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MicroRNAs modulate
neuroinflammation after
intracerebral hemorrhage:
Prospects for new therapy
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1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University,
Hangzhou, Zhejiang, China, 2Key Laboratory of Precise Treatment and Clinical Translational
Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhagic

stroke. After ICH, blood components extravasate from vessels into the brain,

activating immune cells and causing them to release a series of inflammatory

mediators. Immune cells, together with inflammatory mediators, lead to

neuroinflammation in the perihematomal region and the whole brain, and

neuroinflammation is closely related to secondary brain injury as well as

functional recovery of the brain. Despite recent progress in understanding

the pathophysiology of ICH, there is still no effective treatment for this disease.

MicroRNAs (miRNAs) are non-coding RNAs 17–25 nucleotides in length that

are generated naturally in the human body. They bind complementarily to

messenger RNAs and suppress translation, thus regulating gene expression at

the post-transcriptional level. They have been found to regulate the

pathophysiological process of ICH, particularly the neuroinflammatory

cascade. Multiple preclinical studies have shown that manipulating the

expression and activity of miRNAs can modulate immune cell activities,

influence neuroinflammatory responses, and ultimately affect neurological

functions after ICH. This implicates the potentially crucial roles of miRNAs in

post-ICH neuroinflammation and indicates the possibility of applying miRNA-

based therapeutics for this disease. Thus, this review aims to address the

pathophysiological roles and molecular underpinnings of miRNAs in the

regulation of neuroinflammation after ICH. With a more sophisticated

understanding of ICH and miRNAs, it is possible to translate these findings

into new pharmacological therapies for ICH.
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1 Introduction

Intracerebral hemorrhage (ICH) is the most common

subtype of hemorrhagic stroke. It is associated with high

morbidity and mortality, accounting for 15% of all stroke cases

and causing 50% of stroke-related mortality (1). Primary ICH

accounts for 78–88% of all ICH cases. Its main causes include

chronic hypertension and cerebral amyloid angiopathy (CAA).

Secondary ICH results from diverse causes including aneurysm

rupture, vascular malformation, and coagulopathy (2). Despite

the various pathogeneses, the consequences of most ICH are

devastating, and many patients suffer early death after

occurrence or survive with disability (3). The incidence of ICH

is increasing as a result of population aging and increased use of

anticoagulants (4). However, effective therapeutics for ICH are

still lacking, and the existing treatments are mainly supportive

(5, 6).

Neuroinflammation is a major contributor to secondary

brain injury and brain repair after ICH (7). Resident immune

cells in the perihematomal regions are activated rapidly

following blood extravasation from the vessels and release a

series of toxic mediators into their environment, thus triggering

an inflammatory cascade that evolves in a time-and space-

dependent manner. Neuroinflammatory responses can cause

not only instant local damage, but also long-term neurological

dysfunction (8). Considering the important and double-edged

effects of neuroinflammation, it would be beneficial to improve

clinical outcomes by shifting the balance of its effects towards the

beneficial side. Recently, numerous studies have aimed at

alleviating inflammatory injury and promoting the reparative

effects of neuroinflammation (9, 10). Several drugs have been

tested in preclinical animal models or clinical trials, but their

therapeutic effects are unsatisfactory (11–14). This is partly due

to the lack of an explicit understanding of post-ICH

neuroinflammation and technological limitations. Therefore,

new perspectives to study neuroinflammation after ICH and

new forms of drugs or interventional technologies may be

required. MicroRNAs (miRNAs, miRs) are non-coding RNAs

(ncRNAs) that bind to messenger RNA (mRNA) and silence

target genes (15). Constituting a part of epitranscriptome, they

have great significance in biological processes such as cell

growth, differentiation, death, metabolism, and immune

responses (16–19). Recently, many studies have found that

miRNAs exert modulatory effects on central nervous system

(CNS) inflammation. For example, miR-124 was discovered to

induce microglia (MG) quiescence in the CNS as well as

deactivate monocytes and macrophages. In addition, miRNAs

have been found to regulate neuroinflammation after ICH by

affecting multiple inflammatory components (20).

A better understanding of the influence of miRNAs on the

brain and their interaction with the milieu is needed. This review

summarizes miRNAmodulations in the brain after ICH, divided
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by the important components of the brain immune system,

including immune cells, inflammatory molecules, and pathways.

It also describes the limitations and possible future directions for

the study of miRNA functions and their therapeutic potential,

which will pave a way for developing new therapeutics for

this disease.
2 Pathophysiology of
neuroinflammation after ICH

ICH refers to blood extravasation from vessels into the brain

parenchyma, triggering a chain of damaging reactions.

Hypertension-related ICH typically occurs in small thin-walled

arteries from deep sites in the brain, such as the basal ganglia,

thalamus, cerebellum, and brainstem (21), while CAA-related

ICH is more often observed in lobal locations, especially at the

junction of the cortical gray and white matter (11). Injuries after

ICH can be divided into two types: primary and secondary (22).

Primary brain injury after ICH is mainly due to stretching,

compression, and deformation of the newly formed hematoma

in the brain tissues. It can affect perihematomal blood flow and

cause brain ischemia as well as elevate the overall intracerebral

pressure and generate lethal brain herniation (23). Secondary

brain injury develops soon after ICH and initially results from

extravasated blood components. Its mechanisms involve, but are

not limited to, the hemostasis response, neuroendocrine axis

activation, neuroinflammation, cell death, thrombin toxicity,

oxidative stress, erythrocyte lysis, excitotoxicity, and brain

edema (24). Among these, neuroinflammation is recognized as

the most prominent contributor to secondary brain injury and is

often associated with poor clinical prognosis.

The post-ICH brain environment is a dynamically changing

milieu with many inflammatory components, including immune

cells, inflammatory mediators, and intricate signaling pathways.

They interact with each other and contribute to the course of

inflammation in a combined manner (25). The main immune

cells are microglia, astrocytes, neutrophils, T lymphocytes, and

mast cells, which reside in the brain or infiltrate from the

peripheral blood (9). Inflammatory mediators include

cytokines, chemokines, complements, proteases such as matrix

metalloproteinases (MMP), prostanoids, reactive oxygen species

(ROS), inducible nitric oxide synthase (iNOS), blood-derived

thrombin and plasmin, and other toxic substances (26, 27). Early

after blood components enter the brain parenchyma, immune

cells bearing pattern recognition receptors (PRRs) such as Toll-

like receptors (TLRs) can detect injurious substances and trigger

a cascade of inflammatory reactions in the perihematomal

regions (28). These inflammatory responses include, but are

not limited to, immune cell activation, peripheral immune cell

infiltration such as neutrophils and macrophages, release of

diverse inflammatory mediators, and activation of diverse
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molecular pathways. They aggravate inflammation and damage

cells in the brain microenvironment. In turn, damage-associated

molecular patterns (DAMPs) from injured cells can aggravate

neuroinflammation (29). The DAMPs include adenosine, heat

shock proteins (HSPs), high-mobility group box 1, interleukin-

33 (IL-33), hyaluronan, heparin sulfate, amyloid-beta, oxidized

low-density lipoprotein, peroxiredoxins, and mitochondrial-

derived N-formyl peptides (23, 24, 30). Thus, early activation

of microglia and other immune components converts the

homeostatic non-inflammatory CNS parenchyma into an

abundant pro-inflammatory milieu. After some time, with

reparative microglia and astrocytes taking dominance, the pro-

inflammatory milieu gradually transforms to a reparative milieu

that promotes neurogenesis and anti-inflammatory reactions

(31, 32). Throughout the process, some important signaling

pathways exist, such as the nuclear factor-kB (NF-kB)
pathway that promotes the transcription of diverse pro-

inflammatory genes (33). They have some similar and unique

characteristics in different cells or different phases, and can work

at the cellular, intercellular, or even whole brain levels.

