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Use of bioinformatic analyses
in identifying characteristic
genes and mechanisms active
in the progression of
idiopathic thrombocytopenic
purpura in individuals with
different phenotypes

Mengyi Zhang1,2 and Binhan Guo1,2

Abstract

Objective: To explore the mechanism underlying the progression of newly diagnosed idiopathic

thrombocytopenic purpura (ITP) to its chronic or remission state using bioinformatic methods.

Methods: GSE56232 and GSE46922 gene expression profile datasets were downloaded from

Gene Expression Omnibus (GEO). Differentially expressed genes were identified and character-

istic genes were screened by weighted gene co-expression network analysis. These genes were

used for function enrichment analysis and construction of a protein–protein interaction network.

Finally, characteristic genes were verified to determine potential molecular mechanisms under-

lying ITP progression.

Results: We found that characteristic genes in the chronic ITP group were mainly involved in

intracellular processes and ion binding, while characteristic genes in the remission ITP group

were involved in intracellular processes and nuclear physiological activities. We identified a sub-

network of characteristic genes, LMNA, JUN, PRKACG, SMC3, which may indicate the mechanism

by which newly diagnosed ITP progresses to chronic. Although no meaningful signaling pathways

were found, the expression of NR3C1, TPR, SMC4, PANBP2, CHD1, and U2SURP may affect ITP

progression from newly diagnosed to remission.

Conclusion: Our findings improve the understanding of the pathogenesis and progression of ITP,

and may provide new directions for the development of treatment strategies.
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Introduction

Idiopathic thrombocytopenic purpura
(ITP) is an acquired hemorrhagic disease
characterized by isolated thrombocytope-
nia, which can affect individuals of any
age, race, and sex.1,2 The disease mainly
manifests as scattered skin bleeding points
and other mild bleeding symptoms, such as
epistaxis and gum bleeding. In severe cases,
intracranial bleeding can be life-threaten-
ing.3 ITP is considered to be related to
abnormalities in the immune system, and
arises when autoantibodies directed against
platelet antigens result in increased clear-
ance of platelets by the mononuclear mac-
rophage system from the peripheral
circulation.4–7 The incidence of ITP in
adults is between 3.3 and 3.9 per 100,000
per year, and that of children is between
1.9 and 6.4 per 100,000.8,9 While a brief
course with spontaneous remission is fre-
quently observed in most children with
ITP, some patients transform to the chronic
phenotype.10 Additionally, ITP patients
whose symptoms have been temporarily
relieved are also at risk of recurrence.

A recent study showed that the CD40
gene single nucleotide polymorphism
rs1883832 is associated with an increased
risk of ITP development in the Egyptian
population.11 However, this only explored
the risk factors related to ITP pathogenesis
at the single gene level, and did not
consider the molecular mechanisms under-
lying disease progression at the multi-gene
level.

Recently, bioinformatic approaches have
been increasingly used in target gene or
protein exploration and analysis.12,13

Gene expression profile technology has pro-
duced numerous high-throughput gene pro-
files, which are widely used in data mining,
so this is a promising method to explore the
mechanism underlying the pathogenesis
and progression of ITP. In the analysis of
gene expression profile data, the identifica-
tion of differentially expressed genes
(DEGs) is an essential step after data col-
lection.14 However, it can only identify
DEGs between two groups and does not
determine whether these genes are
co-expressed. Weighted gene co-expression
network analysis (WGCNA) is a novel gene
co-expression network-based approach that
uses systems biology to analyze molecular
interaction mechanisms and resolve correla-
tion networks.15,16 WGCNA can also be
used to find modules for co-expression
and to explore the relationship between
gene networks and clinical phenotypes.

