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ABSTRACT: Efficient and selective oxidative dehydrogenation
(ODH) catalysts are crucial to advance the production of valuable
petrochemicals. In this study, we leverage the power of machine
learning to predict dehydrogenation (DH) product yield and
unravel the factors influencing the product distribution. A
comprehensive data set obtained from experiments conducted in
a fixed-bed reactor under varying temperatures, feed ratios (O2/n-
butane), and metal oxide loadings (Ni, Fe, Co, Bi, Mo, W, Zn, and
Mn) on an aluminum oxide support served as the basis for model
development. Three supervised machine learning models, Boosted
Tree (BT), Extreme Gradient Boosting Linear (XGBL), and
Support Vector Machine Radial (SVMR), were evaluated. The
ensemble technique of the three models showed remarkable
accuracy, with an RMSE of 1.65 and MAE of 1.14 on the test data set, and it demonstrated robust generalization capabilities by
capturing 87% of the variation in DH yield. In the feature importance analysis of the selected models, Mo, Co, Ni, and W emerged as
critical factors influencing the DH yield. The practical significance of these findings lies in their potential to revolutionize catalysis
research and industrial applications. The ability of the ensemble model to predict DH yields opens new avenues for optimizing DH
products and designing more advanced catalysts. By providing essential insights into the influential variables governing the ODH
reactions, researchers can make informed decisions to achieve higher yields and efficiencies.

■ INTRODUCTION
The demand for butenes and 1,3-butadiene, which are essential
building blocks of the petrochemical industry, continues to
grow. The conventional production route via direct dehydro-
genation (DDH;eqs 1−5) of n-butane using platinum (Pt)-and
chromium (CrOx)-based catalysts1−3 faces two major
challenges: catalyst deactivation due to coke deposition and
the need for high reaction temperatures to achieve reasonable
conversions. To address these limitations and seek more
efficient and sustainable alternatives, researchers have explored
oxidative dehydrogenation (ODH) of n-butane as a promising
alternative.

n iC H C H H4 10 4 8 2+ (1)

n cisC H 2 C H H4 10 4 8 2+ (2)

n transC H 2 C H H4 10 4 8 2+ (3)

n C H 1 C H H4 10 4 8 2+ (4)

n C H 1, 3 C H 2H4 10 4 6 2+ (5)

ODH represents a compelling approach, as it involves
cofeeding n-butane with oxidants, such as O2, CO2, or N2O,
which has been shown to minimize catalyst deactivation and
allow for operation at lower temperatures, thus enhancing the
energy efficiency and prolonging the catalyst lifetime.4−9 The
typical reaction equations for n-butane ODH to 1,3-butadiene
using cofed oxygen are presented in eqs 6−10. Despite the
potential advantages of ODH, the commercialization of this
process has been hindered primarily by the challenge of
achieving the desired selectivity for the dehydrogenation (DH)
products (butenes and 1,3-butadiene). The overoxidation of
butane and intermediate butenes to stable oxidation products
(COx) reduces the selectivity for the desired products.

n iC H 1/2O C H H O4 10 2 4 8 2+ + (6)
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n cisC H 1/2O 2 C H H O4 10 2 4 8 2+ + (7)

n transC H 1/2O 2 C H H O4 10 2 4 8 2+ + (8)

n C H 1/2O 1 C H H O4 10 2 4 8 2+ + (9)

