocol alone and its activity in combination with
levofloxacin, minocycline, polymyxin B, or TMP-SMZ against a global collection of highly
resistant clinical S. maltophilia isolates.

RESULTS

The MIC50, MIC90, and MIC range of each agent against all 37 isolates are summa-
rized in Table 1. All isolates (100%) were susceptible to cefiderocol, and its MIC50 and
MIC90 values were the lowest among those of all agents, at 0.125 and 0.5 mg/liter,
respectively. Minocycline was the only other agent to which �40% of isolates were
susceptible, at 97.3%. Based on CLSI interpretative criteria for P. aeruginosa, 28/37
(75.7%) isolates were intermediate to polymyxin B and 9/37 (24.3%) were resistant. Only
6/37 (16.2%), 13/37 (35.1%), and 14/37 (37.8%) isolates were susceptible to ceftazidime,
levofloxacin, and TMP-SMZ, respectively.

Table 2 displays the MIC values of cefiderocol and comparator agents against the
nine S. maltophilia isolates selected for time-kill experiments. Cefiderocol MICs spanned
nearly every doubling dilution, from 0.03 to 1 mg/liter, and there was an adequate
distribution of resistant phenotypes across the other four comparators. Five (55.5%)
isolates were susceptible to levofloxacin (MIC range, 1 to �16 mg/liter), 8 (88.9%) were
susceptible to minocycline (MIC range, 0.125 to 8 mg/liter), 6 (66.7%) were intermediate
to polymyxin B (MIC range, 0.125 to �8 mg/liter), and 3/9 (33.3%) were susceptible to
TMP-SMZ (MIC ranges, 0.25 and 4.75 to �8 and 152 mg/liter for TMP and SMZ,
respectively). No cross-resistance between cefiderocol and the comparator agents was
observed, since none of the nine isolates were susceptible to all five agents, and the
isolate that was least susceptible to cefiderocol (SM-7) was not resistant to any other
agent, while the isolate that was most resistant to the four comparators (SM-9)
demonstrated the lowest cefiderocol MIC (0.03 mg/liter).

The results of monotherapy time-kill experiments with each agent alone at the

TABLE 1 Activities of cefiderocol and comparator agents against 37 clinical
Stenotrophomonas maltophilia isolates nonsusceptible to levofloxacin and/or
trimethoprim-sulfamethoxazole

Agent

MIC (mg/liter) Susceptibilitya (%)

50% 90% Range S I R

Cefiderocol 0.125 0.5 �0.03 to 1 100 0 0
Ceftazidime 64 �128 1 to �128 16.2 2.7 81.1
Levofloxacin 8 �16 0.25 to �16 35.1 13.5 51.4
Minocycline 2 4 0.125 to 8 97.3 2.7 0
Polymyxin Bb 0.5 �8 0.03 to �8 0 75.7 24.3
TMP-SMZc 8 �8 0.03 to �8 37.8 0 62.2
aS, susceptible; I, intermediate; R, resistant.
bBased on CLSI interpretive criteria for Pseudomonas aeruginosa.
cValues given reflect the MIC of the trimethoprim component only.
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highest concentration tested (4� MIC or the maximum concentration of the free,
unbound fraction of the drug in serum [fCmax]) are displayed in Fig. 1. Cefiderocol alone
was bactericidal against 2/9 (22.2%) isolates (Fig. 1E and H). The mean (� standard
deviation [SD]) decrease in the bacterial concentration from 0 to 24 h across all nine
isolates exposed to cefiderocol at 4� MIC or fCmax was 0.05 � 2.16 log10 CFU/ml.

TABLE 2 MICs of cefiderocol and comparator agents against nine S. maltophilia isolates
included in time-kill experiments

Isolate

MIC (mg/liter)

Cefiderocol Levofloxacin Minocycline Polymyxin B TMP-SMZa

SM-1 0.25 2 2 2 �8
SM-2 0.5 1 1 4 �8
SM-3 0.03 4 0.125 0.25 0.5
SM-4 0.125 8 0.5 0.125 0.25
SM-5 0.5 1 4 0.25 �8
SM-6 0.25 �16 2 �8 8
SM-7 1 4 2 0.25 0.5
SM-8 0.125 �16 8 2 8
SM-9 0.03 �16 4 �8 8
aValues reflect the MIC of the trimethoprim component only.