In our study, we used Gene Expression
Omnibus (GEO) mRNA expression data-
sets GSE56232 and GSE46922 to identify
genes that were differentially expressed in
both chronic ITP and remission ITP
groups relative to the newly diagnosed
ITP group. We constructed gene
co-expression networks and gene modules
according to the disease phenotype, and
overlapped DEGs with module genes to
identify characteristic genes for gene enrich-
ment analysis and hub gene mining. Our
study used bioinformatics to analyze poten-
tial molecular mechanisms involved in the
transition from newly diagnosed ITP to the
chronic or remission state. We also aimed
to provide a scientific basis for in-depth
research on ITP pathogenesis and new
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insights that can be used in the clinical diag-

nosis and treatment of the disease.

Materials and methods

Data source

Gene expression profile datasets GSE56232

and GSE46922 were downloaded from the

GEO database (http://www.ncbi.nlm.nih.

gov/geo). GSE56232 included mRNA

expression profiles from six newly diag-

nosed ITP patients and six remission ITP

patients,17 while GSE46922 contained data

from seven newly diagnosed ITP patients

and six chronic ITP patients.18 All samples

were from human peripheral blood T cells.

The datasets were based on the GPL570

Platform (Affymetrix Human Genome

U133 Plus 2.0 Array; Thermo Fisher

Scientific, Santa Clara, CA, USA) and

were processed according to the standard

Affymetrix protocol.

Identification of DEGs in ITP

“Limma” is an R package used for the anal-

ysis of gene expression microarray data,

which enables the simultaneous analysis of

many RNA targets in arbitrary, complicat-

ed designed experiments.19 On this basis, we

used the limma package in R to identify

DEGs among chronic ITP, remission ITP,

and newly diagnosed ITP groups. DEGs

with |log2FC|>0.58 and p-value <0.05

were selected for subsequent analysis. We

then used the above results to create volca-

no plots and heat maps for different pheno-

types of ITP using the R package to

visualize the DEGs.

Co-expression network construction

using WGCNA

Following elimination of the batch effect

and data normalization, merged datasets

from GSE56232 and GSE46922 were used

to identify scale-free gene modules of co-
expression and highly correlated gene net-
works constructed using WGCNA. First,
we constructed a similarity matrix using
the R package “WGCNA”. A soft-
thresholding power b, where the corre-
sponding scale-free Topology Fit Index
was >0.9, was selected using the
“pickSoftThreshold” function. The similar-
ity matrix then generated a scale-free net-
work topology depending on this soft
threshold function, and the weighted adja-
cency matrix was transformed into a topo-
logical overlap measure (TOM) matrix to
estimate its connectivity property in the net-
work. Finally, the value (1-TOM) was
designated as the distance to identify hier-
archical clustering genes and modules. The
minimum module size was set to 30, and the
module eigengene (ME) was used to repre-
sent expression profiles of module genes.
Modules with MEs lower than 0.25 in the
clustering were identified as highly similar
and were merged. The most valuable clini-
cal data in our study were different ITP
phenotypes, namely chronic ITP, remission
ITP, and newly diagnosed ITP. Therefore,
we plotted heat maps of the module–trait
relationship and scatter plots according to
the tutorial accompanying the WGCNA
package in R to identify modules signifi-
cantly associated with related clinical data.

Screening and analysis of characteristic
genes

Genes in the significant modules that over-
lapped with DEGs, termed characteristic
genes, were chosen for further analysis
and validation. First, we imported these
genes into the Search Tool for the
Retrieval of Interacting Genes database
(STRING) (http://string-db.org), which
was used to predict potential interactions
among mRNAs. A p-value <0.05 was
regarded as statistically significant, and
the top 10 significant categories were
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selected for visualization in a bubble chart

after being ranked by their p-value.

Additionally, Kyoto Encyclopedia of

Genes and Genomes (KEGG) analysis

(https://www.kegg.jp) was conducted for

characteristic genes. We then created net-

works of these characteristic genes for

chronic or remission states of ITP using

Cytoscape 3.7.0.20 The Cytohubba plugin

tool was used to identify hub genes using

12 topological methods.