1 C H 1/2O 1, 3 C H H O4 8 2 4 6 2+ + (10)

Researchers have focused on the emerging field of catalyst
informatics to overcome this critical challenge and accelerate
the development of high-performance ODH catalysts. Catalyst
informatics leverages data science techniques to design optimal
catalysts for specific reactions and mechanisms.10,11 It
encompasses diverse aspects such as data set generation, data
preprocessing, data visualization, and machine learning (ML).
ML plays a pivotal role in identifying meaningful relationships
between catalyst descriptors and performance metrics, thereby
expediting the exploration of catalytic materials and their
properties.10,12 The use of ML in the field of heterogeneous
catalysis dates back to the mid-1990s when it was first used to
enhance the discovery of novel catalysts. Over the years, ML
techniques have been increasingly applied to predict catalyst
performance,13 optimize reaction conditions through data-
driven approaches,14 and discover previously unknown
catalysts,15 particularly for reactions such as the oxidative
coupling of methane (OCM). Recently, a comprehensive
review on the predicting ability of machine learning models
including predicting product yield, product compositions and
product properties, with emphasis on the thermochemical
treatment of biomass, was reported by Leng and his co-
workers.16 The review also highlighted various machine
learning schemes and provided ways of enhancing the
predictive performance, generalizability and application of ML.
Different groups explored the predicting ability of ML

models for different catalytic and noncatalytic applications. For
example, Kumar et al.17 reported the use of different ML
algorithms for predicting the binding energies of oxygen and
carbon atoms on single atom alloys of Cu, Ag and Au, with
gradient boosting regression (GBR) algorithm having the best
prediction with an error of ∼0.2 eV. Interestingly, combining
the ML approach with ab initio microkinetic model (MKM)
resulted in a higher turnover frequency for ethanol conversion
during the nonoxidative ethanol dehydrogenation. Similarly,
Yilmaz et al.18 utilized random forest (RF) algorithm for
predicting CO2 conversion during methanation reaction, using
23 descriptors that consist of catalyst properties, reaction
conditions and preparation methods. Excellent predictions
were recorded with an RMSE of 12.7 and R2 of 85% for the
test data sets.
Madaan et al. pioneered the use of descriptor models based

on radial distribution functions (RDF) to predict the
performance of bimetallic mixed-oxide-supported catalysts for
the n-butane ODH. Their approach demonstrated impressive
accuracy, achieving a prediction accuracy of over 90% for a
new set of bimetallic oxides.19 In a recent study, our group
extended this methodology to predict both the conversion of
n-butane and selectivity for 1,3-butadiene during ODH by
employing different ML algorithms, including linear and
nonlinear methods. Among these algorithms, the support
vector machine with radial basis function (SVMR) model has
emerged as the top-performing predictor, yielding high
coefficients of determination (R2), low mean absolute errors
(MAE), and root-mean-square errors (RMSE).20

Most recently, Liu et al.21 utilized four different ML
algorithms including artificial neural network (ANN), k-
nearest neighbor (KNN), support vector regression (SVR)
and random forest regression (RFR) to predict propylene
space-time yield based on literature reported data for CO2
assisted oxidative dehydrogenation of propane. RFR model
outperformed the other models having the least RMSE value of
0.027 and highest R2 of 81.8%. Notably, WHSV and
temperature were reported as the most important features
for the prediction based on SHAP analysis. Similarly, Roh et
al.22 developed eight ML algorithms including CatBoost
regressor, Decision tree regressor, DNN, and RF regressor to
predict the performance of 5655 data obtained from the
literature for the DRM catalysts. CatBoost regressor model
surpassed all the models with the highest prediction accuracy
of 96% R2 and 5.2663 RMSE. Likewise, Chen et al.23 validated
four ML models for predicting guaiacol conversion during the
catalytic hydrodeoxygenation reaction. Data set were generated
based on literature consisting varying reaction conditions and
catalyst characteristics. Gradient Boosting Regression demon-
strated superior performance with R2 = 73−95%. Temperature
and catalyst surface area were found to exert the most
significant influence in the prediction based on permutation
and SHAP feature importance analysis. All these studies have
reported effective prediction using ML models with large data
sets. However, one major drawback is the utilization of
literature reported results for the model’s development.
Because most literature seldom report negative results,
hence, the data set will contain majorly positive results thereby
increasing bias coupled with ineffective understanding and
generalization of the models.
In this study, we further advanced the application of ML to

