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Abstract

Background: The misregulation of microRNA (miRNA) has been shown to cause
diseases. Recently, we have proposed a computational method based on a random
walk framework on a miRNA-target gene network to predict disease-associated
miRNAs. The prediction performance of our method is better than that of some
existing state-of-the-art network- and machine learning-based methods since it
exploits the mutual regulation between miRNAs and their target genes in the
miRNA-target gene interaction networks.

Results: To facilitate the use of this method, we have developed a Cytoscape app,
named RWRMTN, to predict disease-associated miRNAs. RWRMTN can work on any
miRNA-target gene network. Highly ranked miRNAs are supported with evidence
from the literature. They then can also be visualized based on the rankings and in
relationships with the query disease and their target genes. In addition, automation
functions are also integrated, which allow RWRMTN to be used in workflows from
external environments. We demonstrate the ability of RWRMTN in predicting breast
and lung cancer-associated miRNAs via workflows in Cytoscape and other
environments.

Conclusions: Considering a few computational methods have been developed as
software tools for convenient uses, RWRMTN is among the first GUI-based tools for
the prediction of disease-associated miRNAs which can be used in workflows in
different environments.

Keywords: Disease-associated miRNAs, miRNA-target interaction, Random walk with
restart, Automation, Cytoscape app, CyREST command APIs, CyREST APIs
Background
Prediction of novel disease-associated miRNAs is an important task in biomedicine. A

number of computational methods, including network-based and machine learning-

based ones, have been introduced for predicting disease-associated miRNAs [1–3].

However, few of them have been developed as prediction tools to facilitate their use [4,

5]. In general, disease similarity, miRNA similarity and known disease-miRNA
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associations are usually used as input data for both approaches [6]. The similarity infor-

mation was represented as networks (e.g., disease similarity network, miRNA similarity

network) in network-based methods, then label propagation algorithms were often used

to transfer disease-miRNA labels between miRNAs and diseases via the networks

[7–13]. Meanwhile, that information was often represented by matrices in some ma-

chine learning-based methods, then matrix factorization methods were used [14–17].

Network-based methods are mainly relied on homogeneous miRNA networks [10–13].

In such networks, nodes represent miRNAs and edges represent the degree of func-

tional similarity between miRNAs. Based on these homogeneous miRNA networks, as-

sociations between miRNAs and diseases are predicted based on the assumption that

functionally related miRNAs associate with phenotypically similar diseases.

A common limitation of the homogeneous miRNA network-based methods is that

the biological interactions between miRNAs and their target genes might be used inef-

fectively. This is because those interactions were only embedded as a degree of similar-

ity among miRNAs. For instances, the similarity between two miRNAs was measured

by a number of their shared target genes [11, 18–21]. These miRNA-target interactions,

including both predicted and experimentally validated ones, are now largely available in

a number of miRNA-target databases [22] and become useful resources for analysis.

This has inspired us to propose a novel network-based method for predicting disease-

associated miRNA [19] using miRNA-target gene interactions. More specifically, we

exploited the mutual regulation between miRNAs and their target genes to construct

mutual heterogeneous miRNA-target gene interaction networks (shortly called miRNA-

target interaction networks) (i.e., nodes represent miRNAs and their target genes, and

edges refer to the physical interactions between miRNAs and their target genes). We

then proposed a novel method, namely RWRMTN, based on random walk with restart

(RWR) algorithm on the miRNA-target interaction network to rank candidate miRNAs.

Experiment results show that RWRMTN outperforms existing state-of-the-art methods

including a network-based method RWRMDA [10], which also uses the RWR algo-

rithm but on homogeneous miRNA networks, and a machine learning-based method

RLSMDA [17]. RWRMTN was also proven to be stable, and it achieved relatively high

performance for both experimentally validated and predicted miRNA-target gene

networks [19].

Although many computational methods have been proposed for predicting disease-

associated miRNAs, however, only a few of them have been developed as software tools

which are convenient for biomedical applications. Indeed, we investigated 59 software

tools for predicting disease-miRNA associations in OMICtools [5], but most of them

provided only source code and with command-line interfaces, which are not convenient

for most of the biologists. Ten of them provide web-based interfaces, but only a few are

accessible such as CHNmiRD [23], OncomiR [24] and miRConnect [25] (Table 3 shows

a comparison between RWRMTN with the ten web-based tools).

To facilitate the use of RWRMTN, we develop a tool running on the Cytoscape

framework [33] to predict disease-associated miRNAs. RWRMTN can rank all miRNA

candidates in the miRNA-target gene network as well as candidates provided by users.