FIG 1 Mean bacterial concentration (expressed as log10 CFU per milliliter)-versus-time profiles for cefiderocol (4� MIC in all panels) and each comparator against
nine S. maltophilia strains. Levofloxacin is shown at fCmax except in panels B and E (4� MIC). Minocycline is shown at fCmax except in panel C (4� MIC). Polymyxin
B is shown at fCmax except in panels C, D, E, and G (4� MIC). TMP-SMZ is shown at fCmax except in panels C, D, and G (4� MIC). Curves represent average
concentrations from triplicate experiments.
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Levofloxacin alone was bactericidal against 4/9 (44%) isolates (Fig. 1A to C and E), and
the mean (� SD) decrease from 0 to 24 h across all nine isolates was 1.36 � 3.56 log10

CFU/ml. Minocycline, polymyxin B, and TMP-SMZ were not bactericidal against any
isolate, regardless of the concentration tested.

Based on results from individual time-kill experiments, a concentration of 1⁄2� MIC
of cefiderocol was combined with 1⁄4� MIC or fCmax of levofloxacin and either 4� MIC
or fCmax of minocycline, polymyxin B, or TMP-SMZ (Fig. 2). The combination of cefidero-
col plus levofloxacin was synergistic and bactericidal against 4/9 (44.4%) and 1/9
(11.1%) isolates, respectively (Fig. 2A, B, F, and G). The mean (� SD) decrease in the
bacterial concentration after exposure to the combination from 0 to 24 h across all
nine isolates was 0.39 � 2.47 log10 CFU/ml. Synergy was observed in 2/3 (66.7%)
levofloxacin-susceptible isolates and 2/6 (33.3%) levofloxacin-intermediate or -resistant
isolates. The cefiderocol-plus-minocycline combination was synergistic against 6/9
(66.7%) isolates but was not bactericidal against any isolate (Fig. 2B to G). The mean (�
SD) decrease after exposure to the combination from 0 to 24 h across all nine isolates
was 0.0 � 1.41 log10 CFU/ml. Cefiderocol combined with polymyxin B was synergistic
and bactericidal against 5/9 (55.5%) and 2/9 (22.2%) isolates, respectively (Fig. 2B, C, E,
F, and I), although the mean (� SD) bacterial concentration increased 0.67 � 4.09 log10

CFU/ml from 0 to 24 h. Finally, cefiderocol combined with TMP-SMZ was synergistic and

FIG 2 Mean bacterial concentration (expressed as log10 CFU per milliliter)-versus-time profiles for cefiderocol (1⁄2� MIC in all panels) in combination with each
comparator against nine S. maltophilia strains. Levofloxacin is shown at either 1⁄4� MIC (A to E and G) or fCmax (F, H, and I). Minocycline is shown at fCmax in
all panels except C (4� MIC). Polymyxin B is shown at either fCmax (A, B, F, H, and I) or 4� MIC (C to E and G). TMP-SMZ is shown at fCmax in all panels except
D (4� MIC). Curves represent average concentrations from triplicate experiments.
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bactericidal against 6/9 (66.7%) and 1/9 (11.1%) isolates, respectively (Fig. 2B to G).
Synergy was observed in 3/3 (100%) and 3/6 (50%) isolates susceptible or resistant to
TMP-SMZ, respectively, and the mean (� SD) decrease from 0 to 24 h was 1.09 � 2.70
log10 CFU/ml.

DISCUSSION

The prevalence of serious infections due to S. maltophilia continues to increase
concomitantly with its almost inescapable resistance, while the number of viable
treatment options with reliable activity and acceptable safety profiles continues to
decline. Cefiderocol is the first and only approved �-lactam agent to demonstrate reliable
in vitro activity against Gram-negative pathogens expressing serine �-lactamase and
metallo-�-lactamase enzymes. As such, there is a growing interest in the potential use of
cefiderocol against S. maltophilia infections, although thorough evaluation of its activity
against resistant isolates alone and in combination with other agents is crucial to estab-
lishing its role in this arena.

In the present study, the activity of cefiderocol was assessed alone and in combi-
nation against a unique panel of S. maltophilia isolates resistant to one or more
currently preferred first-line treatment options. Susceptibility testing demonstrated that
cefiderocol was highly potent against MDR S. maltophilia. Despite widespread resis-
tance to other agents included in this study, the maximum cefiderocol MIC observed
was 1 mg/liter, 2 log2 dilutions below the CLSI provisional susceptibility breakpoint of
4 mg/liter (24). Notwithstanding the fact that our sample was intentionally enriched
with isolates resistant to levofloxacin and/or TMP-SMZ, these results are consistent with
those of previous studies evaluating the in vitro susceptibility of S. maltophilia to
cefiderocol (25–28).