Verification of hub genes and construction

of sub-network

We used merged gene expression datasets to

verify the expression of hub genes obtained

from different phenotypes of ITP. The

expression levels of hub genes from either

chronic ITP or remission ITP were visual-

ized using box plots in each group. The

Wilcoxon test was used to compare differ-

ences among three groups. Based on the

hub genes obtained from the above

verification results, we constructed a sub-

network of the relationship between genes

and pathways using the Database for

Annotation, Visualization and Integrated

Discovery (DAVID; https://david.ncifcrf.

gov/), also visualized by Cytoscape 3.7.0.

Results

Workflow

The workflow of this study is shown in

Figure 1. First, to explore the potential

molecular mechanism underlying disease

outcomes in newly diagnosed ITP patients,

we downloaded GSE56232 and GSE46922

gene expression datasets from GEO. DEG

identification was then performed on these

datasets to obtain two sets of DEGs. We

integrated these two datasets and used

WGCNA to identify the module gene set

that was most relevant to the sample phe-

notype. Finally, the two sets of previously

obtained DEGs were merged with genes in

Figure 1. Workflow of data preparation, processing, and analysis in this study.
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the module, and the characteristic genes

and pathways related to the disease pro-

gression of ITP were further explored by

downstream analysis.

Screening of DEGs

After downloading GEO datasets, we per-

formed differential gene analysis for the

two sets of ITP gene expression data.

A total of 219 DEGs were identified from
the GSE56232 dataset (196 up-regulated
and 23 down-regulated) while 3471 DEGs
were identified from GSE46922 (1662 up-
regulated and 1809 down-regulated). Heat
maps and volcano plots for representing
DEG distribution were generated for both
datasets using R software; the top 10 genes
with |log2FC| values are shown in the vol-
cano plot (Figure 2).

Figure 2. Screening of DEGs. (a) Heat map of DEGs identified between chronic ITP and newly diagnosed
ITP groups. (b) Volcano map of DEGs identified between chronic ITP and newly diagnosed ITP groups.
(c) Heat map of DEGs identified between remission ITP and newly diagnosed ITP groups. (d) Volcano map
of DEGs identified between remission ITP and newly diagnosed ITP groups. For (a) and (c), red represents
up-regulated genes while blue represents down-regulated genes. The correlation between color and fold-
change of mRNA expression is displayed in the top right. For (b) and (d), red represents up-regulated genes
while blue represents down-regulated genes. The top 10 genes with |log2FC| values are shown.
ITP, idiopathic thrombocytopenic purpura; DEGs, differentially expressed genes.
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Weighted co-expression network
construction and identification of modules

Using WGCNA, we calculated the commu-
nity dissimilarity index and constructed a
system clustering tree by choosing a soft-
thresholding power. According to the stan-
dard of the dynamic cut tree, the lowest
gene number of each network was set at
30 and the cut-height was set at 0.9
(Figure 3a). When the connectivity between

genes in the network had satisfied the scale-
free network distribution, we generated 18
modules (Figure 3b). Genes that could not
be included in any of the modules were
placed into the gray module. Using the
summary profile (eigengene) for each
module, we correlated eigengenes with the
ITP disease phenotype and looked for the
most significant associations (Figure 3c).
Compared with other modules, blue, cyan,
green-yellow, magenta, tan, and yellow

Figure 3. (a) Soft-threshold power determination for WGCNA by analysis of the scale-free fit index and
mean connectivity for various soft-threshold powers. (b) Cluster dendrogram of genes in merged datasets of
GSE46922 and GSE56232. Each branch represents one gene, and every color represents one co-expression
module. (c) Heat map of the correlation between module eigengenes and disease phenotype of ITP.
Correlation coefficients and p-values are shown in parentheses underneath. Colors represent correlation
coefficients (scale shown on right). (d–i) Scatter plots of module eigengenes in blue (d), cyan (e), green-
yellow (f), magenta (g), tan (h), and yellow (i) modules in the chronic ITP group. (j) Scatter plot of module
eigengenes in the turquoise module in the remission ITP group.
ITP, idiopathic thrombocytopenic purpura; WGCNA, weighted gene co-expression network analysis.
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modules were positively correlated with
chronic ITP characteristics, while the tur-
quoise module was positively correlated
with remission ITP characteristics.
Therefore, we determined that these mod-
ules were the most relevant for patients with
chronic or remission ITP with different dis-
ease phenotypes. Figure 3d–j shows the
degree of correlation between genes in
each module and their associated disease
phenotype, as derived from statistical
models.