the ODH of n-butane by developing ML models to predict the
yield of DH products. The novelty of this study lies in the
utilization of the ensemble technique for the three developed
models to further enhance their prediction ability, based on
experimentally generated data set. Typically, the ODH reaction
involves three competitive pathways: dehydrogenation (DH),
cracking, and partial/complete oxidation. The motivation
behind this study is 2-fold: first, to address the challenge of
selectivity control and increase the understanding of catalyst
design principles for desirable product formation (mainly the
DH pathway), and second, to advance the field of catalyst
informatics as a valuable and efficient tool for discovering high-
performance ODH catalysts. Through a comprehensive
analysis of ML model predictions, we aimed to gain insights
into the factors influencing product yield, paving the way for
future catalyst design and process optimization.

Methodology. Herein, we present a comprehensive data
set derived from a series of experiments for the development of
efficient and selective catalysts for the ODH of n-butane. The
data set was collected from a fixed-bed flow reactor using
catalysts prepared via coimpregnation and activated via a two-
step calcination process. The calcination process involved two
heating steps: the first at 350 °C for 1 h and the second at 590
°C for 2 h, with ramping rates of 10 and 15 °C/min,
respectively. These experiments involved various combinations
of Ni, Fe, Co, Mo, Zn, and W oxides supported on γ-Al2O3,
with loadings ranging from 0 to 30 wt %. The reaction was
tested using 300 mg of each catalyst, and temperatures ranging
from 400 to 500 °C were explored, along with O2/C4 feed
ratios of 1, 2, and 4 mol/mol. Details of the choice of metal
oxides and supports, catalyst synthesis, characterization, and
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performance evaluation can be found in our previous
studies.7−9

Each data set entry represents a specific combination of
metal oxides on the Al2O3 support tested under particular
temperature and O2/C4 feed ratio conditions. One noteworthy
aspect of our data set was the inclusion of both positive and
negative data. Positive data correspond to successful and
selective catalysts, whereas negative data refer to results for
nonselective catalysts. Including such diverse data types, which
are often underrepresented in the literature, enhances the
richness and complexity of the data set. This allows ML
algorithms to better understand the underlying relationships
and provides a basis for accurate learning and modeling. The
primary focus of our study was to predict the DH yield as the
outcome of interest. These models exploit the wealth of
information in diverse data sets to identify the key features
influencing yield and ultimately accelerate the discovery of
high-performance catalysts for the ODH of n-butane.

Measurement and Calculation of Outcome Variables
in ODH of n-Butane. This study determined the primary
variable of interest, particularly DH yield, using an online gas
chromatograph connected to a fixed-bed reactor. We utilized
flame ionization and thermal conductivity detectors with
various columns to detect the reaction products. The
fundamental outcome metric, DH yield, was calculated from
the Butane Conversion and DH selectivity based on carbon
balance principles (eqs 1−3). Butane conversion (%) is the
percentage of butane converted during the ODH reaction.

Butane Butane (%)

(moles of butane fed

moles of butane in the product)

/(moles of butane fed) 100

=

× (11)

The DH Selectivity (%) represents the percentage of the
DH product formed relative to the extent of butane
conversion.

DH selectivity (%)

(moles of DH product)/(Butane conversion) 100= ×
(12)

The DH yield indicates the overall efficiency of the ODH
process in producing the desired DH product.

DH yield (%) (Butane conversion DH selectivity)

/100

= ×
(13)

This outcome variable, namely the DH yield, is an essential
indicator of the performance of the ODH reaction and plays a
crucial role in understanding the activity and selectivity of the
catalysts under investigation. By accurately measuring and
calculating this metric, we evaluated the effectiveness of
different catalyst formulations and optimized the design of
high-performance catalysts for ODH of n-butane.