Generally, immune cells in the post-ICH milieu can be

divided into pro-inflammatory and anti-inflammatory types.

The former contains microglia, astrocytes, neutrophils, and

Th1 cells. They can adapt to the immune response in the

brain and release an array of pro-inflammatory mediators that

damage cellular integrity, extracellular matrix stability, and

blood-brain barrier (BBB) permeability (34). The latter

includes microglia, astrocytes, CD4+ T cells, activated Treg

cells, Th2 cells, Breg cells, and regulatory dendritic cells (35).

They contribute to hematoma removal, brain debris clearance,

inflammation resolution, and tissue regeneration (36). It is

noteworthy that many components of the brain immune

system have been found to have various subtypes according to

different determinants and contexts, such as microglia and

astrocytes (37–39). Microglia and astrocytes can have opposite

functions in different states. This implies the intricacy and

flexibility of brain inflammatory components, as well as the

complexity of the overall neuroinflammation course which has

both detrimental and beneficial effects (12, 40).

Apart from local brain inflammation, imaging evidence has

shown that there is global brain inflammation in regions remote

from the primary injury sites after ICH. It shows a unique

temporal evolution and may be relevant to clinical outcomes,

such as dementia and cognitive decline (41). Mechanistically, it

occurs likely by inflammatory components spreading through

the extracellular space or cerebrospinal fluid, cytokines

transmitting signals, chronic systemic mediators such as C-

reactive protein increasing, endothelial cells interacting with

activated platelets or leukocytes that cause vascular

inflammation, and white matter mechanical propagation,

diaschisis, or other forms of damage (such as DAMPs and

released mediators) (42).
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In summary, post-ICH neuroinflammation is an evolving

and overlapping process, initiated rapidly after ICH occurrence,

progressing over days and even weeks, and providing different

molecular targets for treatment in different time windows.
3 microRNA biogenesis and
functions

3.1 microRNA biogenesis

miRNAs are highly conserved, 17-25 nucleotides long,

single-stranded ncRNAs transcribed from the genome (43).

They play an important role in post-transcriptional gene

regulation by binding to mRNA sequences (44, 45). miRNAs

are encoded as either intragenic or intergenic in nature.

Intragenic miRNAs can be transcribed from individual

monocistronic miRNA genes, polycistronic miRNA clusters, or

introns of protein-coding genes. To date, more than 1000

miRNAs are known to be expressed in the human body (46).

The canonical generation of miRNAs starts with the formation

of pri-miRNA, a double-stranded RNA containing

approximately 300–1000 nucleotides with a loop structure

(47). It is catalyzed by RNA polymerase II or III in the

nucleus. It is then processed by the microprocessor complex

containing the enzymes Drosha and DGCR8 to produce a pre-

miRNA, a stem-loop structure approximately 70–90 nucleotides

long (48). Subsequently, the pre-miRNA is exported from the

nucleus to the cytoplasm by exportin-5 and Ran-GTPase on the

nuclear membrane (49). The cytoplasmic RNase III-like

endonuclease Dicer enzyme and TRBP cleave the pre-miRNA

into a miRNA duplex without a loop; later, it is unwound by

helicase to form single-stranded miRNAs that are approximately

22 nucleotides long (47, 50). While the passenger strand of the

miRNA duplex undergoes degradation and forms processing

bodies (P-bodies), the other strand becomes mature miRNA (47,

51). It incorporates argonaute (Ago) protein 2 to form an RNA-

induced silencing complex (RISC). In addition to the canonical

pathway, several noncanonical pathways of miRNA biogenesis

have been identified, such as microprocessor-independent and

Dicer-independent methods (47).
3.2 microRNA functions

miRNAs exert their functions mainly by interacting with

mRNA. First, the 2–7 nucleotide seed sequence in miRNA binds

to mRNA with perfect or imperfect complementarity, usually in

the 3’ untranslated region (UTR) of mRNA (52). Then, miRNAs

suppress protein levels with the aid of the TNRC6 (GW182)

protein via either translational repression, mRNA

destabi l izat ion, or sequestrat ion in P-bodies (53).
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Destabilization is the most common type of steady-state cell. The

degradation of mRNA or endonucleolytic cleavage can occur

when the complementarity between miRNA and mRNA is high

(15). The mechanism of mRNA destabilization includes: i)

Deadenylation: shortening of the poly(A) tail in miRNAs by

deadenylase complexes CCR4–NOT and PAN2–PAN3, and

subsequent mRNA decay resulting from oligouridylation of

deadenylated mRNAs by TUT4/7. The TNRC6 protein also

leads to the dissociation of poly(A)-binding protein, thus

promoting the deadenylation process (54). ii) Decapping: The

CCR4–NOT complex removes the 5’ m7G cap from the mRNA

via the decapping enzyme DCP2 upon activation by the

decapping activator DDX6. iii) 5ˊ to 3ˊ exonucleolytic decay:

XRN1 leads to 5’-3’ endonuclease degradation (55).

Translational repression usually occurs when miRNAs and

mRNA have imperfect complementarity and can function at any

stage of translation including initiation, elongation and

termination, as well as co-translational degradation (56). It has

relatively weaker effects than destabilization, is always

accompanied by destabilization, and occurs much faster

(within 30 min) than mRNA decay (60 min) after binding to

mRNAs (57). Global analysis of miRNA function shows that

only 6–26% repression of each target in human cells results in

pure translational repression without mRNA decay. Using the

ribosome profiling method, it was found that miRNAs inhibit

cap−dependent translation at translation initiation; however, the

precise mechanism remains elusive (58). In particular, in cellular

conditions such as serum starvation, miRNAs have been found

to promote the translation of certain mRNAs (47). Recently, in

situ single-molecule imaging has revealed that miRNAs are more

likely to bind to translated mRNAs than to untranslated
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mRNAs, and this binding occurs immediately after nuclear

export (59). One individual miRNA can target tens or even

hundreds of mRNAs and thus can regulate an entire pathway,

whether overexpressed or underexpressed. mRNAs can be

targeted by specific abundant miRNAs or multiple low-

abundance miRNAs, depending on their characteristics (60).

Genes that are regulated by multiple miRNAs show a distinct

reduction in protein expression noise (61). The specific

mechanism of miRNA function is complicated, and many

debates still exist regarding some facets, such as subcellular

compartmentalization (62, 63). Here is the summary of

miRNA biogenesis and functions (Figure 1).
3.3 microRNAs in CNS

Studies have shown that miRNAs can shape the cellular

phenotypes in the human body. A small number of highly

abundant miRNAs constitute up to half of the miRNAs in the

RISC in cells (64). After ICH, the temporospatial expression

profile of miRNAs in neural cells and tissues is altered in a

certain way in response to the damage such as inflammation. To

some extent, this unique change can be reflected by peripheral

miRNA expression since miRNA can be released into the

bloodstream (65, 66). Some studies have focused on the

potential of using miRNAs as biomarkers in diseases affecting

the CNS, such as ICH, Alzheimer’s disease, ischemic stroke,

amyotrophic lateral sclerosis, and epilepsy (67, 68). However,

since there are multiple sources of circulating miRNAs, it can be

difficult to determine whether the miRNAs are from the injured

brain, peripheral sites, or both.
FIGURE 1

MicroRNA biogenesis and functions. Canonically generated miRNAs go through transcription of the miRNA gene, nuclear processing of pri-
miRNA, nuclear export of pre-miRNA, cytoplasmic processing of pre-miRNA, miRNA duplex unwinding, and assembly with AGO2 to form the
RISC complex. Then, the mature miRNA in the RISC complex can exert functions via either mRNA translational repression or mRNA degradation.
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In addition, many studies have shown that miRNAs function

in both homeostatic and pathological states of the CNS (69–71).