Analysis of characteristic genes and
identification of hub genes

To further investigate the genes strongly
associated with disease progression, we
merged genes in the modules related to
chronic or remission ITP with DEGs
obtained from the chronic or remission
ITP group. The characteristic genes most
relevant to chronic or remission ITP
were then overlapped, as shown in
Supplemental Table 1. We next investigated
the altered biological functions of these
characteristic genes using STRING online
software. For the chronic ITP group, we
identified the top 10 gene ontology (GO)
categories (Figure 4a) which were mainly
involved in cell structure and function
such as organelles, and intracellular and cel-
lular parts. Other identified pathways sug-
gested that characteristic genes in chronic
ITP were involved in biological activities
related to cell membrane function, such as
ion binding. We also obtained the top 10
GO categories from the remission ITP
group (Figure 4b). We found that the char-
acteristic genes were mainly associated with
terms related to the structure and function
of cells or cell organelles. However, unlike
the chronic ITP group, the characteristic
genes of the remission ITP group were
also enriched in pathways related to nuclear
structure and function. Given the small
number of characteristic genes in this

study, KEGG analysis could not identify
specific signaling pathways of statistical sig-
nificance. We constructed a PPI network of
characteristic genes in chronic and remis-
sion ITP groups (Figure 4c, d). Finally,
after proceeding with 12 topological meth-
ods for ranking the properties of nodes in
the network (Figure 4e, f), we obtained sev-
eral genes that may play a pivotal role in
PPI, as shown in Supplemental Table 2.

Verification expression and sub-network
construction of hub genes

The hub genes related to different disease
phenotypes were identified solely from bio-
informatic speculation and statistical prob-
ability calculations. Therefore, we used the
merged datasets from GSE56232 and
GSE46922 to verify these hub genes. We
found that the expression of JUN,
PRKACG, and SMC3 was significantly
down-regulated in the chronic ITP group
compared with the newly diagnosed ITP
group, whereas LMNA expression was sig-
nificantly up-regulated (p< 0.05; Figure 5a
and b). We also observed that the expres-
sion of NR3C1, TPR, SMC4, RANBP2,
CHD1, and U2SURP in the remission ITP
group was significantly up-regulated com-
pared with the newly diagnosed ITP group
(p< 0.05; Figure 5b). Based on these
results, DAVID was used to construct a
sub-network of the most relevant pathways
(Figure 6), although this was only achieved
for the progression of newly diagnosed ITP
to chronic ITP. Additionally, hub genes
obtained from the remission group could
not be confirmed to be enriched in a clear
pathway.

Discussion

During the past few decades, specific treat-
ment and management strategies have been
identified for ITP patients with different
disease phenotypes.21 Present treatments
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mainly focus on the inhibition of autoanti-
body production, platelet degradation, and
the stimulation of platelet production by
megakaryocytes.22,23 Current first-line

therapies for ITP typically use glucocorti-
coids, whereas immunosuppressants and
platelet agonists are employed as second-
line drugs. However, although many newly