Descriptor Variables Influencing the Performance of
ODH Catalysts. We explored a carefully selected set of
descriptors that significantly influenced the performance of the
ODH catalysts. These descriptors encompass temperature
(ranging from 400 to 500 °C), the feed ratio of O2 to n-butane
(ranging from 1 to 4 mol/mol), and varying loadings (0−30 wt
%) of several metal oxides, including nickel (Ni; 0−20 wt %),

iron (Fe; 0−20 wt %), cobalt (Co; 0−20 wt %), bismuth (Bi;
0−30 wt %), molybdenum (Mo; 0−15 wt %), tungsten (W;
0−30 wt %), zinc (Zn; 0−20 wt %), and manganese (Mn; 0−
20 wt %). They play a pivotal role in shaping the outcomes of
catalytic processes. The temperature and feed ratio directly
affected the degree of feed conversion and selectivity toward
the desired and undesired products. Higher temperatures and
feed ratios tended to favor cracking and deep oxidation
products. In contrast, an optimal temperature and moderate
feed ratio facilitated the DH pathway, leading to the desired
product formation.19

Furthermore, the metal oxide composition and loading in
the catalyst exert a profound influence on its properties, such
as acidity, reducibility, nature of the oxygen species, and the
interaction between the metal(s) and support.24 These factors,
in turn decisively affect the selectivity toward the desired
product, ultimately determining the effectiveness of the catalyst
in the ODH reaction.25,26 By exploring and understanding the
role of these descriptor variables, we aimed to unlock insights
into the intricate mechanisms governing the ODH reactions.
This knowledge is instrumental in guiding the rational design
of high-performance catalysts for this industrially significant
process, paving the way for more efficient and sustainable
petrochemical production in the future.

■ STATISTICAL ANALYSIS
Data Exploration. The data set used in this study was

derived from experimental testing conducted in a fixed-bed
reactor. It comprises 11 variables, with one being the response
variable (DH yield) and the remaining ten being predictor
variables. The predictor variables included temperature
(measured in degrees Celsius), feed ratio (O2/n-butane), and
various loadings (ranging from 0 to 30 wt %) of metal oxides,
specifically Ni, Fe, Co, Bi, Mo, W, Zn, and Mn. Throughout
the experiments, 185 observations were collected for each
variable to provide a comprehensive data set for the analysis.
This extensive data collection enabled a thorough exploration
of the behavior of the fixed-bed reactor and its performance
under different conditions.
Our initial analysis started with data exploration to

comprehensively understand the data set and identify patterns
and relationships among the variables. Two primary methods,
namely, the correlation plot and pair plot, were employed for
this purpose. The correlation plot provides significant insights
into the relationships between the predictor variables. This
allowed us to visualize both positive and negative associations
among the variables. By examining the correlation coefficients,
we identified strongly correlated variables that showed weak or
negligible correlations. This information is crucial for under-
standing the interdependencies among predictor variables and
for assessing potential multicollinearity issues.
In addition, a pair plot provided a detailed overview of the

distributions and relationships between the selected variables
(Figure S1). Each subplot on the diagonal presents a histogram
of a single variable, providing a visual representation of its
distribution. Additionally, the off-diagonal plots consisted of
scatter plots between pairs of variables, revealing the potential
correlations between them. Through this visualization, we
gained insight into the nature of the relationships and the
presence of linear or nonlinear associations. By conducting
thorough data exploration, we were able to identify significant
trends and patterns within the data set. These insights were
instrumental in guiding subsequent analyses and model
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development, ensuring that DH could be accurately predicted
based on predictor variables. The data exploration process laid
the foundation for a deeper understanding of the factors that
influence the DH yield.

