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Cancer is a complex disease with a high rate of mortality. The characteristics of tumor

masses are very heterogeneous; thus, the appropriate classification of tumors is a critical

point in the effective treatment. A high level of heterogeneity has also been observed in

breast cancer. Therefore, detecting the molecular subtypes of this disease is an essential

issue for medicine that could be facilitated using bioinformatics. This study aims to

discover the molecular subtypes of breast cancer using somatic mutation profiles of

tumors. Nonetheless, the somatic mutation profiles are very sparse. Therefore, a network

propagation method is used in the gene interaction network to make the mutation profiles

dense. Afterward, the deep embedded clustering (DEC) method is used to classify the

breast tumors into four subtypes. In the next step, gene signature of each subtype

is obtained using Fisher’s exact test. Besides the enrichment of gene signatures in

numerous biological databases, clinical and molecular analyses verify that the proposed

method using mutation profiles can efficiently detect the molecular subtypes of breast

cancer. Finally, a supervised classifier is trained based on the discovered subtypes to

predict the molecular subtype of a new patient. The code and material of the method are

available at: https://github.com/nrohani/MolecularSubtypes.

Keywords: cancer molecular subtypes, breast cancer, machine learning, somatic mutations, clustering, tumor

classification

1. INTRODUCTION

Breast cancer is a heterogeneous disease at themolecular and clinical levels; thus, the effectiveness of
a treatment is hugely different based on the tumor characteristics. This heterogeneity is a challenge
for tumor classification to reach an appropriate clinical outcome. To solve this problem, many
researchers have developed numerous methods to classify tumor masses, such as histopathological
classification based on the morphological characteristics or immunohistochemical (IHC) markers
such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2) (Elston, 1999; Perou et al., 2000; Sørlie et al., 2001; Hu et al., 2006; Hofree et al.,
2013; Ali et al., 2014; List et al., 2014). Moreover, Sorlie et al. have used hierarchical clustering on
the gene expression data that led to the identification of significant breast cancer subtypes (Perou
et al., 2000). The high cost of gene expression analysis for many genes was a significant obstacle
in applying this method. To overcome this issue, the researchers have reduced the gene list to a
relevant gene signature for breast cancer subtypes detection. Parker et al. (2009) have presented
biomarker genes that can efficiently detect molecular subtypes. These genes could be an excellent
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alternative to whole transcriptome microarray analysis. The
subtypes found by these genes are known as PAM50 subtypes.
Diversity of gene expression data in the subtypes is an indicator
for the clinical prognosis of the patients, such as survival outcome
(Sørlie et al., 2003).

In some studies, the microarray-based breast cancer
classification has been considered as the gold standard
(Peppercorn et al., 2007). However, the microarray-based
methods cannot classify tumors consistently, due to the dynamic
nature of gene expression data (Pusztai et al., 2006; Gusterson,
2009; Weigelt et al., 2010).

Some studies have recently identified cancer subtypes based
on somatic mutation profiles of tumors (Vural et al., 2016;
Zhang et al., 2018b; Kuijjer et al., 2018). Somatic mutations are
more stable and have critical functions in cancer development
and progression (Vural et al., 2016; Kuijjer et al., 2018).
Moreover, investigating somatic mutation profiles can aid in
cancer diagnosis and treatment due to the vast number of
clinical guidelines based on single gene mutation (Kuijjer
et al., 2018). Therefore, the classification of cancers based on
the mutation profiles can help identify subtypes of patients
and their treatments (Pusztai et al., 2006; Gusterson, 2009;
Weigelt et al., 2010; Kuijjer et al., 2018). On the other side,
with the development of new sequencing technologies, genome
sequencing has become an appropriate tool for diagnostic
purposes. Therefore, tumor classification based on somatic
mutation profiles and application of the results in the clinical
decisions can be crucial in the personalized medicine (Kuijjer
et al., 2018).

Some studies have merged different kinds of the molecular
data for breast cancer classification. Curtis et al. (2012) have
developed a method to classify breast cancer by integrating
genome and transcriptome data of 2,000 breast cancer patients.
Based on the impact of somatic copy number alterations (CNAs)
on the transcriptome, they have introduced new subtypes for
breast cancer. Furthermore, Ali et al. (2014) have classified
breast cancer into ten subtypes based on the combination of
CNAs and gene expression data. In another study, List et al.
(2014) have proposed a machine learning-based method that
merges the gene expression and DNAmethylation data for breast
cancer classification. In a novel study, Hofree et al. (2013) have
proposed a network stratification algorithm to classify tumors by
fusing somatic mutation profiles with gene interaction network
and have identified four subtypes for breast cancer. As somatic
mutations are often sparse, it is sometimes challenging to predict
cancer subtypes using somatic mutations. Therefore, previous
studies have used othermolecular information beside the somatic
mutation data to detect cancer subtypes (Hofree et al., 2013).