For example, miR-124, a neuron-specific miRNA, was found to

play a significant role in neuronal maturation, differentiation,

and survival during normal CNS development (72). In the

diseased state, abnormal miRNA expression can modulate the

inflammatory reactions within the brain. After ICH, large-scale

gene expressions are altered instantly due to the local brain

damage, mechanistically by the genetic modulation of

transcriptional factors, epigenetic DNA methylation and

histone modification, and post-transcriptional miRNA

regulation (9). Although some alterations might merely be the

result of the injury with no practical boost in worsening the

outcome, others result in disturbances of the molecular

composition and cellular features of brain cells and

consequently affect neurological functions (73, 74). miRNAs,

with much evidence, fall into the latter type, being expressed

aberrantly and having effects on brain functions after ICH. It can

modulate neuroinflammation by affecting prominent

inflammatory components, including immune cells, molecules,

and pathways, indicating its potential as a therapeutic target in

ICH (48, 75,). This review focuses on the typical inflammatory

responses that have been mainly studied in every previous

report. To avoid overlapping, most studies were categorized

into only one subtype.
4 Mechanism of microRNA in
modulating neuroinflammation
after ICH

4.1 microRNAs and immune cells

4.1.1 Microglia
Microglia fulfil important homeostatic functions but can

also promote or participate in neuroinflammation following

brain injury. Early after ICH, brain-resident microglia and

macrophages that flood in from the blood are activated by the

leaked blood components, and adopt different states from the

original, in which they perform specialized functions (9, 76, 77).

Regarding microglial states, the once widely used “M1/M2”

dichotomy has been discarded by the field, because dividing

activated microglia into two distinct phenotypes is an

oversimplification and is not consistent with the heterogeneity

of microglia in health or disease context (38). The precise

definitions of microglial states have been elusive (78–80).

Researchers think that it should take account microglial

intrinsic and extrinsic elements (i.e., species, sex, genes,

pathogens), spatiotemporal context in the brain, and layers of

complexity (i.e., epigenomic, transcriptomic, proteomic) when

defining microglial states (38).

Studies have shown that some miRNAs regulate microglial

activities by modulating signaling pathways and exerting
Frontiers in Immunology 05
positive functions after ICH. A study has shown that miR-21/

miR-146a alleviates microglia-mediated inflammatory responses

in post-ICH rats (81). Likewise, miR-181b mimics significantly

decreased microglial infiltration and HSP family A (Hsp70)

member 5 (HSPA5), NF-kB p65, IL-6, IL-1b, and tumor

necrosis factor (TNF)-a levels in perihematomal tissue of ICH

mice (82). Mechanistically, the TLR4/NF-kB pathway is the

major signaling pathway that mediates pro-inflammatory

cytokine production (28). There is evidence that NF-kB
translocates into the nucleus and promotes the transcription of

inflammatory mediators including cytokines following brain

injury. miR-7 was found to attenuate inflammation in both in

vivo and in vitro models by inhibiting TLR4 (83). miR-367

attenuates NF-kB activation and pro-inflammatory mediator

production after ICH in cultured microglia and in a mouse

model by suppressing IL-1 receptor-associated kinase (IRAK) 4

(84). In addition, an in vitro study demonstrated that tumor

necrosis factor receptors (TNFR)-dependent aggravation of

neuroinflammation in a thrombin-induced human microglia

model is partly attributable to the decrease in miRNA-181c

and its downstream regulation of MLL1 and NF-kB, implicating

its role in post-ICH neuroinflammation (85). Apart from that,

miR-26a overexpression significantly reduced microglia-induced

pro-inflammatory cytokine production in an ICH mouse model.

In vitro experiments revealed that the overexpression of high

mobility group A (HMGA) 2, a verified target of miR-26a,

reverses the miR-26a-mediated inflammatory response,

suggesting its important role in this process (86). HMGA2 is a

member of the HMGA family and is a chromatin-associated

protein that participates in cell proliferation, differentiation,

tumorigenesis, and inflammation (87). Besides, miR-183-5p

decreases microglial survival and activation following

inflammation and oxidative damage after ICH in mice, likely

by inhibiting heme oxygenase (HO)-1 independently of nuclear

factor erythroid 2-related factor 2 (Nrf2), a well-knownmediator

of oxidative stress responses (88). Administration of exosomes

derived from bone mesenchymal stem cells (BMSCs-Exos)

enriched with miR-146a-5p through the tail vein reduces

neuroinflammation and exert positive effects after ICH by

inhibiting IRAK1 and nuclear factor of activated T cells 5

(NFAT5) (89), which have been verified to play roles in

inflammatory responses. miR-124 alleviated inflammatory

damage both in vivo and in vitro by inhibiting CEBP-a, a
member of the CEBP transcription factor family, which

promotes the differentiation of myeloid progenitor cells into

granulocytes, including monocytes and macrophages (90).

Similarly, an in vitro study verified that miR-367 reduced

apoptosis after erythrocyte lysate-induced damage by

downregulating CEBP-a (91). Apart from these, Let-7a

alleviated the inflammatory response in an ICH mouse model

by downregulating casein kinase 2 interacting protein-1

(CKIP-1), a newly discovered regulator of macrophage

proliferation (92). miRNA-575 inhibits phosphatase and tensin
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homolog (PTEN), thus playing a significant role in l-lysine-

mediated alleviation of neuronal injury after ICH (93).

Other miRNAs play detrimental roles in neuroinflammation

after ICH by regulating microglia. miR-222 increases microglia-

mediated pro-inflammatory cytokine production and brain

water content in an ICH mouse model by downregulating

integrin subunit beta 8 (ITGB8), an integrin previously

verified to play a vital role in brain vessel homeostasis (94).

The autophagy process after ICH can be modulated by miRNAs,

which affect neuroinflammation. miR-144 targets mammalian

target of rapamycin (mTOR) by directly interacting with its 3’-

UTRs, thus inhibiting autophagy in hemoglobin-treated

microglia, consequently promoting an inflammatory response

in microglia (95). In contrast, another study reported that miR-

144 promotes IL-6, IL-1b, and TNF-a levels and microglial

autophagy via mTOR, thus aggravating brain edema and

neurological deficits in mice after ICH (96). Overexpression of

miR-23b suppresses MG activation, neuronal apoptosis, and

neurological deficits in ICH rat models. It also alleviates

inflammation of BV2 cells and apoptosis of co-cultured HT22

cells under hemin stimulation in vitro, at least partly by targeting

inositol polyphosphate multikinase (IPMK), thus inhibiting the

AKT (protein kinase B, or PKB)/mTOR autophagy pathway

(97). The different results of these studies reflect the duality or

controversy regarding the role of the autophagic pathway in

microglia after ICH: whether it is beneficial, detrimental, or both

(40). Besides, miR-34a-5p overexpression by agomiR-34a-5p

injected into the lateral ventricles accelerates neuronal

apoptosis in ICH rats by negatively targeting Krüppel-like

factor 4 (Klf4), a zinc-finger-containing protein that plays an

important role in many physiological processes (98). Another

study found that miR-494 promoted inflammatory injury in

vitro and in vivo after ICH by inhibiting Nrdp1 and its

downstream transcription factor CEBP-b (99). Through

miRNA-seq and mRNA-seq, miR-181a was found to be the

most highly connected node in the miRNA-mRNA

interconnection network that regulates differentially expressed

genes after ICH. miR-181a, monocytes, and IL-8 form an

interconnected network that causes neuroinflammation in the

post-ICH milieu (100). This indicates the importance of further

studies on the interconnectome associated with miRNAs. Since

the effects of microglia on the course of inflammation are

correlated with time, modulation of microglial activation

should be performed more precisely at the most appropriate

time in the disease course.