Model Development. This study aimed to utilize an
ensemble model to predict the DH yield by integrating three
well-established supervised ML models: Boosted Tree (BT),27

Extreme Gradient Boosting Linear (XGBL),28 and Support
Vector Machine Radial (SVMR).29 Brief discussions regarding
the models are provided in the Supporting Information. The
process involves developing individual models for each
algorithm and conducting nested cross-validation for optimal
parameter tuning and feature selection. An ensemble model
was formed by averaging the predictions of the three individual
models. The training data set, comprising 80% of the total data,
was employed for model training, whereas the remaining 20%
served as a testing data set for performance evaluation.
Evaluation metrics, including R2, RMSE, and MAE, were
applied to assess model performance. The models were built
using the caret package (version 6.0.94) in R software (version
4.31).30,31 The mathematical expressions for the metrics R2,
RMSE, and MAE are provided in the Supporting Information.

Data Scaling. Data scaling was performed to ensure that
the ML models were not biased toward specific features owing
to the magnitude differences. Continuous variables in the
training set were transformed using the z-score algorithm,
standardizing the data to have a mean of 0 and a standard
deviation of 1. This transformation facilitates fair comparison
and analysis of the features. The test set variables were scaled
similarly to ensure that the models were evaluated on data with
consistent scaling, promoting better performance and training
stability, particularly for sensitive models, such as support
vector machines.

Model Cross-Validation. To assess the generalization
performance of the model and address overfitting, a robust
cross-validation strategy was employed. For this purpose, a
nested cross-validation method was used. The data set was
divided into ten equally sized subsets, or folds, for the outer
loop. Within each fold, further subsetting occurred for the
inner loop of the nested cross-validation process. In the inner
loop, the model parameters were tuned to identify the optimal
configuration, which was then used in the outer loop for the
model development. Throughout each iteration, the models
underwent training on specific training subsets and were
subsequently evaluated on the validation sets to comprehen-
sively assess their performance. This iterative process aids in
obtaining reliable performance estimates by minimizing the
impact of random partitioning. The use of ten folds and nested
structures contributes to a thorough evaluation, enhancing the
robustness of the cross-validation approach.

Optimal Feature Selection and Hyperparameters.
Backward elimination (BE) was used to identify the most
relevant features. The least significant variable was removed
iteratively based on the R2, leading to a subset of features with
the greatest impact on DH yield, enhancing model simplicity
and interpretability. Grids of the hyperparameters were
generated for each algorithm, and different configurations
were explored. The wrapper selection identified the optimal
model based on the R2, and the selected features with the best-
performing model were recorded. The hyperparameter results
are shown in Table S1.

■ RESULTS AND DISCUSSION
Descriptive Statistics. This section details the descriptive

statistical analysis of the data sets. Figure 1 presents a heatmap
of the lower triangular correlation matrix for both predictor
and outcome variables. This visualization offers a comparative

Figure 1. Heatmap of the lower triangular correlation matrix for predictor and outcome variables. Nickel (Ni; 0−20 wt %), iron (Fe; 0−20 wt %),
cobalt (Co; 0−20 wt %), bismuth (Bi; 0−30 wt %), molybdenum (Mo; 0−15 wt %), tungsten (W; 0−30 wt %), zinc (Zn; 0−20 wt %), and
manganese (Mn; 0−20 wt %).
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analysis of the linear relationships among the descriptor
variables as well as between the descriptor variables and the
response variable (DH yield). Each cell in the heatmap
represents the correlation coefficient between two variables,
ranging from −1 (perfect negative correlation, shown in blue)
to +1 (perfect positive correlation, shown in red). Values close
to 0 (white color) indicate little to no linear relationship.
Ideally, we aim for the DH yield to have a stronger correlation
with the descriptor variables while seeking less correlation
among the descriptor variables.
As shown in Figure 1, moderate positive correlations were

observed between DH yield and the descriptors Ni (0.27), Co
(0.25), and Bi (0.17). These findings suggest that augmenta-
tion of these variables could potentially increase DH yield. A
similar yet weaker positive correlation was found with the feed
ratio and temperature variables, suggesting that although these
may affect DH yield, they are not the predominant influencers.
In contrast, the Mn and Fe parameters exhibited almost
negligible correlations with the DH yield variable, implying an
insignificant linear association. However, the Zn and W
parameters exhibited weak negative correlations with DH
yield, suggesting a potential decrease in DH yield with an
increase in these variables. Notably, Mo was found to have a
strong negative correlation with DH yield, indicating a
significant inverse relationship.
Furthermore, we observed positive and negative associations