In the most previous works, conventional clustering methods
have been used to classify tumors; however, numerous innovative
clustering methods have been proposed recently with various
capabilities, which may help identify cancer subtypes. Moreover,
the number of clusters typically has been determined using the
silhouette criterion, which may lead to biologically meaningless
clusters. In addition to the mentioned issues, the discovered
clusters using somatic mutations are not analyzed extensively in
previous works. In this study, the novel subtypes are presented

using analysis of the somatic mutations and CNAs data from 861
breast tumors in the cancer genome atlas (TCGA) database (The
International Cancer Genome Consortium, 2010). We used the
network propagation method for smoothing somatic mutation
profiles besides the gene interaction network; then, we used
deep embedded clustering (DEC) (Xie et al., 2016) to find new
breast cancer subtypes. Moreover, we used novel metrics such as
AUMF (Maddi et al., 2019) and MMR (Brohee and Van Helden,
2006) for finding the best number of clusters. Afterward, the
biological features of discovered subtypes were analyzed. Finally,
a supervised model was trained to predict the breast cancer
subtype of new patients. Also, the random forest (RF) was used
to find the most important genes for classification.

2. MATERIALS AND METHODS

2.1. Extracting and Smoothing Data
We used somatic mutation profiles collected by Zhang et al.
(2018b). They have obtained somatic mutation data of 861 breast
tumors from TCGA. A gene is recognized altered if at least one
of the following conditions satisfies:

• It has a non-silent somatic mutation.
• It is a well-defined oncogene or tumor suppressor.
• It happens within a CNA.

The somatic mutation profiles are sparse, that is, in each tumor,
the number of mutated genes is relatively small compared to the
total number of genes (Hofree et al., 2013; Zhang et al., 2018a). In
most machine learning techniques, sparse data cannot train the
model well (Zhang et al., 2018a), so data need to be smoothed.
One of the most effective solutions for smoothing data is the
network propagation (Hofree et al., 2013). By combining somatic
mutation profiles and gene interaction networks, we can obtain
profiles that are not sparse. Here, the protein–protein interaction
(PPI) information in the STRING database (Szklarczyk et al.,
2016) was used to create a gene interaction network. For this
purpose, the Homosapiens PPI network was obtained from the
STRING database. Then, the gene interaction network was
created from the PPI network by mapping proteins to genes.
The mutation profile of each tumor was integrated with the gene
interaction network. In fact, the entire vertices of the network
were labeled based on the mutation profile of each tumor. If a
gene is mutated, the corresponding vertex is labeled one, and
zero otherwise.

Then, in the network propagation process, a random walk
with restart was applied on the networks as Equation (1).

Di+1 = αDiA+ (1− α)D0, i = 0, 1, 2, ... (1)

The adjustment parameter α controls the amount of distance that
a mutation can be propagated in the network. The optimal value
of α varies for each network (in this study, it is subjectively set
to 0.4). The network propagation process iterates until Di+1 is
converged (i.e., ||Di+1−Di|| < 1×10−6).D0 is the original profile
of tumor mutations, which is a k × n matrix (k is the number
of tumors and n is the number of genes). Di is the modified
profile of mutations in the ith iteration. Matrix A is computed
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by A = H × D, where H = [hij] is the adjacent matrix of the
network and D = [dij] is a diagonal matrix, such that:

dij =

{

1
∑

j hij
If i = j

0 Otherwise
(2)

After the convergence, Di+1 was considered as the propagated
mutation profile that has values between zero and one.

2.2. Clustering Method
To cluster propagated mutation profiles, we used DEC method
(Xie et al., 2016). Suppose we have n tumors with the feature
vectors xi in space X with m dimension that should be grouped
to k clusters with centers µj, j = 1, . . . , k. Instead of clustering
the data in the initial space X, the data are mapped to the latent
feature space Z by a nonlinear function fθ :X → Z, where θ is a
set of trainable parameters. Usually, in order to avoid the curse of
dimensionality, the dimension of Z is less than m. A deep neural
network can be used to implement fθ , because of its theoretical
function approximation characteristics (Hornik, 1991), and the
capabilities in learning features (Bengio et al., 2013).

DEC is an iterative method, which learns cluster assignments
and feature embedding simultaneously. In each iteration, the
cluster centers {µj ∈ Z}kj=1 as well as parameters θ are updated.

This algorithm consists of two parts:

1. Parameter initialization using a stacked auto-encoder (SAE)
(for θ) (Suk et al., 2015) and k-means algorithm (for
centroids).

2. Parameter optimization that contains the alternative iteration
of two steps: calculation of the auxiliary target distribution
function, and updating the parameters using minimization of
the Kullback–Leibler divergence (KLD).

In the initialization phase, the SAE is used to learn the feature
embedding in an unsupervised manner. The SAE in this paper
consists of two auto-encoders. Every auto-encoder has two layers
as follows:

u = f (w1(Dropout(x))+ b1)y = g(w2(Dropout(u))+ b2) (3)

where Dropout function (Baldi and Sadowski, 2013) randomly
sets some of input elements to zero, f is the encoder function, g
is the decoder function, wi is the weight of ith layer, and bi is the
bias of ith layer. The parameter set θ = {w1,w2, b1, b2} is learned
in order to minimize the loss function ||y − x||22. After learning
the first auto-encoder, the output of encoder (u) is regarded as
the input of the second auto-encoder. When the SAE was trained,
the feature vector xi could be embedded to the latent feature zi by
applying the first and second encoders on it.