4.1.2 Astrocytes
Astrocytes are the most abundant, complex, and largest glial

cells in the brain. They participate in various physiological

processes, including neurotrophy, synaptogenesis, BBB

maintenance, and metabolism. After ICH, they are involved in

peripheral immune cell recruitment, secretion of toxic
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mediators, interaction with microglia, and later-stage brain

tissue repair (39, 101, 102). miRNAs have been found to

regulate their functions. In a hemin-induced hemorrhagic

astrocyte model, phosphatidylinositol-3-kinase (PI3K)/Akt

pathway inhibitors suppressed miRNA-146a-3p, thus elevating

aquaporin 4 (AQP4) expression and alleviating inflammatory

injury (103). Dexamethasone-mediated alleviation of

neuroinflammation in post-ICH mice is associated with a

reduction in miR-155 and an increase in suppressor of

cytokine signaling (SOCS-1) expression. Additional

experiments have demonstrated that miR−155 inhibits SOCS

−1 expression in astrocytes, suggesting that miR-155 might

regulate astrocyte inflammatory functions by targeting

astrocytic SOCS-1 (104). However, studies on miRNAs and

astrocytes after ICH are scarce, and further exploration is

required in this field.

4.1.3 Leukocytes
After ICH, peripheral leukocytes infiltrate the damaged BBB

into the CNS, a process that is promoted by chemokines secreted

mainly from microglia and astrocytes. The major leukocytes

contributing to neuroinflammation include neutrophils,

lymphocytes, mast cells, monocytes, and dendritic cells.

Among these, neutrophils were the most prominent type.

Neutrophils recruited from the peripheral blood are located in

the brain parenchyma and secrete many toxic mediators, such as

pro-inflammatory cytokines (e.g., TNF-a), MMP-9, and ROS,

which activate other cells and exacerbate secondary brain injury.

Moreover, neutrophils can recruit macrophages to phagocytose

hematomas and brain debris (105). Growing evidence has shown

that neutrophils can be regulated by miRNAs after ICH.

Inhibition of let7c by antagomir decreases perihematomal

inflammation including neutrophil infiltration and microglial

activation 3 days after ICH in rats, at least partly by activating

the insulin-like growth factor 1 receptor (IGF1R) pathway (106).

miR-183-5p alleviates early inflammation including neutrophil

infiltration in the hemorrhagic striatum of mice after ICH by

downregulating HO-1 (88). Administration of miR-146a-5p-

riched BMSCs-Exos via the tail vein 24 h after ICH noticeably

reduced neutrophil infiltration and alleviated the inflammatory

response in injured brain tissues of rats (89).

T lymphocytes are the main cellular components of the

adaptive immune system within the brain after ICH (24). Studies

have found that T cells can patrol the cerebrospinal fluid in the

healthy CNS to conduct immune surveillance (107). And after

ICH, activated T cells can cross the BBB and contribute to brain

injury through a number of mechanisms such as microvascular

dysfunction, neuronal apoptosis, inflammatory molecules

production, neutrophil recruitment, and interaction with

microglia (108). The major subtypes of T cells include CD4+

Th cells (including Th1, Th2, and Th17 cells), CD8+ cytotoxic T

cells, memory T cells, and T-regulatory (Treg) cells. They have
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different molecular expression profiles and cellular functions,

with some mainly exerting injurious effects and others being

reparative after ICH. Among them, CD4+ T cells are the

predominant populations in the post-ICH brain milieu (108).

Studies suggest that many miRNAs can serve as positive or

negative regulators of T cell development and function,

exemplified by the fact that models with certain miRNA

deficiency can have CD4+ and CD8+ T cell dysfunction (109).

Mechanistically, miRNAs can regulate T cell activation by

modulating its key molecules and pathways, such as cell

survival and signaling molecules (e.g., BIM, BCL-2, cell cycle

regulators, mTOR), membrane receptors (e.g., ICOS, CD28,

CTLA-4, PD-1), cytokines (e.g., IL-2, IFN-g, IL-10, TGF-b),
kinases (e.g., PI3KR1), and phosphatases (e.g., TCR Inhibitory

phosphatases, PTEN) (110). However, there are few studies

regarding miRNA regulating T cell functions in the post-ICH

context by far. Therefore, the effect of miRNA on different T cell

subtypes after ICH needs further exploration.

Mast cells are granulocytes that reside in the normal brain

and release toxic mediators, recruit macrophages, and interact

with microglia and astrocytes upon activation (111). Their

degranulation or activation exacerbates brain damage, while

their stabilization or deficiency reduces damage after ICH.

Notably, miRNAs can modulate their functions. Inositol-

requiring enzyme 1 (IRE1) a, a sensor signaling protein

related to endoplasmic reticulum stress, promotes mast cell

degranulation and brain damage after ICH in mice, likely by

downregulating Lyn kinase. miR-125b-2-3p is involved in this

process, suggesting its role in the regulation of mast cell function

(112). However, further studies are required to elucidate these

detailed mechanisms.
4.2 microRNAs and molecular pathways

4.2.1 NF-kB pathway
NF-kB is the most prominent transcription factor that

aggravates the inflammatory response following ICH.

Following ICH, it translocates into the nucleus and promotes

transcription of an array of inflammatory mediators, including

cytokines, chemokines, enzymes such as iNOS and

cyclooxygenase-2 (COX-2), cell receptors, and adhesion

molecules (113). An in vivo experiment showed that miR-195

inhibits NF-kB signaling, including IkKa and phosphorylated

inhibitors of kB p-IkBa/b, reduces ubiquitin-dependent IkB
degradation, and leads to suppression of p65 (RelA)/p50 and

RelB/p52 nuclear translocation. Its anti-inflammatory effect was

confirmed by observing decreased TNF-a, IL-1b, IL-6, and
monocyte chemoattractant protein-1 (MCP-1) in rat brains

(114). Likewise, miR-146a plays a role in long non-coding

RNA (lncRNA) MALAT1 knockdown conferred neurological

protection against ICH in rats, including the alleviation of

neuroinflammation, oxidative stress, and brain cell apoptosis,
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probably by regulating NF-kB (115). TLR4-mediated NF-kB
signaling has long been found to participate in the pathogenesis

of secondary brain injury after ICH. Inhibiting miR-93 by

injecting miR-93 antagomir through the lateral ventricle

attenuates neuroinflammation, cerebral edema, neuronal

apoptosis, and improves neurological function in ICH rats by

suppressing the TLR4/NF-kB pathway (116). Furthermore, the

myeloid differentiation factor 88 (MyD88)/TRIF (TIR domain-

containing adaptor inducing interferon-b) signaling pathway

has been implicated in the activation of NF-kB after ICH (117).