with varying correlation coefficients, indicating distinct
dynamics among the predictor variables. Notably, the feed
ratio and W correlation were minimal (coefficient: −0.01),
suggesting a negligible negative relationship. In contrast, Ni
and Bi displayed a relatively strong negative correlation
(coefficient: −0.5), indicating an inverse relationship between
these variables. In general, the data set used did not show any
significant multicollinearity among the predictor variables. We
determined this through the correlation matrix analysis, which
indicated low correlation coefficients between the predictors.
Multicollinearity, which involves strong linear relationships
between predictors, can affect the interpretability and stability
of regression models. It is worth noting that we did not
encounter any issues with multicollinearity, and the regression
models we used (BT, XGBL, and SVMR) were not
significantly affected by it. The absence of multicollinearity
issues and the ability of the models to withstand them ensure
the reliability of the predictor variables in our regression
models for making predictions. The Pairwise relationships and
distributions of the selected variables are shown in Figure S1 of
the Supporting Information.

Model Performance. Table 1 and Figure 2 present a
comprehensive overview of the performance of the individual
models and the ensemble method on both the training and test
data sets. For the training data, the BT model achieved an
RMSE of 0.39 and MAE of 0.25 for the training data, along

with an RMSE of 1.78 and MAE of 1.27 for the test data.
Notably, R2 values of 99.4 and 85% were obtained for the
training and test data sets, respectively. For the XGBL model,
the training data showed an RMSE of 0.05 and MAE of 0.04,
whereas the test data exhibited an RMSE of 1.87 and MAE of
1.30. The model achieved R2 values of 99.9% for the training
data set and 83.4% for the test data set. In the case of SVMR,
the training data yielded an RMSE of 1.45 and MAE of 0.95,
whereas the test data reported an RMSE of 2.05 and MAE of
1.38. Interestingly, the ensemble of the three models
demonstrated an RMSE of 0.56 and MAE of 0.37 for the
training data, and an RMSE of 1.65 and MAE of 1.14 for the
test data. Remarkably, the R2 values of 97 and 86.9% for the
training and test data sets, respectively. An RMSE of 0.56, on
average, suggests that the ensemble method predictions deviate
from the actual dehydrogenation yields by approximately 0.56
percentage, whereas an R2 of 97% suggests that the features
employed in the study within the ensemble method’s
prediction of dehydrogenation yield can explain 97% of the
variability observed in the actual dehydrogenation yields.
In summary, the results indicate exceptional performance

from each individual model, with the ensemble of the three
models showing superior outcomes for the test data, achieving
the lowest test RMSE and MAE, coupled with the highest R2.
Figure 3 provides a visual representation of the feature

importance in predicting the DH yield across the various
models. Feature importance analysis was used to identify the
critical variables for DH yield prediction within each model. In
the BT model (Figure 3a), Mo loading emerged as the most
crucial factor, and Co loading also showed a significant
influence. Zn and Fe loadings had relatively less impact on the
DH yield predictions. In the XGBL model (Figure 3b),
similarly, Mo loading was the most important variable,
followed by Ni and W loadings. Mn and Fe loadings were
the least significant predictors of DH yield. Similarly, in the
SVMR model (Figure 3c), Mo loading was highly significant in
predicting the DH yield. Conversely, Zn and Fe loadings had
comparatively less of an impact. Mo loading consistently
appeared as the most significant feature in all models. This
feature importance analysis offers valuable insights into the key
factors that influence the DH yield. The selected features and
those that were not selected are listed in Supplementary Table
S2.
Figure 4 illustrates parity plots, visually comparing the