In addition, it can provide evidence from literature about associations with the disease

of interest for highly ranked miRNAs. These miRNAs then can also be visualized in re-

lationships with their target genes as well as supporting evidence. Equipped by newly-
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introduced automation features of Cytoscape, the use of RWRMTN can be extended to

workflows in other environments. Functions of RWRMTN were demonstrated in pre-

dicting breast and lung cancer-associated miRNAs via workflows in Cytoscape GUI

platform and other environments.
Implementation
Main functions and workflow

RWRMTN is written as a Cytoscape app (Fig. 1(a)). The main task of RWRMTN is to

predict novel disease-associated miRNAs. The primary result is ranking of candidate

miRNAs based on our previously proposed method RWRMTN [19] (see brief descrip-

tion in the next section). To make the result more reliable and intuitive, RWRMTN

provides two more functions which are evidence collection and visualization. The evi-

dence collection function gathers evidence from literature about the association of

highly ranked miRNAs and the disease of interest. The visualization function builds a

network of the selected miRNAs (e.g., highly ranked miRNAs) in relationships with

their target genes and the disease of interest. To make RWRMTN reaches a wider

range of users, we additionally implement automation features so that those functions

of RWRMTN can be called using CyREST APIs and CyREST Command APIs from

workflows written in other environments such as R and Python.

Prediction of novel disease-associated miRNAs is designed to complete through a

four-step workflow (Fig. 1(b)). First, two datasets, including a miRNA-target interaction

network and known disease-miRNA associations, must be specified. To facilitate the

use of RWRMTN, we preinstalled some widely used datasets. However, to be flexible,

the user can freely import others. Second, a disease of interest and candidate miRNAs

are selected to rank. The candidates can be either all remaining miRNAs in the

miRNA-target interaction network (i.e., excluding known miRNAs associated with the

disease of interest) or freely inputted by the user. Third, highly ranked candidate miR-

NAs can be selected for an evidence search. More specifically, we searched for the co-

occurrence of a candidate miRNA and the disease of interest from literature in PubMed
Fig. 1 An illustration of RWRMTN app and workflow for predicting disease-associated miRNAs. a Given a
disease of interest, RWRMTN app is run on a miRNA-target network to rank candidate miRNAs, then highly
ranked miRNAs are supported with evidence from literature and visualized by their rankings. These
functions of RWRMTN app can be called in workflows from other environments (e.g., Bash script, Python, R,
HTTP) using automation features (e.g., CyREST API). b Prediction of novel miRNAs associated with a disease
of interest (e.g., breast cancer) can be done through four steps
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via NCBI API [34]. Thus, relevant evidence from newly published research will be re-

trieved each time of the evidence search. Evidenced miRNAs are provided with

PubMed ID of the studies supporting an association between the miRNAs and the dis-

ease of interest. Finally, the selected miRNAs can be visualized based on their rankings

and in relation with their target genes, the disease of interest and the supporting

PubMed IDs.

RWRMTN method

RWR is a variant of random walk algorithm, and it mimics a walker that moves from a

current node in a network (i.e., G(V, E) with a set of nodes V = {v1, v2, …, vN} and a set

of links E = {(vi, vj)| vi, vj∈V}, a set of seed nodes S ⊆V) to a randomly selected adjacent

node or goes back to source nodes (also called seed nodes) with a restart-probability

(γ).

ptþ1 ¼ 1−γð ÞW 0
pt þ γp0 ð1Þ

where:

– W′ represents a transition probability matrix of the network

– pt is a |V| × 1 probability vector of |V| nodes at a time step t of which the ith

element represents the probability of the walker being at node vi∈V.

– p0 is the |V| × 1 initial probability vector.

In RWRMDA method [10], the RWR algorithm was used to rank miRNAs in homo-

geneous miRNA networks; therefore, the set of seed nodes (S) only contains known dis-

ease miRNA (Sm) (i.e., S = Sm).

p0ð Þi ¼
1
Smj j ifvi∈Sm
0 otherwise

8
<

:
ð2Þ

In RWRMTN [19], we assumed that the mutual regulation between a miRNA and
their targets leads to a transfer of disease information between them. Therefore, we

force the RWR algorithm to start from a set of seed nodes which consists of not only

known disease miRNAs but also their target genes. In particular, we enlarge the set of

seed node (S) by adding target genes (Sg) of the known disease miRNAs (i.e., S=Sm∪Sg),

with α∈ (0, 1) is a weight parameter, which controls the disease information transferred

between miRNAs and their target genes.

p0ð Þi ¼
α

1
Smj j ifvi∈Sm

1−αð Þ 1

Sg
�
�

�
�
ifvi∈Sg

0 otherwise

8
>>>><

>>>>:

ð3Þ

For both methods, all miRNAs in the network are eventually ranked according to the
steady-state probability vector p∞, which is obtained by repeating the iterations until

convergence is reached (in this study, ||pt + 1-pt|| < 10
− 6).