Next, a clustering layer is added after the encoder layers to
cluster the latent features. The cluster centers (µj) are initialized
by running k-means on the latent features. The weights of the
clustering layer were initialized by cluster centers.

In the optimization part, the latent features and clustering
assignments are improved using alternating two following steps.

In the first step, the latent feature (zi) is softly assigned to cluster
center (µj) with probability qij:

qij =
(1+ ||zi − µj||2)−1

∑

j′ (1+ ||zi − µj′ ||2)−1
(4)

In the second step, the KLD between soft assignment distribution
(qij) and an auxiliary distribution (pij) is calculated.

KLD(P||Q) =
∑

i

∑

j

pij log
pij

qij
(5)

The auxiliary distribution is defined as:

pij =
q2ij/fj

∑

j′ q
2
ij′/fj′

(6)

where fj =
∑

i qij are the soft cluster frequencies. Then,
the cluster center (µj) and latent feature (zi) are updated
in order to minimize the KLD using the stochastic gradient
descent (Bottou, 2012).

These two steps are iterated until the convergence. The
convergence criterion is satisfied when the assigned clusters to
samples in two subsequent iterations are changed in <0.001
portion of data.

We tuned hyperparameters of the model, and the best number
of neurons in the stacked auto-encoder layers was 514, 500,
200, 500, and 514, respectively. Moreover, the best number of
neurons for clustering layer was found to be 4. The scheme
of the method is presented in Figure 1. Also, the code and
material of the method are available at: https://github.com/
nrohani/MolecularSubtypes.

2.3. Finding the Best Number of Clusters
The clustering method requires the number of clusters (k) as the
input. For selecting the best number of clusters, the clustering
algorithm was implemented with different values of k. There are
some appropriate criteria to compare results and choose the best
number of clusters.

An approach to find the number of clusters is to evaluate the
clustering based on microarray-based classes (PAM50) (Parker
et al., 2009) as the prior information. For this purpose, a weighted
bipartite graph G was formed, where the nodes of one part
were the clusters of PAM50, represented by pi symbols, and the
nodes of another part were the discovered clusters, represented
by cj symbols. We weighted the edge (pi, cj), represented by vij,
which shows the number of tumors shared between the clusters
pi and cj. Moreover, the vertices pi and cj were labeled by the
their sizes, represented by li and kj, respectively. Figure 2 shows
the general scheme of such graph. After creating the graph,
the following metrics were calculated in order to find the best
number of clusters:

PPV =
∑K

j=1maxi vij
∑L

i=1

∑K
j=1 vij

(7)
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FIGURE 1 | The scheme of MSDEC (discovering Molecular Subtypes by using Deep Embedded Clustering). 1: The gene interaction network is obtained from

STRING, and the nodes in the network are labeled based on the mutation profile of tumors. Applying random walk on this network yields propagated mutation

profiles. 2: The propagated mutation profiles are mapped to a latent space. 3: A clustering layer is appended after encoder layers. The cluster centroids are initialized

using k-means. 4: The tumors are clustered using the auxiliary target distribution. 5: The Kullback–Leibler divergence (KLD) and reconstruction loss are calculated,

and the parameters are updated to minimize KLD and reconstruction loss.

FIGURE 2 | Bipartite graph between the method to be evaluated and PAM50.

SN =
∑L

i=1maxj vij
∑L

i=1 li
(8)

ACC =
√
SN × PPV (9)

Brohee and Van Helden (2006) have introduced these criteria.
ACC is the geometric mean of PPV and SN; thus, it is more
comprehensive than PPV and SN.

Another important criterion is the MMR (Brohee and
Van Helden, 2006). For calculating this criterion, graph G was
made, and the weights on the edges (vij) were calculated based on
the threshold θ and the affinity score NA(pi, cj) as follows:

vij =

{

NA(pi, cj) NA(pi, cj) ≥ θ

0 (pi, cj) < θ
(10)
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NA(pi, cj) =
|pi ∩ cj|2

|pi||cj|
(11)

MMR was defined as follows:

MMR =

∑

vij∈Matchw(P ,C,θ) vij

|P|
(12)

whereMatchw(P , C, θ) is the maximum weighted matching of G.
The discussed criteria compare the methods qualitatively.