predicted DH yield values with actual observed values for
individual models (BT, XGBL, and SVMR) and the ensemble
method. Parity plots offer a holistic assessment of the
predictive accuracy, with each data point representing a
predicted DH yield value plotted against its corresponding
actual value. In the case of the ensemble method, a notable
concentration of data points was observed around the equality
line, indicating strong agreement between the ensemble
method predictions and actual values. This clustering under-
scores the capability of the ensemble method to capture the
underlying patterns and trends in the DH yield data set
accurately. Although some deviations from the equality line
exist, the overall proximity suggests the ensemble method’s
reliable and consistent predictive performance.
The parity plot also revealed that individual models

demonstrated close alignment between the predicted and
observed DH yield values. Despite occasional deviations, the
overall pattern along the equality line signifies reasonable
predictive capabilities based on specified predictor variables.

Table 1. Performance Evaluation of the Individual Models
and the Ensemble for Predicting DH Yield

RMSE MAE

train test train test

BT 0.39 1.78 0.25 1.27
XGBL 0.05 1.87 0.04 1.30
SVMR 1.45 2.05 0.95 1.38
ensemble 0.56 1.65 0.37 1.14
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Collectively, parity plots visually confirmed the predictive
performance of BT, XGBL, SVMR models, and their ensemble
method for DH yield. These visualizations validate the ability
of the models to approximate true values and offer insights into
their accuracy and reliability in real-world scenarios. In
particular, the ensemble method is the most effective choice
for predicting the DH yield, evident in its consistent alignment
with the equality line and minimal prediction errors. The
practical use of the ensemble method lies in its ability to
predict the DH yield accurately, as demonstrated by the close
alignment between the predicted and observed values in the
parity plots. This robust predictive capability translates into
real-world benefits, where process optimization can be
achieved more confidently. Accurate predictions can guide
researchers and practitioners in setting optimal process
conditions and designing tailored catalyst compositions.
Consequently, integrating ML models into catalysis research
offers a pathway to accelerate the discovery and optimization
of high-performance catalysts. The implications of this study
extend beyond the laboratory setting to industrial applications.
Companies in the chemical and petrochemical sectors can
enhance their catalytic processes by deploying ensemble
methods or similar ML approaches. An improved DH yield
not only leads to higher product yields but also minimizes
waste and reduces the environmental impact of these
processes. Ultimately, this study will contribute to the
development of sustainable and eco-friendly industrial
practices.
It is important to acknowledge the limitations of this study.

Although the Ensemble method demonstrated remarkable
predictive performance, the choice of other ML models and

tuning approaches may yield different results. Careful
consideration of the specific applications and data set
characteristics is essential to ensure that the most suitable
model is selected. In addition, the experimental data used in
this study were obtained from a controlled fixed-bed reactor.
Real-world industrial processes may involve more complex and
dynamic conditions that could influence the predictive
accuracy of the models. Further validation and refinement of
the models using data from pilot- or industrial-scale reactors
would enhance their applicability and reliability in practical
scenarios.

Model Comparison with Literature. This section
compares the model performance results obtained with the
different models and ensemble method together with other
ML models reported in the literature for various catalytic
applications. Table 2 presents the results in terms of models
employed, catalytic application and performance metrics.
It is clear from Table 2 that the ML models perform

reasonably well in predicting the various output features.
Similarly, the models developed in this work fall within the
limits of the high R2 and low RMSE values. It is important to
note that, the data source (experimental or literature), nature
of the data set (input and output features), data preprocessing
and hyperparameter tuning of the models, all contribute in the
overall model performance. Hence, there is no best model that
is suitable for all catalytic application.