In the previous study, we have investigated the effects of the restart-probability (γ)

and the weight parameter (α) on the prediction performance of RWRMTN on two
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miRNA-target gene networks. More specifically, we varied the weight parameter (α) in

the range {0.1, 0.3, 0.5, 0.7, 0.9} and the restart probability γ in the range [0.1, 0.9] in

steps of 0.1. Experimental results showed that the performance of RWRMTN slightly

increased according to the change of the weight parameter in both the networks. This

indicates that disease information contained in known disease miRNAs is still more im-

portant than that in their target genes when ranking candidate disease-associated miR-

NAs. In addition, RWRMTN is either slightly better or stable when the restart

probability γ increased in the two networks. The slight increase in the prediction per-

formance in a network suggested that disease miRNAs in that network are less modu-

larized than the other.
Preinstalled data

To facilitate the use of the app, we preinstalled some datasets. First, two miRNA-target

gene networks collected from an experimentally validated dataset, miRWalk [35] and a

predicted dataset, TargetScan [36] were preinstalled (Table 1). However, the user can

import any other miRNA-target gene network to use. Second, two known disease-

miRNA association datasets were also pre-collected, i.e., miR2Disease [37] and HMDD

[38] (Table 2).
Results
The overall prediction performance of RWRMTN on a set of diseases was reported in

our previous study [19]. In this section, the effectiveness of RWRMTN was demon-

strated for breast cancer in two case studies via different scenarios. Given the breast

cancer with their known associated miRNAs, firstly, all other miRNAs in the miRNA-

target networks were used as candidates. The overall performance of RWRMTN in

terms of AUC (Area under the ROC curve) for breast cancer was assessed using a

leave-one-out cross-validation (LOOCV) scheme (Fig. 2). Then, the candidates were

ranked and supported with evidence. More specifically, we performed this task with

candidate miRNAs from the miRNA-target gene network constructed from TargetScan

[36] based on 31 known breast cancer-associated miRNAs reported in miR2Disease

[37] using Cytoscape menu and Command APIs via the four-step workflow (Fig. 3). As

a result, four of top 10 miRNA candidates were supported with evidence from literature

about their associations with breast cancer. Secondly, only miRNAs that were differen-

tially expressed between case and control samples were used as the candidates for rank-

ing. More specifically, we ranked 799 miRNAs that were differentially expressed

between the 64 wild-type samples and 36 TP53 mutant breast cancer samples collected

from [39] via CyREST API called in R environment using the miRNA-target gene net-

work constructed from miRWalk [35] and the known disease-miRNA association data-

set HMDD [38]. The scripts for calling the CyREST API in other environments such as
Table 1 Preinstalled miRNA-target gene interaction datasets

Datasets Number of miRNAs Number of target genes Number of known interactions

miRWalk 740 11,976 38,569

TargetScan 1537 15,031 520,256



Table 2 Preinstalled known disease-miRNA association datasets

Datasets Number of miRNAs Number of diseases Number of known associations

miR2Disease 118 53 270

HMDD 574 243 5618
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Python and Bash were also introduced. Furthermore, another case study on lung cancer

was demonstrated (See more detail in Additional file 1).
Comparison between RWRMTN with other tools

We investigated 59 software tools (as of 16th March 2020) for predicting disease-

miRNA associations in OMICtools [5] which has accumulated tens of thousands of

tools for omics data. However, most of them provide only source code and with

command-line interfaces, which are not convenient for most of the biologists. In-

deed, 14 out of the 59 tools are web-based including: mirfluence [26], Ifmda [27],

CHNmiRD [23], miRiaD [28], OncomiR [24], miRPD [40], MIDP [30], DISMIRA

[31], MDHGI [32], CMP [29], miRConnect [25], DMPred [41], MMiRNA-Tar [42]

and miRNACon [43]. However, the web page of DMPred [41] could not be found,

and miRPD [40] was actually designed for identifying microRNAs from deep

sequencing data. In addition, MMiRNA-Tar [42] and miRNACon [43] were not de-

signed specifically for predicting disease-associated miRNAs. Thus, the four tools

were eliminated from the comparison. Thus, we finally have compared the rest

(ten tools) with RWRMTN (Table 3).