Figure 4. (a) Top 10 significantly enriched GO categories of characteristic genes in the chronic ITP group.
(b) Top 10 significantly enriched GO categories of characteristic genes in the remission ITP group. (c) PPI
network of characteristic genes in the chronic ITP group. (d) PPI network of characteristic genes in the
remission ITP group. (e) Venn diagram of hub genes in the chronic ITP group based on 12 topological
methods. (f) Venn diagram of hub genes in the remission ITP group based on 12 topological methods. For
(c) and (d), red represents up-regulated genes while blue represents down-regulated genes. The depth of the
edge color represents the strength of the connection between genes. Edge with darker colors means
stronger associations than other edges.
ITP, idiopathic thrombocytopenic purpura; GO, gene ontology; PPI, protein–protein interaction.
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diagnosed ITP patients will progress to
chronic or temporary remission after treat-
ment, they can later relapse. Recent reports
suggest that the use of cyclosporine or
platelet agonists such as eltrombopag can
maintain the platelet count to some extent
in patients with chronic ITP,24,25 but dysre-
gulated immune mechanisms appear to lead
to different outcomes in the medication
response. This is largely because most stud-
ies have focused on a single genetic event,
or lack an understanding of the in-depth
underlying molecular mechanisms of
ITP.26,27 In our study, we used DEG and
WGCNA bioinformatic methods to analyze
and compare individuals with chronic and
remission ITP against those with newly
diagnosed ITP.

Heat maps and volcano maps revealed a
distinct distribution of DEGs in chronic
and remission ITP groups compared with
the newly diagnosed ITP group. This indi-
cates that the constitution of individuals
stratified by disease phenotype may be asso-
ciated with underlying molecular mecha-
nisms. Only a few studies have previously
focused on exploring the molecular mecha-
nisms of ITP pathogenesis. One reported

the overexpression of genes associated
with megakaryopoiesis, platelet adhesion,
degranulation, and aggregation in patients
treated with eltrombopag, which improved
the management of ITP.28 Another that
focused on non-coding RNA found that
microRNA (miR)-106b-5p and miR-
200c-3p could function as valuable bio-
markers to distinguish ITP patients.29

However, these studies were limited to
exploring the differences between patients
and healthy controls, while the potential
molecular mechanism underlying the pro-
gression of ITP has not been elucidated.
In our study, we used the newly diagnosed
ITP population as a reference to better
explain the progression of disease at the
molecular level.

The use of a single bioinformatic analysis
method has certain limitations with respect
to identifying candidate genes related to
disease. Several studies have previously
explored biomarkers using a combination
of WGCNA and DEG identification to
ensure reliability.30–32 Therefore, a similar
integrated method of analysis was used in
our study, and characteristic genes in the
chronic ITP group were shown to be

Figure 6. Sub-network of hub genes related to the disease phenotype of chronic ITP. Red represents
up-regulated genes while blue represents down-regulated genes. Cyan represents the pathway related to its
genes in the network.
ITP, idiopathic thrombocytopenic purpura.
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mainly enriched in cell structure and func-
tion terms, such as organelles, intracellular,
and cellular parts. This is consistent with
previous reports that target DEGs screened
from ITP patients were related to transcrip-
tion, the cytosol, and protein binding.33

Another study showed that platelet-
associated anti-glycoprotein IIb/IIIa auto-
antibodies in chronic ITP were frequently
directed to cation-dependent conformation-
al antigens, which potentially explains the
impact of ion channel-related pathways on
ITP disease progression.34 Interestingly, the
characteristic genes in the remission ITP
group in our study were not only enriched
in pathways related to cytoplasmic physio-
logical activities, but were also involved in
biological processes in the nucleus. This
indicates that the progression of newly
diagnosed ITP to remission may involve
nuclear physiological activities, which dif-
fers from chronic ITP.