For example, a study found that miR-140-5p overexpression

attenuates pro-inflammatory cytokine production and apoptosis

in the perihematomal striatum following ICH in rats, at least

partly by suppressing TLR4 and the downstream MyD88/TRIF/

NF-kB inflammatory pathway (118). Together, these studies

indicate the important role of miRNAs in NF-kB and

associated signals. However, further studies are required to

consider the multiplicity of NF-kB-related pathways.

4.2.2 NLRP inflammasomes
Inflammasomes are a kind of PRR composed of multiprotein

complexes that serve as a platform for caspase-1 activation, IL-

1b, IL-18 release, and pyroptosis. NLRP3 (Nucleotide-binding

oligomerization domain-like receptor [NLR] family pyrin

domain-containing 3) is a member of the inflammasome

family and a sensor of innate immune cells. It can be activated

by DAMPs or pathogen-associated molecular pattern (PAMPs)

and promotes the production of pro-inflammatory cytokines IL-

1b and IL-18 (119). There have been reports that NLRP3 plays a

vital role in post-ICH inflammation, and it can be regulated by

miRNAs in central nervous diseases such as prosopalgia. In ICH,

miR-223 mimics have been found to alleviate inflammation and

neuronal injury in erythrocyte lysis-induced microglia by

targeting NLRP3. In vivo experiments also demonstrated that

miR-223 reduces inflammation in ICH mice (120). miR-152

suppresses post-ICH neuroinflammation and neuronal death

both in vivo and in vitro by inhibiting thioredoxin interacting

protein (TXNIP)-mediated NLRP3 activation (121). Tumor

necrosis factor receptor-associated factor 6 (TRAF6), an

intracellular scaffold protein, has been shown to participate in

inflammatory signal transduction pathways of the TNF, IL-1R,

and TLR receptor families. It was also found to be involved in the

transcription-independent activation of NLRP3, but whether it

regulates NLRP3 in the post-ICH milieu was not mentioned

(122). A previous study reported that overexpression of miR-

194-5p inhibits the activation of NLRP3 by inhibiting TRAF6

binding to it, thus alleviating ICH-induced neuroinflammation

in rats (123). Correspondingly, an in vitro study found that miR-

124-3p overexpression using its mimics distinctly inhibited

neuroinflammation and apoptosis in lipopolysaccharide (LPS)-

induced human microglial HMC3 cells by inhibiting TRAF6 and

NLRP3 (124). Moreover, the TRAF6/NF-kB pathway is

implicated in ICH damage. A study discovered that miR-146a
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mimics administered by intracerebroventricular injection

reduced pro-inflammatory cytokine expression, brain edema,

neuronal apoptosis and oxidative stress, at least partly by

suppressing the TRAF6/NF−kB pathway in ICH rats (125). In

addition, miR−183−5p enriched BMSC-extracellular vesicle

(EVs) delivered via the tail vein alleviated neuroinflammation

after ICH in diabetic rats, as well as reduced inflammatory factor

production in hemoglobin-hemin BV2 cells; notably, these

effects could be reversed by inhibiting miR-183-5p in EVs.

Mechanistically, these effects are likely due to miR-183-5p

downregulating programmed cell death 4 (PDCD4) and

subsequently suppressing NLRP3 (126). Concordantly, a

previous study demonstrated that miR-340-5p alleviates

inflammatory responses, brain water content, and neurological

deficits in ICH rat models. It also repressed LPS-induced

inflammation in cultured microglial cells, likely by targeting

PDCD4. However, the concrete role and mechanism of action of

PDCD4 in neuroinflammation remains to be verified (127).

Apart from NLRP3, NLRP6 and NLRP1 also have regulatory

effects on post-ICH injury. There are contradictory views

regarding the function of NLRP6 after ICH. One study found

that upregulation of NLRP6 in perihematomal brain tissues

alleviates ICH-induced brain injury, including inflammation

(128), whereas another study showed that NLRP6 promotes

neuroinflammation after ICH by activating autophagy in an

inflammasome-dependent manner (129). Moreover, miR-331-

3p overexpression by injected mimics aggravated ICH-induced

neuroinflammation in both a mouse model and hemin-treated

BV2 cells by suppressing NLRP6 (130). Despite these findings,

additional studies are warranted to elucidate the specific

mechanisms and to consider NLRP inflammasomes, especially

NLRP3, as therapeutic targets for miRNAs after ICH.
4.2.3 PI3K/AKT pathway
The PI3K/PKB pathway plays a vital role in various

physiological processes, including cell growth, proliferation,

survival, metabolism, neurite extension, and synaptic plasticity.

It is also found to regulate inflammation after the development

of brain diseases, including Parkinson ’s disease and

pneumococcal meningitis, as well as after physiological aging

(131). Recently, a series of studies have verified its role in ICH

pathogenesis and its interactions with downstream molecules,

such as NF-kB, Nrf2, and glycogen synthase kinase 3b (GSK3b)
(132–134). Research has shown that miR-181b inhibitors

promote neuroinflammation and oxidative stress and

aggravate neuronal apoptosis and caspase-3 activity, thus

exacerbating brain edema and neurological damage in ICH

rats, probably by regulating the PI3K/AKT pathway. Inhibition

of miR-181b obviously reduced p-AKT protein levels and p-

AKT/AKT ratios compared to sham groups, suggesting that

regulation of this pathway occurred (135). However, since the

PI3K/AKT pathway’s main function is to regulate cell survival
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and death, it remains to be elucidated as to whether it affects the

course of neuroinflammation directly or indirectly by

manipulating immune cell survival.

4.2.4 Nrf2 pathways
NRF2 is a transcription factor that regulates cellular

detoxification and antioxidant responses by regulating gene

expression. After ICH, it promotes antioxidative and anti-

inflammatory responses, microglial phagocytosis, and

hematoma dissolution (136). miRNAs have also been found to

influence Nrf2. The miRNA-155 inhibitor antagomir-155

increases the expression of brain and muscle Arnt-like protein 1

(BMAL1) and activates the Nrf2 signaling pathway to attenuate

neuroinflammation, oxidative stress, and neuronal death after ICH

in rats (137). In addition, the miRNA-139/Nrf2/NF-kB axis may

play a critical role in monomethyl fumarate’s (MF) role in

conferring alleviation of neuroinflammation and oxidative

stress, particularly considering that miR-139 overexpression

reduces nuclear NF-kB levels and elevates nuclear Nrf2

levels in SH-SY5Y cells compared to controls and that levels

of all three molecules are altered by MF treatment (138).

However, further exhaustive studies are required to confirm

this adjustment.