Another approach for comparison is the quantitative evaluation.
We constructed a graph similar to the graph made for
computing MMR. Then, we ignored the weight of the edges. Let
Match(P , C, θ) to be the maximum non-weighted matching of
this graph. Maddi et al. (2019) have introduced the following set
of criteria:

N+
p = |{pi | ∃cj, NA(pi, cj) ≥ θ , (pi, cj) ∈ Match(P , C, θ)}|

(13)

N+
c = |{cj | ∃pi, NA(pi, cj) ≥ θ , (pi, cj) ∈ Match(P , C, θ)}|

(14)

Precision+ =
N+
p

|P|
(15)

Recall+ =
N+
c

|C|
(16)

F −measure+ =
2× Precision+ × Recall+

Precision+ + Recall+
(17)

F − measure+ is the harmonic mean of Precision+ and Recall+;
thus, F − measure+ is more meaningful than Precision+ and
Recall+. All the mentioned criteria are in the [0, 1] range.

One of the most comprehensive criteria in this issue is the
AUMF (Maddi et al., 2019), which combines qualitative and
quantitative attitudes. In fact, in this criterion the area under
the curve (MMR + Fmeasure+, θ) is considered as a clustering
measure called AUMF, which is in the [0, 2] range.

We executed DEC with the different numbers of clusters, and
the results show that the best number of clusters is four (see
Supplementary Figures 1, 2). Also, to evaluate the performance
of the DEC method, this method was compared with other
popular and common clustering methods such as hierarchical
clustering (HC), k-means clustering, and spectral clustering
(SPC) (Von Luxburg, 2007). DEC achieved better performance
in comparison with other clustering methods.

2.4. Supervised Classification for New
Tumors
Using the discovered breast cancer subtypes, we labeled each
tumor with its discovered subtype and proposed a supervised
classifier to understand how accurate the subtypes of new breast
tumors can be predicted based on their somatic mutations. With
this classifier, one can predict the subtype of a new patient using
the somatic mutation profile as input. Five common machine
learning classifiers were executed, namely, RF, support vector

machine (SVM), multi-layer perceptron (MLP), naïve bayes
(NB), and k-nearest neighbors (KNN) to classify the tumors into
k subtypes {Ci}ki=1.

Due to the best results of RF (see section 3.6) in the supervised
classification of tumors as well as its efficient application in
feature selection, the RF was used to find important genes for
classification. After training the RF, the importance of features
can be calculated by considering the effect of using the features
in reducing loss function (in this study, we used the Gini index
as the loss function). In other words, the feature importance
is the average reduction in loss function that induced by that
feature. Then, the features with the importance of more than 0.01
were selected. The selected genes have the highest importance in
detecting breast cancer subtypes.

3. RESULTS

After clustering tumors usingMSDECmethod, four clusters were
obtained with the following sizes:

• Subtype 1 (Primary subtype): 182 tumors,
• Subtype 2 (Progressive subtype): 82 tumors,
• Subtype 3 (Proliferous subtype): 499 tumors,
• Subtype 4 (Perilous subtype): 98 tumors.

Figure 3 shows the illustration of the MSDEC subtypes. To
visualize the tumors based on their mutation profile in a 2D
space, we used principal component analysis (PCA) and obtained
the first two principal components. Therefore, each tumor with a
vector of length n representing the mutation status of the genes
can be mapped to a 2D space using the first and second principal
components. In Figure 3, the tumors are colored based on their
assigned subtypes using MSDEC. It can be seen that the subtypes
assigned by MSDEC are highly separable in this space. Precisely,
all the tumors belonging to Proliferous subtype (green circles) are
located at left, then Primary tumors (purple circles) are located
at the right of them. The Perilous tumors are placed at the left
side of Primary tumors. Moreover, Progressive tumors are settled
at the right of the figure. The location of each subtype is specified
and can be separated easily from the other subtypes. This figure
shows that MSDEC subtypes have high separability.

To further investigate the discovered subtypes, we conducted
the following evaluations.

3.1. Finding the Gene Signature for Each
Subtype
One of the efficient evaluations is finding influential genes in
each subtype. This evaluation is essential in two ways. First, it
is possible to examine the biological significance of the clustering
method; second, these genes can be considered as the candidates
for the therapeutic purposes in each subtype’s patients. For this
purpose, the Fisher’s exact test was used to find each subtype’s
gene signature. In the gene signature list, the top 50 genes
with the p-value lower than 0.05 were considered and shown
in Supplementary Figures 3–6. By investigating the top genes,
one can conclude that the subtypes’ key genes are different; thus,
these genes can be suitable clues for choosing the treatment for
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FIGURE 3 | Visualization of MSDEC subtypes based on the somatic mutation profile of tumors. The axes are the first two principal components of propagated

mutation profiles.

the patients in each subtype. The gene interaction subnetwork of
each subtype is obtained by enriching the subtype’s gene signature
into STRING database. The subnetwork of each subtype is
illustrated in Supplementary Figure 7.