The PPI network of characteristic genes
provides an overview of its functional rela-
tionship. We showed that several genes,
including LMNA, JUN, PRKACG, and
SMC3, may have an important impact on
the progression of newly diagnosed ITP to
chronic ITP, while NR3C1, TPR, SMC4,
RANBP2, CHD1, and U2SURP may con-
tribute to the benign outcome of ITP. c-Jun
protein is a component of the transcription
activator protein 1, which is involved in T
cell and B cell receptor signal transduction
and regulates various biological processes
such as cell proliferation, differentiation,
and apoptosis.35,36 c-Jun was also shown
to be an important therapeutic target for
acute inflammation and rheumatoid arthri-
tis,37,38 while tumor necrosis factor (TNF)-a
up-regulated cellular inhibitor of apoptosis
protein 2 via the c-Jun N-terminal kinase
pathway in nasopharyngeal carcinoma.39

Therefore, it is conceivable that the rela-
tionship between JUN and TNF-a pro-
motes ITP progression to its chronic or
remission stage by activating the TNF

signaling pathway. One study based on
data analysis also confirmed JUN as the
candidate gene, which was consistent with
our results.40

Another study identified a potential rela-
tionship between lamin A/C (LMNA)-asso-
ciated generalized lipodystrophy and
juvenile dermatomyositis.41 On this basis
we postulate that the observed high
LMNA expression in the chronic ITP
group in our study is closely related to dis-
ease progression. Furthermore, a family-
based genetic study demonstrated that the
p.74Ile>Met PRKACG mutation is associ-
ated with a marked defect in proplatelet
formation and low expression of filamin A
in megakaryocytes. Additionally, homozy-
gous patients in this family showed severe
thrombocytopenia as well as bleeding.42

Taken together, these findings suggest that
the sub-network of pathways associated
with the characteristic genes JUN, LMNA,
and PRKACG in the chronic ITP group
represents a potential molecular mechanism
underlying disease.

The human glucocorticoid receptor gene
(NR3C1) has been reported to determine
the differences and sensitivities of the glu-
cocorticoid response in individuals with
autoimmune diseases.43,44 Based on this,
changes in NR3C1 expression may affect
the efficacy of glucocorticoid therapy in
patients with ITP, which could explain the
high NR3C1 expression observed in the
remission group in our study. Moreover,
the function of the glucocorticoid receptor
was found to be regulated by the nuclear
protein TPR, which is consistent with the
co-upregulation of TPR and NR3C1
observed in our study.45 Combining these
findings, we hypothesize that the rational
use of glucocorticoids could serve as a ben-
eficial treatment, by regulating NR3C1, for
newly diagnosed patients with ITP under-
going remission. The transcription factor
CHD1 was previously shown to regulate
glucocorticoid signaling during the course
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of Alzheimer’s disease.46 Given the com-

plexity of transcription factor regulatory

mechanisms, and the observation that

CHD1 expression was significantly higher

in the remission ITP group than in the

newly diagnosed group in our study, it is

unclear how CHD1 determines the patient

response to drugs. Other characteristic

genes related to ITP remission, such as

RANBP2 and U2SURP, have never been

investigated, so their impact on disease pro-

gression should be explored.
Our study has some limitations. First,

the data used in our analysis were down-

loaded from a public database, which

lacked important clinical information such

as drug history and ITP patient outcomes.

Second, the original data used in our study

lacked the gene expression profile of healthy

children; therefore, it would be necessary to

establish a control group in a follow-up

study to demonstrate experimental rigor.

Finally, because of individual drug treat-

ment differences among patients with ITP,

our follow-up research will be devoted to

explaining the effects of therapeutic agents

on gene profiles in chronic and remission

ITP groups; we will also perform in vitro

and in vivo experiments focusing on a

larger number of clinical samples to vali-

date our findings.
In conclusion, our research used bioinfor-

matics to integrate and analyze gene expres-

sion profile data of different ITP phenotypes,

and revealed the potential pathways and

genes associated with disease progression.

Our findings provide new insights into the

pathogenesis and progression of ITP.
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17. Jernås M, Str€omberg C�elind F, Nookaew I,

et al. Normalised immune expression in

remission of paediatric ITP. Thromb

Haemost 2016; 115: 1229–1230. doi:

10.1160/TH15-12-0976.
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