4.2.5 Other molecular pathways
In addition to the molecules mentioned above, miRNAs

have pivotal roles in the pathogenesis of post-ICH inflammation,

along with some other targets. For example, miR-132

overexpression in ICH mice decreased the number of

microglia and inflammatory cytokines in the perihematomal

region, reduced BBB permeability, ameliorated brain edema,

alleviated neuronal apoptosis, and attenuated neurological

deficits, likely by inhibiting acetylcholinesterase (AChE)

expression, thus promoting the anti-inflammatory effect of

acetylcholine (ACh) (139). Overexpression of miR-590-5p

noticeably reduces inflammatory cytokine production and

improves brain edema and neurological functions in ICH

mice, at least partially by inhibiting the expression of Pellino-1

(Peli1), a gene that has been reported to be abundantly expressed

in microglia and promotes microglia-mediated inflammation

(140). And inhibition of miR-21-5p alleviates inflammatory

injury, including microglial activation, pro-inflammatory

factor production, brain edema, neuronal apoptosis, and

hematoma formation after ICH, thus attenuating neurological

deficits by regulating the phosphorylated extracellular signal-

related kinase (p-ERK)/HO-1 pathway, which is involved in the

oxidative stress responses (141). Genetic knockout of miRNA-

144/451 promotes inflammatory responses and oxidative stress,

thus aggravating hemin-induced brain injuries in ICH mouse

models by regulating the transcriptional factor FoxO3/14-3-3

axis (142). AntagomiR-23a-3p reduces ICH-induced pro-

inflammatory cytokines such as IL-6, IL-1b, and TNF-a,
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inhibits neuronal ferroptosis, and facilitates nuclear factor E2-

like 2 (NFE2L2) nuclear translocation in rat ICH models (143).

In addition, miRNAs have been found to interact with lncRNAs

in some brain diseases, such as ischemia, glioma, depression, and

Parkinson’s disease. lncRNA Mtss1-promoted inflammatory

injury in ICH mouse models was associated with a reduction

in miR-155, the direct target of Mtss1 in cerebral tissues,

implicating the positive role of miR-155 in neuroinflammation

by interacting with lncRNA Mtss1 (144). However, another

study has the opposite view of miR-155, showing that

intracerebroventricular infusion of miR-155 inhibitor, but not

its scramble, attenuated pro-inflammatory cytokines and

oxidative stress biomarkers and elevated vascular endothelial

growth factor (VEGF) expression in the parietal cortex and

hippocampus of ICH rats (145). Therefore, due to the scarcity of
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associated literature, more studies are required to further verify

the explicit and complete role of miRNAs in these molecules.
5 Prospects for new therapies

5.1 Feasibility of using microRNAs as
therapeutic targets for treating
neuroinflammation after ICH

Here is the summary of the literature pertaining to the effect of

miRNAs on post-ICH neuroinflammation, categorized according

to the different immune cells, molecules, and pathways involved

(Figure 2, Table 1). Most miRNAs have either positive or negative

effects on brain outcomes, with a few exceptions such as miR-144,
FIGURE 2

Neuroinflammation after ICH and microRNAs’ modulation of it. After ICH, blood components extravasated from ruptured vessels activate
resident immune cells in the brain (mainly microglia and astrocytes), thus triggering neuroinflammation. The immune cells release a variety of
inflammatory mediators and activate diverse molecular pathways. Many miRNAs can exert functions on these cells and pathways.
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which has vague effects (95, 96, 142). The results show that

microglia are the most frequently studied cell types targeted by

miRNAs after ICH, with 18 kinds of miRNAs (including the

individual passenger strands) proven to have effects on them.

Among them, 13 were beneficial and 5 were detrimental to

neurological functions. They modulate the microglia polarization

state or its signaling or both of these functions. Some of these act

through classical inflammatory signaling pathways, such as the NF-

kB and TLR4 pathways. Some interfere with the components

related to other secondary brain injuries, such as the autophagic

AKT/mTOR pathway and oxidative stress, suggesting the

complexity of neuroinflammation and its overlapping

mechanisms with other secondary injuries (147). Therefore, it

migh t be more prac t i ca l and e ffic i ent to t a rge t

neuroinflammation and other secondary brain injuries

simultaneously using miRNA-based drugs, and more research on

the effects of miRNAs on other brain injuries are needed. Apart
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from microglia, leukocytes and astrocytes can also be regulated by

miRNAs in ways related to neuroinflammation. Leukocytes include

neutrophils and mast cells, the infiltration and degranulation of

which can be modulated by miRNAs. The most frequently studied

molecular targets of miRNAs are the well-known NLRP

inflammasome family, with NLRP3 exerting a harmful function

(120) and NLRP6 having an opposing protective function after ICH

(130). Eight types of miRNAs that can target at least one of them

have been identified. In addition, NF-kB also contributes

significantly to the regulation of post-ICH neuroinflammation by

miRNAs. The Nrf2 and PI3K/AKT pathways have been reported by

several studies to be targeted by miRNAs, thus affecting the course

of neuroinflammation after ICH (135, 137). Of note, there are

contradictory results concerning the effects of several miRNAs on

their targets, such as miR-144 modulation of the mTOR autophagic

pathway and of neurological functions (95, 96, 142). Further

research is required to verify these uncertain effects.
TABLE 1 Effects of microRNAs on immune cells, inflammatory molecules, and pathways after ICH.

Immune cells

Cell type Subtype microRNA Target Reference

Microglia (+) (apart from
polarization)

miR-21/miR-146a, miR-181b,
miR-7, miR-367,
miR-181c, miR-26a, miR-183-5p

TLR4↓, IRAK4↓, MLL1↓, NF-kB↓, HMGA2↓, HO-1↓ (81, 83–86, 88,
146)

(-) (apart from
polarization)

miR-222, miR-144, miR-23b, miR-181a ITGB8↓, autophagy (AKT/mTOR)↓or↑, IPMK↓, monocytes,
IL-8

(94–97, 100)

Affect MG
polarization

miR-146a-5p (BMSCs-Exo), miR-34a-5p, miR-494,
miR-124, miR-367, Let-7a, miR-575

IRAK1↓, NFAT5↓, Klf4↓, Nrdp1/CEBP-b↓, CEBP-a↓, CKIP-
1↓, PTEN↓

(89–93, 98, 99)

Astrocytes miR-146a-3p, miR-155 PI3K/Akt↑/AQP4↓, SOCS-1↓ (88, 89, 106)

Leukocytes Neutrophil let7c, miR-183-5p, miR-146a-5p (BMSCs-Exo) IGF1R↓, HO-1↓ (112)

Mast cell miR-125b-2-3p IRE1a/Lyn kinase↓ (103, 104)

Lymphocytes – – –

NK cells – – –

Molecules and pathways

Molecule/pathway microRNA Targets References

NF-kB miR-195, miR-146a, miR-93, miR-140-5p, miR-
146a, miR-367, miR-181c, miR-139

NF-kB↓, TLR4/NF-kB↑, TLR4/MyD88/TRIF/NF-kB↓,
TRAF6/NF−kB↓, IRAK4↓, MLL1↓, Nrf2↑/NF-kB↓

(84, 85, 114–116,
118, 125, 138)

NLRP miR-223, miR-152, miR-194-5p, miR-124-3p, miR
−183−5p (BMSC-EV), miR-331-3p

NLRP3↓, TXNIP/NLRP3↓, TRAF6/NLRP3↓, PDCD4/
NLRP3↓, NLRP6↓

(120, 121, 123,
124, 126, 130)

PI3K/AKT miR-181b, miR-146a-3p PI3K/AKT↑ (103, 135)

Nrf2 miR-155, miR-139 BMAL1/Nrf2↓, Nrf2↑/NF-kB↓ (137, 138)