In the aspect of function comparison to RWRMTN, as tools for predicting disease-

associated miRNAs, all of them provided ranking for candidate miRNAs, however only

four of them provided evidence for potential disease-miRNA associations. RWRMTN,

on the other hand, integrated NCBI API [34] to the evidence search function, thus rele-

vant evidence from recently published research will be retrieved each time users per-

form the task. Besides displaying the results in tabular form, only two tools visualized
Fig. 2 Prediction performance of breast cancer by RWRMTN on the two miRNA-target gene datasets
(miRWalk and TargetScan). a The AUC values when the restart probability was varied in a range [0.1, 0.9]. b
The ROC curve and the AUC values when the restart probability was set to 0.5 for the case study. For all
experiments, the weight parameter was set to 0.5



Fig. 3 A four-step workflow of RWRMTN for predicting breast cancer-associated miRNAs. Step1: Load
datasets: a miRNA-target interaction dataset and a known disease-miRNA association dataset must be
selected. Step 2: Rank candidate miRNAs: a disease of interest (e.g., breast cancer) is chosen, then a set of
candidate miRNAs is specified and ranked. Step 3: Search Evidences: Top-ranked candidate miRNAs are
selected and provided with evidence from literature about their associations with the disease of interest.
Step 4: Rank-based visualization: the selected candidate miRNAs are visualized based on their rankings and
their relationships with the disease of interest, known breast cancer-associated miRNAs and supporting
PubMed IDs. These steps can be performed by either the Cytoscape menu or CyREST Command APIs called
from other environments (e.g., R)
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the association between miRNAs and diseases. In contrast, highly ranked miRNAs,

known miRNAs, target genes, the disease of interest as well as supporting PubMed IDs

and their associations could be intuitively viewed in a network in RWRMTN. Lastly,

none of them provides automation function of reproducibility to different environ-

ments. Equipped with CyREST API of Cytoscape platform, RWRMTN functions can be

invoked from any workflows running in other environments. In other aspects, like most

of the tools, RWRMTN was also designed for multiple diseases. However, it is more

flexible in providing the input data, since users can opt between preinstalled datasets or

their own. None of the web-based tools provided this function. Finally, only three out

of the ten web-based tools can be accessed via links provided in their publications. In

contrast, RWRMTN is easy to be managed and maintained since the available update

of RWRMTN will be notified by Cytoscape.
Prediction of breast cancer-associated miRNAs using Cytoscape menu and CyREST

command API

In this section, we demonstrate the use of RWRMTN in predicting novel breast

cancer-associated miRNAs by the four-step workflow. The workflow can be accom-

plished using either Cytoscape menu or CyREST Command API (Fig. 4) (See more de-

tail in Additional file 1).

For the first step, a miRNA-target interaction dataset TargetScan [36] and a known

disease-miRNA association dataset miR2Disease [37] were used. Note that, besides the
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Fig. 4 Perform the four-step workflow of RWRMTN. a via Cytoscape menu (Apps ➔ RWRMTN). b via CyREST
Command APIs (Help ➔ Automation ➔ CyREST Command API ➔ RWRMTN)
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two preinstalled datasets, miRNA-target interaction network can be freely imported by

the user.

For the second step, a set of candidate miRNAs for breast cancer (OMIM ID:

114480) is ranked. To this end, we first selected the disease, then all miRNAs in the se-

lected miRNA-target interaction network were selected as candidates for ranking. Note

that, users can manually input candidate miRNAs or import them from a file. After

that, the candidate miRNAs were ranked by the RWRMTN method [19] with default

parameter settings (See more detail in Additional file 1).

For the third step, we selected the top ten ranked candidate miRNAs, then find the

evidence of their associations with breast cancer from literature (PubMed). As a result,

four of them were supported with evidence from literature about their associations with

breast cancer (Fig. 5).

For example, hsa-miR-506 was supported by five studies (PubMed IDs: 23717581,

25707493, 26059632, 26398880 and 27542202). The study (PubMed ID: 23717581) [44]

showed that has-miR-506 regulates epithelial-mesenchymal transition in breast cancer

cell lines. Meanwhile, the study (PubMed ID: 26059632) [45] proved notable inhibition

of hsa-miR-506 over-expression to proliferation and metastasis of breast cancer cells.