Many vital genes were found in the gene signature of the
Primary subtype. One of them is CDH1, which produces E-
cadherin protein. This protein is responsible for cell adhesion.
Lacking E-cadherin allows the cancer cells to detach quickly
and spread over the body and metastasize1. CBFB is another
significant gene for Primary subtype. It encodes a transcription
factor, which makes a complex by attaching to RUNX12. This
complex can transcriptionally repress the oncogenic NOTCH
signaling pathway (Malik et al., 2019). TBX3 is a substantial
gene in Primary subtype, which is needed for normal breast
development3. Previous studies have shown that TBX3 leads to
cell proliferation and suppresses apoptosis. TBX3 is regarded as
a biomarker for breast cancer and has high importance in breast
cancer diagnosis and treatment (Yarosh et al., 2008; Krstic et al.,

1Genetics Home References, CDH1 gene, URL: https://ghr.nlm.nih.gov/gene/

CDH1#normalfunction (accessed March 7, 2020).
2Genetics Home References, CBFB gene, URL: https://ghr.nlm.nih.gov/gene/

CBFB#synonyms (accessed March 7, 2020).
3Genetics Home References, TBX3 gene, (Yarosh et al., 2008).

2016). Another important gene in Primary subtype is CTCF,
which encodes a transcription factor called zinc-finger. Studies
have indicated that the mutation in CTCF is associated with the
onset of breast cancer, prostate cancer, and Wilms’ tumors (Oh
et al., 2017), suggesting that this subtype mainly contains the
tumors in early stages.

Many important genes such as ERBB2, TP53, BRAF, and
GNAS are presented in the gene signature of the Progressive
subtype. One of the driver genes in breast cancer is ERBB2,
which is an indicator of tumor invasion (Revillion et al.,
1998). Mutations and overexpression of this oncogene show
the tendency of a tumor mass to become invasive, which may
lead to the poor prognosis. The BRAF gene encodes a protein
that helps transmit chemical signals from outside the cell to
the cell’s nucleus. This protein is responsible for regulating cell
growth, proliferation, differentiation, migration, and apoptosis.
Somatic mutations in this oncogene are prevalent in numerous
cancers such as breast cancer, leading to the growth of cancerous
cells4. The TP53 gene also is mutated in about 20 − −40% of
breast cancer patients. It is useful to note that the mutation

4Targeted Cancer Care, BRAF gene, URL: http://targetedcancercare.massgeneral.

org/My-Trial-Guide/Diseases/Breast-Cancer/BRAF.aspx (accessed March 7,

2020).

Frontiers in Genetics | www.frontiersin.org 6 November 2020 | Volume 11 | Article 553587

https://ghr.nlm.nih.gov/gene/CDH1#normalfunction
https://ghr.nlm.nih.gov/gene/CDH1#normalfunction
https://ghr.nlm.nih.gov/gene/CBFB#synonyms
https://ghr.nlm.nih.gov/gene/CBFB#synonyms
http://targetedcancercare.massgeneral.org/My-Trial-Guide/Diseases/Breast-Cancer/BRAF.aspx
http://targetedcancercare.massgeneral.org/My-Trial-Guide/Diseases/Breast-Cancer/BRAF.aspx
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Rohani and Eslahchi MSDEC

frequency is higher in patients with recurrent breast cancer
(Norberg et al., 2001). Another essential gene for Progressive
subtype is GNAS. The GNAS gene encodes the stimulatory alpha
subunit of the G protein complex, which triggers a complicated
network of signaling pathways that affect multiple cell functions
by regulating the activity of hormones. This gene is known to be
mutated in 0.74% of all cancers such as breast invasive ductal
carcinoma, colon adenocarcinoma, lung adenocarcinoma, and
rectal adenocarcinoma, in which invasive breast carcinoma has
the highest frequency of mutations5. Therefore, the Progressive
subtype is more invasive because its significant genes are
mostly mutated in invasive cancers. The probability of the poor
prognosis and metastasis may be high in this subtype.

The Proliferous subtype contains many important genes, such
as NOTCH, KRAS, PTEN, and WHSC1L1. The NOTCH family
genes, including NOTCH1,NOTCH2,NOTCH3, and NOTCH4,
are highly expressed in breast cancer patients. These genes
play an important role in the differentiation, proliferation,
and cell cycle (Wang et al., 2011). About 80% of cancers
have estrogen receptors, which are treated with anti-estrogen
drugs. One of the leading causes of death in such patients
is their resistance to anti-estrogen drugs. Estrogen pathways
have a positive association with anti-estrogen drug resistance
in ER-positive breast cancers by suppressing NOTCH1 (Hao
et al., 2010). The KRAS gene produces the K − Ras protein,
which affects cell proliferation, differentiation, and apoptosis6.
The mutations of KRAS cause the production of abnormal
K − Ras protein that leads to uncontrolled cell proliferation.
Somatic mutations in this oncogene are substantial in different
cancers, including breast cancer, papillary thyroid carcinoma
(PTC), oral squamous cell carcinoma (OSCC), and gastric cancer
(Sanaei et al., 2017).WHSC1L1 provides instructions for making
histone − lysineN − methyltransferase NSD3 enzyme. It may
involve in carcinogenesis, which is amplified in several cancers
such as lung cancer and head and neck cancer7. Previous studies
have suggested a close relation betweenWHSC1L1 mutation and
breast cancer initiation and progression. The mutatedWHSC1L1
is regarded as a candidate target for the treatment of breast cancer
(Liu et al., 2015). PTEN gene encodes a tumor suppressor, which
suppresses rapid and uncontrolled cell division. It also controls
cell migration and adhesion. Somatic mutations of PTEN lead to
the uncontrolled growth and division of cancerous cells. These
mutations are involved in breast cancer (Zhang et al., 2013).
Previous studies have shown that mutation in PTEN is a factor
of resistance to trastuzumab (Herceptin) drug, which is used for
the treatment of breast cancer8.