This is the first study to directly compare the antibacterial activity of cefiderocol to
those of currently preferred treatment options for S. maltophilia using time-kill exper-
iments. Bactericidal activity was rarely observed in either monotherapy or combination
time-kill experiments regardless of the agent(s) or concentration(s) tested, and strain-
to-strain variability was visible across the nine isolates included. This is likely due to the
slow-growing nature of S. maltophilia, the inherently static nature of time-kill experi-
ments, and the drug concentrations utilized. Although supratherapeutic concentrations
of cefiderocol as high as 4� MIC were utilized, these concentrations are still �10-fold
lower than the fCmax values observed after a 2-g dose administered to healthy volun-
teers over 3 h (�45 mg/liter) (29). Since the primary objective of this study was to
evaluate synergy in combination with cefiderocol, drugs were utilized at concentrations
multiplicative of the MIC for the respective isolate rather than at human physiologic
concentrations. This approach allows for the evaluation of true synergy while main-
taining a constant concentration-to-MIC ratio across pathogens (30), although it may
underestimate the killing capacity possible at concentrations achievable in serum.
Regardless, the inability of monotherapy to achieve bactericidal activity against S.
maltophilia in vitro is consistent with the previous literature (31–33) and further
supports the need to evaluate combination regimens against this difficult-to-treat
pathogen.

Cefiderocol-based combinations were tested in 36 separate time-kill experiments (4
per isolate), and cefiderocol acted synergistically with another agent in 21/36 (58.3%)
experiments but was bactericidal in just 4/36 (11.1%) combination experiments. In a
majority of time-kill experiments, synergy was observed when cefiderocol was com-
bined with either minocycline (66.7%), TMP-SMZ (66.7%), or polymyxin B (55.5%).
Cefiderocol plus levofloxacin was the only combination for which synergy was not
observed in at least 50% of experiments (44.4%). Further, although interstrain variability
was high, cefiderocol in combination with TMP-SMZ achieved the largest average
decrease in bacterial concentrations over the 24-h experiments, at 1.09 log10 CFU/ml,
followed by polymyxin B at 0.67 log10 CFU/ml, levofloxacin at 0.39 log10 CFU/ml, and
minocycline at 0.0 log10 CFU/ml. Although there appeared to be some correlation
between susceptibility to the agent used in combination with cefiderocol and the
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achievement of synergy, the factors predictive of synergism with cefiderocol require
further study. Additionally, the spectrum of synergy observed in this study warrants
further investigation of these combinations in dynamic pharmacokinetic (PK)/pharma-
codynamic (PD) models that can mimic humanized PK, elucidate dose-exposure-
response relationships, and discover dosing regimens and/or combinations capable of
achieving bactericidal activity against this elusive pathogen.

The strengths of our study include the use of a global collection of clinical isolates
with resistance to levofloxacin and/or TMP-SMZ and the evaluation of cefiderocol both
alone and in combination with currently preferred agents. Since we intentionally
enriched our panel with resistant isolates, the rates of susceptibility to levofloxacin and
TMP-SMZ in this study are not reflective of those encountered in routine clinical
practice. Additional limitations of this study include the inherently static nature of 24-h
time-kill experiments and the use of cefiderocol concentrations well below those that
are clinically achievable.

In summary, cefiderocol displays potent in vitro activity against S. maltophilia,
including strains resistant to current first-line agents. In time-kill experiments, minocy-
cline, polymyxin B, and TMP-SMZ acted synergistically with cefiderocol against a
majority of isolates. These results support the further investigation of cefiderocol both
alone and in combination with these agents against S. maltophilia in more-complex in
vitro and in vivo models in order to further define its place in therapy for this pathogen.

MATERIALS AND METHODS
Bacteria and susceptibility testing. A panel of 37 clinical S. maltophilia isolates not susceptible to

levofloxacin and/or TMP-SMZ collected through the SENTRY Antimicrobial Surveillance Program from
2017 to 2018 was included in all experiments (34). Species identification was confirmed at JMI Labora-
tories (North Liberty, IA) by standard biochemical tests and via matrix-assisted laser desorption ioniza-
tion–time of flight mass spectrometry (MALDI-TOF MS) (Bruker Daltonics, Billerica, MA). Isolates included
community- and nosocomially acquired strains collected from patients with various disease states across
multiple continents (35). All isolates were maintained at – 80°C in cation-adjusted Mueller-Hinton broth
(CAMHB) (Teknova, Hollister, CA) with 20% glycerol and were subcultured twice on tryptic soy agar plates
with 5% sheep blood prior to use.