In addition, study (PubMed ID: 26398880) [46] indicated that the mechanism under-

lying miRNA-506 is a contributing factor in breast carcinogenesis (has-miR-506 was

proven to be a tumor suppressor). In addition, hsa-miR-520d-5p supported by a study

(PubMed ID: 28721278) [47]. More specifically, it was reported that this miRNA upre-

gulates the activation of BRCA1 (breast cancer 1, early onset) in the DNA repair

process – 35 days after transfection. Moreover, hsa-miR-4319 was showed in study

PubMed ID: 30021199 as a suppressor of the malignancy of triple-negative breast can-

cer by regulating self-renewal and tumorigenesis of stem cells. Finally, hsa-miR-106b

was proven by the experiment carried on patient samples and cell lines in the study

(PubMed ID: 26621835) [48].
Fig. 5 Ranked candidate miRNAs. Top-ranked candidate miRNAs were selected and provided with evidence
from the literature (highlighted part)
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For the final step, the top selected candidate miRNAs can be visualized in a network

based on the rankings. In addition, target genes, the disease of interest and detail infor-

mation of PubMed IDs collected from Step 3 such as paper title, author list, journal

name can be displayed aside in this network (Fig. 6).
Prediction of breast cancer-associated miRNAs by calling CyREST API

In this section, we first introduce some developed CyREST APIs, which provides

some helpful functions. Second, we demonstrate their use in a workflow in R

environment.

A total of four CyREST APIs were developed in RWRMTN (Fig. 7): First, GET

/RWRMTN/v1/diseaseList returns a list of all diseases (OMIM ID and disease name)

available in the selected known disease-miRNA association database (e.g., HMDD [38]).

Based on this list, users can select a disease of interest. Second, GET /RWRMTN/v1/

diseaseList/{diseaseName} provides a list of diseases whose names match the query

{diseaseName} parameter (e.g., breast). This API helps user narrow down the list of

diseases to the disease of interest (e.g., OMIM ID 114480 for breast cancer). Third,

POST /RWRMTN/v1/rank lets RWRMTN rank candidate miRNAs. Finally, GET:/

RWRMTN/v1/getRank/{limit} returns top-ranked miRNAs by setting {limit} parameter.

In this case study, we used a dataset GSE19783 from a study [39] published in NCBI

GEO [49], which was created using Agilent-019118 Human miRNA Microarray 2.0

G4470B platform (GPL8227) and Agilent-014850 Whole Human Genome Microarray

4x44K G4112F (GPL6480) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1

9783). The study characterizes breast cancer subtypes from joint analysis of high

throughput miRNA (using GPL8227) and mRNA (using GPL6480) data.
Fig. 6 Visualization of top-ranked candidate miRNAs and breast cancer. a With supporting PubMed IDs and
(b) detail information of the selected PubMed ID. c With known breast cancer-associated miRNAs. PubMed
IDs, disease, candidate and known miRNAs are represented in parallelogram, octagon, ellipse and triangle
shapes, respectively. The darker red a miRNA is the higher ranking it has. Known and candidate associations
with the disease are represented by solid and dashed lines, respectively

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19783
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19783


Fig. 7 CyREST APIs of RWRMTN. The four APIs are used to query from datasets in the app (GET) and to let
the app rank candidate miRNAs (POST)
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In this case study, we identified 799 candidate miRNAs which were differentially

expressed between the 64 wild-type samples (WT) and 36 TP53 mutant samples. Then,

we ranked the candidate miRNAs by RWRMTN via a CyREST API using a miRNA-

target interaction dataset miRWalk [35] and a known disease-miRNA association data-

set HMDD [38] via workflow in R environment using CyREST API POST /RWRMTN/

v1/rank (See more detail in Additional file 1).
Conclusions
In this study, we introduce a tool as a Cytoscape app, RWRMTN, for predicting novel

disease-associated miRNAs. The tool was developed based on our previously proposed

method with the same name, which was proven to be better than other state-of-the-art

methods on overall prediction performance and to have the ability in predicting novel

miRNAs associated with 23 diseases [19]. Because the core method is a network-based,

thus RWRMTN can exploit network integration and visualization functions of Cytos-

cape. In particular, the tool relies on miRNA-target gene networks to rank candidate

miRNAs with supporting functions such as evidence collection and visualization for

highly ranked candidate miRNAs. In addition, by implementing automation functions,

it can be used in workflows in other environments. We further demonstrate the use of

RWRMTN by showing its ability in predicting novel breast and lung cancer-associated

miRNAs.
Availability and requirements

Project name: RWRMTN

Project home page: https://github.com/hauldhut/RWRMTN
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