Many essential genes are found among the gene signature
of Perlious subtype such as MYC, ITSN1, KDM5C, and TEP1.
One of the critical regulators of cell growth, proliferation,

5My Cancer Genome, GNAS gene, URL: https://www.mycancergenome.org/

content/gene/gnas (accessed March 7, 2020).
6Genetics Home References, KRAS gene, URL: https://ghr.nlm.nih.gov/gene/

KRAS (accessed March 7, 2020).
7Cancer Genetics Web, NSD3 gene, URL: http://www.cancerindex.org/geneweb/

WHSC1L1.htm (accessed March 7, 2020).
8Genetics Home References, PTEN gene, URL: https://ghr.nlm.nih.gov/gene/

PTEN#conditions (accessed March 7, 2020).

metabolism, differentiation, and apoptosis isMYC. Mutations of
this gene have many roles in the development and progression
of breast cancer, activation of oncogenes, and inactivation
of tumor suppressors (Xu et al., 2010). TEP1 is one of the
telomeres length genes that is linked with cancer (Pellatt
et al., 2013). Previous studies have provided evidence for the
relation of mutations in TEP1 and breast cancer (Savage et al.,
2007). ITSN1 provides instructions for making a cytoplasmic
membrane-associated protein. It is associated with the actin
cytoskeleton reconstruction in breast cancer (Xie et al., 2019).
KDM5C controls the transcription and chromatin remodeling
regulation. TCGA has identified KDM5C mutation as a cancer
driver mutation in the genes encoding the histone demethylases.
Studies on oncometabolite have shown that the KDM5C is
involved in cancer-related metabolic reprogramming and the
tumor suppression (Chang et al., 2019). Thus, mutations of
this oncogene are associated with tumor progression. It is
mutated in 0.22% of all cancers, such as breast invasive ductal
carcinoma, lung adenocarcinoma, prostate adenocarcinoma,
and high-grade ovarian serous adenocarcinoma. Among these
cancers, mutations of KDM5C are the most prevalent in invasive
breast carcinoma9.

3.2. Survival Analysis
We used Kaplan–Meier estimator (Kleinbaum and Klein, 2012)
for survival analysis in each subtype, which is shown in Figure 4.
The horizontal axis is the time after diagnosis, and the vertical
axis represents the percentage of patients. The percentage of
patients that are survived after specific days are plotted, and
colored lines link the patients with the same subtype. The lower
plot of survival demonstrates the more hazardous subgroup
of people.

It was mentioned in section 3.1, that Progressive subtype is
invasive, due to the set of significant genes in this subtype. This
issue is consistent with survival analysis. It can be seen that the
Progressive subtype has the lowest survival.

Moreover, the cox hazard regression was computed for
further survival analysis. The diagram of cox hazard regression
is presented in Supplementary Figure 8. To examine the
significance of subtypes in predicting the patient’s survival, chi-
squared test was used, which shows that subtype is an essential
feature in cox hazard regression (p = 0.00475). This analysis
indicates that MSDEC subtypes have a significant correlation
with the hazard rate.

3.3. Protein Complexes Analysis
We investigated the essential protein complexes in each subtype
because most of the cell activities are carried out by protein
complexes. The gene signature of each subtype was entered to the
iRefWeb (Turner et al., 2010) website; then, the sorted complexes
of each subtype were obtained (see Supplementary Tables 1–4).
More information on these complexes is available in the
CORUM database (Ruepp et al., 2009). Figures 5A–D visualizes
five protein complexes in the Primary, Progressive, Proliferous,

9My Cancer Genome, KDM5C gene, URL: https://www.mycancergenome.org/

content/gene/kdm5c (accessed March 7, 2020).
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FIGURE 4 | Kaplan–Meier survival diagram. Each line shows the percentage of survived patients with a subtype of breast cancer after a specific time.

and Perilous subtypes, respectively. The nodes of these graphs
represent the proteins that are involved in five complexes,
which are obtained from CORUM database (Ruepp et al., 2009).
The interactions between proteins were obtained from STRING
database (Szklarczyk et al., 2016) and were shown by the edges
in these graphs. The numbers beside the nodes represent the
complexes that the protein are cooperating in them. Moreover,
the nodes are colored based on their complexes.