Other miR-132 AChE↓/ACh↑ (139)

miR-590-5p Peli1↓ (140)

miR‐21‐5p p-ERK/HO-1↓ (141)

miR-155 VEGF↑ (145)

miR-144/451 FoxO3/14-3-3↓ (142)

miR-23a-3p NFE2L2↓ (143)

miR-155 lncRNA Mtss1↓ (144)

miR-340-5p PDCD4 (127)
↑ indicates that activity increases with the elevation of miRNA, and ↓ indicates that activity decreases with the elevation of miRNA. (+) indicates positive therapeutic effects after ICH, and
(−) indicates negative therapeutic effects after ICH
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Alleviation of inflammatory injury in the brain can be

achieved by reducing the injurious effects and promoting the

reparative effects of neuroinflammation. miRNAs play roles in

both pro-inflammatory and reparative reactions as discussed

above, and have multiple targets, making them flexible targets

with which to modulate brain inflammation (148). In addition, it

modulates neuroinflammation by functioning in both cellular

and intercellular ways. On the one hand, abnormally expressed

intracellular miRNAs can regulate cellular inflammatory

cascades by targeting molecules and pathways involved in

immune responses (74, 149). On the other hand, miRNAs can

participate in intercellular communications, such as neuronal-

glial interactions, by being released through EVs such as

exosomes (150–152). For example, dysregulated miRNAs and

their precursors have been found to be released by neural cells

through exosomes, a prominent type of EV, and delivered to

bystander cells, causing dysfunction and dissemination of brain

injury (153). In short, miRNAs can have different influences in

specific temporospatial situations, with shared or unique

features, being detrimental or restorative, working at the

single-cell level or whole- brain level, or anywhere in between.

In the future, a better understanding of the regulation of

neuroinflammation by miRNAs may help achieve precise and

efficacious therapeutics that are tissue-specific (such as those

specific to different hematoma locations, or gray or white

matter), cell-specific (such as different functionality in

microglia, astrocytes, and neurons), and time-dependent (such

as modulating microglia in different inflammatory stages) (36,

154). In return, manipulating miRNAs may increase the

understanding of the pathophysiological mechanism of ICH.

Of note, although the regulation of protein expression by

miRNAs is essentially fine-tuning, it has some unique

characteristics that make it a superior CNS drug target. First, it

can regulate functionally critical molecules in pathways that may

have a significant impact. In addition, since a miRNA can target

multiple mRNAs, it may modulate multiple genes and have

multi-molecular or even multi-pathway effects, making it

efficient in treating diseases that have complicated

compensatory mechanisms such as ICH (155). Apart from that,

endogenous miRNAs commonly produce rapidly and degrade

slowly, thus lasting a long time in human cells (the median half-

life is more than 10 h), adding to the feasibility of exogenous drug

intervention (156). Moreover, since miRNAs can remain either

intracellular or be released by extracellular excretion, they may

have the ability to target both “non-druggable” intracellular

targets and intercellular communication. These unique features

make miRNAs potential therapeutic targets for ICH.
5.2 microRNA-based therapeutics

miRNA-based therapeutics have been explored for a variety

of diseases, including CNS diseases (157–160). As early as 2004,
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viral vectors expressing miR-181, miR-223, and miR-142 were

found to modulate lymphoid differentiation of S17 bone marrow

stromal cells in vitro (161). Since endogenous miRNA can be

modulated by genetic, epigenetic, post-translational

modification, competing endogenous RNA sponging and other

ways, theoretically many processes in the biogenesis and

functioning of miRNA can be interfered with (15, 162, 163).

Examples include diverse isomiR formation, pre-miRNA

editing, non-templated nucleotide addition, miRNA turnover,

AGO phosphorylation, intracellular and extracellular trafficking,

and subcellular functioning. However, only a few have been

tested in basic research and clinical trials. These include miRNA

mimics, antimiRs (known as antagomirs when conjugated to

cholesterol), miRNA sponges, Tough decoy, miRNA-masking

antisense oligonucleotides (ASOs), short hairpin RNAs, peptide

nucleic acids, and small-molecule inhibitors. Among them, the

most frequently studied types are miRNA mimics and antimiR

(164, 165). The miR mimic is double-stranded and is similar to

duplex siRNA, while the antimiR is more common than miR

mimics because of its relatively simple single-stranded structure,

which is similar to that of the widely studied ASOs. Many

strategies for building antimiR drugs have been adopted from

ASO drugs. Compared with other nucleotide-based drugs,

miRNA-based drugs have the unique feature of targeting

multiple molecules and pathways simultaneously (166).

If used appropriately, it may be favorable in a complex

diseased milieu, such as inflammation, where many pathways

are interrupted.

Some miRNA drugs have been tested in clinical trials. For

instance, antimiR103/107 RG-125 (AZD4076) was tested for the

treatment of type II diabetes and nonalcoholic fatty liver disease;

antimiR-122 Miravirsen (SPC3649) was tested for the treatment

of HCV infection (167); antimir-92a (MrG-110) was tested for

the treatment of angiogenesis and wound healing (168); and

antimir-21 (rG-012) was tested for the treatment of Alport

syndrome (169). As for mimics, the miR-16 mimic Mesomir-1

has been tested in phase I clinical trials for malignant pleural

mesothelioma and non-small cell lung cancer, and the miR-29

mimic Remlarsen (MRG-201) was tested in a phase II trial for

keloids (170). In the brain, the pri-miR-451 backbone rAAV5-

miR-HTT (AMT-130) (AAV, adeno-associated virus), a drug for

treating Huntington’s disease by one-time MRI-guided

stereotaxic intrastriatal infusion, is currently in phase I/II

clinical trials.

miRNA sponges, which contain multiple binding sites to

trap and sequester miRNA, and miRNA-masking ASOs have not

yet been applied in clinical settings. Small molecules that can

target miRNAs, such as peptide nucleic acids and small-

molecule inhibitors have seldom been reported (171). Several

newly discovered small molecules that target miRNAs have been

discovered by phenotypic screening instead of by mechanism-

based methods (172). They have been found to target RNA’s

multiple closely packed helices (which is the current frontier of
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progress; these small molecules are exemplified by linezolid,

ribocil, branaplam, and SMA-C5), RNA’s irregular secondary

structures, or RNA’s triplet repeats, which are all complicated

RNA structures (173). Since the specific structure of RNA is still

not well understood, the manipulation of RNA function by these

molecules lacks more precise elaboration.
5.3 Procedures to develop microRNA-
based therapeutics for ICH

The development of miRNA-based therapeutics is a rigorous

procedure that includes mainly five steps: identification,

construction, optimization, preclinical tests, and clinical trials

(174). The optimization step includes the modification, delivery,

and administration of a drug. After the target miRNA that exerts

its function is identified by genomic or proteomic expression

and function analyses, an interventional drug is constructed

based on its sequence and intended effects (175). The most

commonly used drugs are miRNA mimics and antimiRs, which

are both synthetic nucleotides that are double-stranded and

single-stranded respectively. After construction, preliminary in

vitro experiments such as dual-luciferase reporter assays are

performed to verify the effects of the drug on its targets. If it

meets expectations, the drug is then optimized in structure.

Because the original oligonucleotides are unstable and easily

degraded in the body, they require chemical modifications and

appropriate delivery systems (176). The modification methods

have evolved through three generations: phosphodiester (PO)

linkage modification, methylation or halogenation, and nucleic

acid modification. For delivery, the drug can be encapsulated in

suitable delivery vehicles, or conjugated to some materials, such

as nanoparticles (177). After optimization, rigorous preclinical

experiments are started, and indicators such as delivery

efficiency, target modulation effect, therapeutic ability, and

toxicity are tested both in vitro and in vivo (178). Finally, if

the drug exhibits satisfactory effects in preclinical studies, it

should be tested in clinical trials with four stages to examine its

curative efficiency, suitable administration patterns, and toxicity

or side effects for clinical use (179). Here, we summarize the

main procedures for developing miRNA-based therapeutics for

ICH (Figure 3).
6 Limitations and future directions

Although miRNA-based therapeutics have been

explored in clinical trials for many diseases, clinical trials for

ICH are lacking. This is probably due to limitations and

technological hindrances in studying the role of miRNAs in

neuroinflammation. Some are related to the experimental

process, while others are related to current research methods.