■ CONCLUSIONS AND PERSPECTIVES
The findings of this study underscore the practical significance
of employing ML models, particularly their ensemble

Figure 2. Coefficient of determination (R2) for supervised ML models.
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technique, in oxidative dehydrogenation (ODH) reactions.
The successful application of the ensemble method to predict
the DH yield holds immense promise for catalysis research and
industrial applications. By accurately predicting the DH yield,

this method offers a valuable tool for optimizing the ODH
process and catalyst design, with real-world implications for
enhancing the process efficiency and sustainability. One of the
key insights from feature importance analysis is the
identification of critical predictor variables that influence DH
yield. Notably, Mo, Co, and Ni were identified as significant
factors influencing the DH yield in the BT model. In the
XGBL model, Mo, Ni, and W are the most significant factors.
Similarly, for the SVMR model, Mo, Co, and Ni were
recognized as the most important factors in predicting DH
yield. Understanding the impact of these variables provides
essential contextual meaning as it sheds light on the underlying
mechanisms governing the ODH reaction. Such insights will
enable researchers and process engineers to make informed
decisions regarding the design and operation of catalytic
systems for maximum DH yield. Moreover, this knowledge
contributes to the exploration of novel catalyst materials and
development of more efficient and sustainable DH processes.
In summary, this study demonstrated the practical potential

of ML models, particularly the ensemble method, for catalysis
research and industrial applications. The ability to accurately
predict DH yield and identify critical predictor variables
provides a powerful tool for enhancing process efficiency and

Figure 3. Feature importance analysis of different models. [Nickel (Ni; 0−20 wt %), iron (Fe; 0−20 wt %), cobalt (Co; 0−20 wt %), bismuth (Bi;
0−30 wt %), molybdenum (Mo; 0−15 wt %), tungsten (W; 0−30 wt %), zinc (Zn; 0−20 wt %), and manganese (Mn; 0−20 wt %)].

Figure 4. Parity plots for BT, XGBL, SVMR, and ensemble models.
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optimizing catalyst design, and we continue to explore the
synergies between experimental data and ML techniques. The
field of catalysis benefits from accelerated catalyst discovery,
improved process efficiency, and a more sustainable approach
to chemical production. Integrating ML approaches into
catalysis research is not just a technological advancement,
but a transformative shift toward a greener and more efficient
future for industrial processes.
Future research directions worth investigating include

combining catalyst physicochemical properties with catalyst
compositions and reaction conditions to capture more
information relevant for robust ML prediction and validation.
Also, explorative ML using atomic properties generated using
DFT calculations with correlations to the catalyst performance
is an interesting area that will facilitate the development of new
and more promising catalysts. Bayesian optimization also holds
promise in facilitating the development of selective catalysts,
especially after successful cycles of prediction and experimental
validations. Finally, the use of large language models (LLM)
and generative AI will speed-up new catalyst development and
will improve the chances of commercializing various
applications that rely solely on the development of highly
active, selective and stable catalysts.
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Table 2. Performance Comparison of Various ML Models in Catalyst Prediction

s/
no catalytic application ML models

performance
metrics

ref
R2
(%) RMSE

1 CO2 methanation (predicting CO2 conversion) random forest 85 12.7 Yilmaz et al.16

2 CO2 oxidative dehydrogenation of propane (propylene yield prediction) artificial neural network 6.2 0.14 Liu et al.21

support vector regression 39.4 0.09
K-nearest neighbor 76.5 0.03
random forest 81.8 0.03

3 dry reforming of methane (CH4 conversion prediction) CatBoost regressor 96 5.27 Roh et al.22

XGBoost regressor 95 6.10
random forest 90 8.45
decision tree 71 14.19
deep neural network 54 17.92
Gaussian process regressor 34 21.25
support vector machine 15 28.14

4 CO2 hydrogenation to methanol (methanol yield prediction) XGBoost 88 0.09 Suvarna et al.32

random forest 84 0.08
Gradient Boosting Decision
tree

82 0.09

5 oxidative dehydrogenation of n-butane (predicting yield of dehydrogenation
products)

Boosted Tree 84.1 1.78 this work
XGBoost linear 83.4 1.87
Support Vector Machine Radial 80 2.05
ensemble model 86.9 1.65
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