One of the notable complexes in the Primary subtype is
the p27 − cyclinE − CDK2 complex, which contains two
CDK2 and CDKN1B genes. This complex is involved in
cell cycle regulation, cell cycle control, and DNA processing.
One of the crucial regulators of the cell cycle is CDKN1B,
which inhibits G1/S by clinging to CDK2 and suppressing it.
Overexpression of CDKN1B gene in specific cancer cells prevents
DNA replication and tumorigenesis, whereas its deficiency plays
an inhibitory role in human cancers and decreases the chance for
developing breast, prostate, colon, lung, and esophagus cancers
(Xu et al., 2007).

BRCC complex includes the genes BRCA1, BRCA2, BRCC3,
RAD51, and BRE, which is among the influential complexes
in the Progressive subtype. The function of the BRCA1 gene
in DNA repair and cell cycle control in response to DNA
damage is regulated by other complexes. Interaction of BRCA1
with RAD51 has a direct impact on the double-strand breaks

of DNA (Christou and Kyriacou, 2013). Not only has ERCC
complex a direct interaction with TP53 in the destruction of
DNA, but also it causes the displacement of DNA. Recently,
the expressions of two new members of the complex, namely
BRCC36 and BRCC45, have been discovered in breast cancer cells
(Dong et al., 2003).

The set of TBL1X, HDAC3, and NCOR2 genes together make
the SMRT complex, which plays a vital role in Proliferous tumors.
The SMRT complex is both an activator and a suppressor of
the estrogen receptor-α (ER − α), which its overexpression in
breast cancer can make therapeutic outcomes more complicated.
The activity of this complex inhibits the regulated cell death
using the genes involved in apoptosis. This complex activates
the anti-apoptotic genes and suppresses the pro-apoptotic genes.
Thus, by activating multiple pathways, this complex leads to
the progression and proliferation of breast cancer with declining
apoptosis (Blackmore et al., 2014).

ESR1 − MDM4 complex that is consisted of two genes ESR1
and MDM4 proteins is essential in the Perlious subtype. The
estrogen hormone receptor ESR1 is a nuclear hormone receptor
that is expressed in approximately 70% of patients with breast
cancer (Stanford et al., 1986). The expression of MDM4 gene is
positively correlated with the expression of ERα in primary breast
tumors. Also, ERα enhances the expression of MDM2 (Baunoch
et al., 1996).
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FIGURE 5 | The protein–protein interaction (PPI) networks of protein complexes in discovered subtypes. The proteins assigned to the same complex are shown with

the same color and labeled with the same number. (A) Five protein complexes in Primary subtype. (B) Five protein complexes in Progressive subtype. (C) Five protein

complexes in Proliferous subtype. (D) Five protein complexes in Perilous subtype.

3.4. Clinical Examination
We investigated the relationship between each subtype and
the clinical features such as ER status, PR status, HER2

status, TP53 status, and histopathological subtypes using the
chi-squared test. The contingency tables of these analyses
are shown in Supplementary Figures 9–13. The MSDEC
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subtypes have a significant correlation with the mentioned
clinical features.

Supplementary Figure 9 shows the relation of the ER status
with the MSDEC subtypes (p < 2.2E − 16 by chi-squared test
and p = 1E− 06 by Fisher’s exact test). By considering the results
of two tests, it can be concluded that the ER status of tumors is not
significantly independent of theMSDEC subtypes. Thus,MSDEC
subtypes are related to this clinical factor.Moreover, it can be seen
that the majority of tumors in Primary and Proliferous subtypes
are mostly ER-positive.

The contingency table in Supplementary Figure 10, shows
the relationship of the PR status with MSDEC subtypes. The p-
values of the chi-squared test and Fisher’s exact test on this table
were 2.2E− 16 and 1E− 06, respectively. Therefore, the MSDEC
subtypes are not significantly independent of the PR status of
patients. The rate of PR positive is higher than PR negative in
the Primary and Proliferous subtypes, while most tumors in the
Progressive and Perlious subtypes are PR negative.

The contingency table in Supplementary Figure 11, was
constructed to examine the association of HER2 status with
the MSDEC subtypes. The p-values of the chi-squared test and
Fisher’s exact test in this table were 1.445E − 07 and 1E − 06,
respectively, which indicate a significant relationship between the
clinical status of HER2 and the MSDEC subtypes. It can also be
carefully deduced from this table that the Primary and Proliferous
subtypes are significant HER2 negative.

The contingency table that indicates the relation of
the TP53 status with MSDEC subtypes is shown in
Supplementary Figure 12. The p-values of the chi-squared
test and Fisher’s exact test on this table were 2.2E−16. Therefore,
the MSDEC subtypes are not significantly independent of the
TP53 mutations in patients. One of the interesting points in this
table is the low rate of TP53 mutations in Proliferous and Primary
subtypes, which indicates a noninvasive and better diagnostic
status for Primary and Proliferous tumors. Thus, the Primary and
Proliferous subtypes include tumors that have a better prognosis.
In the Progressive and Perilous subtypes, the mutations pattern
of TP53 is reversed, and its mutated state is more prevalent than
its wild type.