Analytical-grade ceftazidime, levofloxacin, minocycline, polymyxin B, sulfamethoxazole, and trim-
ethoprim powders were obtained commercially (Sigma-Aldrich, St. Louis, MO), and analytical-grade
cefiderocol powder was provided by the manufacturer (Shionogi & Co., Ltd.). Stock solutions of each
agent were freshly prepared as single-use aliquots at the beginning of each week and were kept frozen
at – 80°C. MICs were determined in triplicate via reference broth microdilution according to Clinical and
Laboratory Standards Institute (CLSI) guidelines using the same 0.5 McFarland standard suspension (36).
Cefiderocol MICs were determined using iron-depleted CAMHB (ID-CAMHB) as recommended elsewhere
(24, 37) in custom-prepared MIC panels (International Health Management Associates, Schaumburg, IL).
Modal MIC values are reported as MIC50, MIC90, and MIC range. Escherichia coli ATCC 25922 and
Pseudomonas aeruginosa ATCC 27853 were used as quality control organisms. Susceptibility interpreta-
tions were based on 2020 CLSI interpretative criteria (document M100-S30) for activity against S.
maltophilia for all agents except polymyxin B, for which results were interpreted on the basis of CLSI
interpretative criteria for P. aeruginosa (24). Susceptibility breakpoints were as follows: for cefiderocol,
�4 mg/liter; for ceftazidime, �8 mg/liter; for levofloxacin, �2 mg/liter; for minocycline, �4 mg/liter; and
for TMP-SMZ, �2 and 38 mg/liter, respectively. A polymyxin B MIC of �2 mg/liter was considered
intermediate given the lack of a susceptible category in CLSI document M100-S30.

Time-kill experiments. Time-kill experiments were performed in triplicate on the same day against
a subset of nine S. maltophilia isolates selected to provide a range of cefiderocol MICs and a variety of
phenotypic susceptibilities across comparator agents. Experiments were performed according to CLSI
guidelines (38) modified using a final volume of 2 ml in deep-well, non-tissue-treated plates. A starting
inoculum of �106 CFU/ml was prepared by suspending 3 to 4 isolated colonies selected from a pure
overnight culture in 5 ml of sterile saline and adjusting to a 0.5 McFarland standard; the suspension was
subsequently incubated with agitation to ensure log-phase growth and was then diluted 1:100 in
CAMHB. Colony counts were performed to ensure final inoculum densities. Time-kill experiments were
performed stepwise as follows: cefiderocol, levofloxacin, minocycline, polymyxin B, and TMP-SMZ were
tested alone at 1⁄4, 1⁄2, 1, 2, and 4� MIC, unless any of these concentrations exceeded the respective
drug’s fCmax value, in which case the fCmax was used. Additionally, if the MIC value was below the limit
of quantitation (e.g., �0.03 mg/liter), then the lowest observed value was used (0.03 mg/liter). The fCmax

values utilized simulated single doses of 750 mg levofloxacin (6.5 mg/liter) (39), 200 mg minocycline
given intravenously (1 mg/liter) (40), 1.5 mg polymyxin B/kg of body weight (2.5 mg/liter) (41), and 400
and 2,000 mg TMP-SMZ, respectively, given intravenously (5 and 35 mg/liter) (42). The fCmax of TMP-SMZ
simulated a 5-mg/kg dose of TMP administered to an 80-kg patient (42). Next, cefiderocol was tested at
1⁄2� MIC in combination with each comparator agent using the highest concentration of each individual
agent from step 1 that displayed no meaningful activity compared to the drug-free control strain

Biagi et al. Antimicrobial Agents and Chemotherapy

September 2020 Volume 64 Issue 9 e00559-20 aac.asm.org 6

https://aac.asm.org


(�1-log10 CFU/ml decrease from the starting inoculum at 24 h). A growth control without any antibiotic
was included with each experiment. All cefiderocol-based experiments were performed using ID-CAMHB,
including combination experiments, after an initial evaluation via MICs and time-kill analyses to ensure
that the use of ID-CAMHB did not affect the activity of any comparator agent (data not shown). At the
prespecified time points of 0, 2, 4, 6, and 24 h, aliquots of 20 �l were removed from the suspensions and
serially diluted in log10 dilutions. A 50-�l aliquot was then plated onto MH agar plates using an
automated spiral plater (Don Whitley WASP Touch; Microbiology International, Frederick, MD) and was
incubated at 35°C for at least 24 h prior to enumeration. Colony counts were performed using an
automated colony counter (ProtoCOL 3 Plus; Synbiosis, Frederick, MD). The theoretical lower limit of
quantitation was 100 CFU/ml. Time-kill curves were generated by plotting the average bacterial con-
centration (expressed as log10 CFU per milliliter) against time to compare the 24-h killing effects of single
agents alone and in combination. Bactericidal activity was defined as a �3-log10 CFU/ml reduction at
24 h from the starting inoculum, and synergy was defined as a �2-log10 CFU/ml difference between the
combination and the most active single agent alone (38).
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