To gain a complete understanding of the function of miRNAs
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and develop them as therapeutic targets for ICH, these

limitations should be addressed in the future.
6.1 Broader mechanism studies

Neuroinflammation is a complex process that intrinsically

interacts with many other secondary brain injury mechanisms

such as programmed cell death, phagocytosis of hematoma and

brain debris, cerebral edema, toxic product clearance, and

oxidative stress, making it difficult to elucidate the explicit

pathogenesis of neuroinflammation. Therefore, it is necessary

to study the functions of miRNAs in other secondary brain

injuries at the same time and to consider their interaction with

the course of neuroinflammation. In addition, one miRNA may

have multiple targets, and different miRNAs may have the same

target, thus forming a complicated miRNA-inflammation

network (123, 124). Moreover, different miRNA targets may

have shared downstream mediators. Many overlapped

mechanisms occur after miR-based drug administration,

including microglial polarization, neutrophil infiltration,

cytokine changes, and activation of classical molecular

pathways such as the NF-kB pathway. Therefore, there may be

extra or accessory mechanisms that are revealed in some studies;

however, researchers may ignore these based on the study topic

at hand. For example, in a study in which microglia were

reported to be modulated by certain miR-based drugs, other

inflammatory components such as astrocytes and leukocytes

may have also been affected (180). Therefore, broader

mechanistic studies are needed to elucidate the exact functions

of miRNAs in post-ICH neuroinflammation.
6.2 Animal models

There are some limitations to study the effects of miRNAs on

neuroinflammation, and some of these are manifested in the

analyzed literature and are related to the experimental process.

First, all existing studies used animal and in vitro cell models,

both of which are preclinical models that may have interspecies

differences from human beings in terms of reactions. Second, the

animals used in most studies were mainly male rats and male

mice aged 8–10 weeks. Since it has been reported that aging can

cause an inflammatory microenvironment (181) and that sexual

hormones might modulate inflammatory responses (182), age

and sex can be confounders in these types of experiments and

should be considered in future research. Third, ICH in humans

is always accompanied by comorbidities such as hypertension

and diabetes. Among the studies discussed, only one study used

rats with diabetic intracerebral hemorrhage (126). The lack of an

equivalent disease animal model related to human diseases will

decrease the reliability and reference value of these studies. To

develop meaningful disease models, the pathogenesis of ICH
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with subdivisions of different causes, locations, magnitudes, and

timings needs to be clarified.
6.3 High-resolution observations

Apart from the limitations mentioned above, there were

limitations related to the targets of the experiments. Most

miRNA targets in animal models have been detected by tissue-
Frontiers in Immunology 13
based ensemble analyses. Therefore, their explicit positions and

functions at the cellular and subcellular levels remain unknown.

For example, any given miRNA may have cell type-specific

actions and subcellular locations. These are important for

understanding the function of miRNAs and require further

investigation. Newly developed technologies might help to

answer the questions, such as flow cytometry, single-cell RNA-

sequencing, translocator protein radiotracer, genetic fluorescence

labeling, and cell heterogeneity profiling (183–185). Recently, in
A

B

D

E

C

FIGURE 3

Procedures to develop microRNA-based therapeutics for ICH. (A) Identify target miRNA by genomic or proteomic expressional and functional
analyses. (B) Construction of miRNA-based drugs (most are miRNA mimics and antimiRs) and performance of preliminary in vitro verification
experiment such as dual luciferase reporter assays. (C) Optimization of the drug’s pharmacological properties via chemical modifications and
optimizing the delivery systems and administration patterns. (D) Rigorous preclinical experiments are performed to test the drug’s potency and
efficiency in ICH. (E) Clinical trials are performed to examine the drug’s curative efficiency, suitable administration patterns, and toxicity or side
effects.
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situ single-molecule visualization was used to observe each step of

the miRNA function process in cells (59). By observing each step

of miRNA silencing actions at the same time, there are some

novel discoveries regarding miRNA silencing mechanisms. This

study provides a new framework for studying the function of

miRNAs at a single-molecule resolution, with spatiotemporal

specificity. Besides, conditional gene-deficient models are

emerging, making it possible to study highly involved pathways

and trace certain molecules in the post-ICH brain milieu. For

example, one study used genetically knockout mice lacking the

miRNA144/451 cluster to study its effects on brain function after

ICH (142). Notably, since many miRNAs are present in families,

genetically deleting one of them often leads to a weak phenotype,

while gain-of-function studies show obvious phenotypes.
6.4 Timing and interplay

Elucidating the timing and interplay of the cellular and

molecular components that are under the influence of

miRNAs in the brain is difficult yet indispensable to explain

the pathogenesis of post-ICH neuroinflammation and remains

to be fully understood. This includes how the pathophysiological

mechanisms act in a chronological sequence, their degree of

importance, their balance between damage and repair, and the

precise time their phenotypes transform if exist (12, 24). Solving

these questions relies on a deeper understanding of the

intercellular interactions among various immune cell types,

which may be mediated partly by miRNAs secreted as

extracellular vesicles (186, 187). A virus-based barcoding

system called rabies barcode interaction detection followed by

sequencing (RABID-seq) was recently developed to observe

cellular interactions in vivo . Using this system and

simultaneous transcriptomic analysis at the single-cell level,

researchers discovered that microglia can modulate astrocyte

reactions in experimental autoimmune encephalomyelitis by

expressing Sema4D and Ephrin-B3, implicating the utility of

this method in elucidating cell interactions (188). Finally, the

relative scarcity of the literature and the researchers’ selection

preference may add bias to the reliability of the results regarding

the function of molecules in post-ICH inflammation.
7 Concluding remarks

Neuroinflammation is a major contributor to secondary brain

injury and is associated with the clinical prognosis of ICH.

miRNAs are distinctive molecules with unique expression

profiles and have important effects on neuroinflammation after

ICH. Preclinical studies have shown that they regulate diverse

inflammatory components, including immune cells, inflammatory

molecules, and pathways within the brain, and can have positive

or negative effects on brain function after ICH. In fact, their multi-
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targeting property makes them potential targets to reverse the

complex, disordered brain milieu where multiple pathways are

disrupted. This finding suggests the possibility of developing

miRNA-based therapeutics for ICH. Although preclinical

studies on miRNA function in ICH are numerous, there have

been no clinical trials of related therapeutics. This is likely due to

limitations in studying their function. In the future, to develop

newmiRNA-based therapies for ICH, broader mechanistic studies

are needed to achieve a better understanding of the characteristics

of miRNAs, their temporospatial specific functions, their

interactions with brain components, and the network they form

to regulate overall neuroinflammation. Additionally, meaningful

preconditioned disease models are required. Newly developed

technologies, such as single-cell, single-molecule, and cellular

interaction study methods may help. With the further

elucidation of miRNA-inflammation mechanisms and

advancements in pharmaceutics, effective miRNA-based

therapies for treating ICH can more easily be developed.
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