We examined the association of the MSDEC subtypes
with the histopathological subtypes. The distribution of
these two variables in relation to each other is shown in
Supplementary Figure 13, which has p = 0.0001615 by the
chi-squared test and p = 5.4E − 05 by the Fisher’s exact test. As
a result, there is strong evidence for the significant correlation
between the two types of classification.

On the whole, the characteristics of the MSDEC subtypes can
be summarized as follows.

Primary and Proliferous subtypes are consisted of tumors that
are ER+ and PR+. The higher rate of PR positive than PR
negative in the Primary and Proliferous subtypes indicate that
most tumors in these two subtypes are luminal tumors. It can also
be carefully deduced from the Supplementary Figure 11 that the
Primary and Proliferous subtypes are significantly negative for
HER2. These tumors have wild-type TP53, and one of their most
significant genes is CDH1.

Moreover, Progressive and Perilous subtypes mostly contain
tumors that are PR−. TP53, ERBB2, BRCA1, and MYC are the
significant genes in Progressive and Perilous subtypes. Mutations
of the BRCA1 and MYC genes exacerbate breast cancer (Xu
et al., 2010). Additionally, high rate of TP53 mutations in these
subtypes suggest that the Progressive and Perilous subtypes may
have poor diagnostic status.

3.5. Comparison Between MSDEC and
PAM50 Subtypes
We compared the MSDEC subtypes from somatic mutation
with PAM50 subtypes obtained from micro-array data; thus,
the following evaluations were conducted to investigate their
similarities and differences.

The contingency table in Supplementary Figure 14 shows
the intersection of tumors between the MSDEC subtypes and
PAM50 subtypes. It is noteworthy that this table is not static
since the assignment of tumors to PAM50 subtypes changes
dynamically (Pusztai et al., 2006; Gusterson, 2009; Weigelt et al.,
2010; Vural et al., 2016). The dependency of these two clusterings
was evaluated by using chi-squared test, which yielded p < 2.2E−
16, and Fisher’s exact test, which led to p = 1E − 06. Moreover,
the composition for each subtype with ER+/–, PR+/–, HER2+/–,
and TP53 (mutated/wild type), and the PAM50 is visualized in
Figures 6A,B, respectively.

Among the PAM50 subtypes, luminal A and luminal B are
HER2 negative and ER positive. These tumors have a good
prognosis and long survival. These subtypes are most similar
to Primary and Proliferous subtypes due to the status of ER,
HER2, and based on their prognosis and survival. Moreover,
Primary and Proliferous tumors have wild-type TP53. One of
their most significant genes is CDH1, which is highly expressed
in the luminal A and luminal B subtypes, while it has low
activity in HER2 − positive and basal − like subtypes (Zaha
et al., 2019). However, the higher rate of PR positive than PR
negative in the Primary and Proliferous subtypes may differ from
LuminalB tumors.

Moreover, basal − like and HER2 subtypes mostly contains
tumors that are PR−, which suggest that these two subtypes are
more similar to Progressive and Perilous tumors. TP53, ERBB2,
BRCA1, and MYC are the significant genes in Progressive and
Perilous subtypes. Mutations of the BRCA1 and MYC genes
exacerbate breast cancer (Xu et al., 2010). The MYC gene is
highly expressed in the basal − like subtype of breast cancer,
which is being targeted for treatment in these patients. Given
the poor diagnostic status and high rate of TP53 mutations in
the basal − like and HER2 subtypes, one can conclude that the
Progressive and Perilous subtypes are related to the basal − like
and HER2 subtypes (Xu et al., 2010).

To sum up, the Primary and Proliferous mostly contain
luminal A and luminal B tumors, while the majority of tumors
in Progressive and Perilous subtypes are HER2 − positive and
basal − like. It is noteworthy that although the majority of
tumors in Primary and Proliferous are luminal A and luminal B,
numerous HER2 − positive and basal − like tumors are
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FIGURE 6 | The composition of ER+/-, PR+/-, HER2+/-, and mutant or

wild-type TP53 in MSDEC and PAM50 subtypes. (A) The number of tumors

with ER+/-, PR+/-, HER2+/-, and mutant or wild-type TP53 in each MSDEC

subtypes. (B) The number of tumors with ER+/-, PR+/-, HER2+/-, and mutant

or wild-type TP53 in each PAM50 subtypes.

included in these two subtypes. A similar issue is true for
Progressive and Perilous subtypes. Thus, the MSDEC subtypes
are not fully matched with PAM50 subtypes. It is worth
mentioning that PAM50 subtypes were obtained by clustering
microarray data, whereas the MSDEC subtypes are the results
of clustering the mutation profiles. Since applying different
unsupervised methods on different features yield different
results, it is obvious that the MSDEC and PAM50 subtypes are
not the same.

To compare the separability of subtypes identified by MSDEC
and PAM50, we visualized the PAM50 subtypes in 2D space.
To this aim, we used PCA to reduce the dimension of data
and colored the tumors based on their subtypes. For the sake
of simplicity in comparing subtypes identified by MSDEC and
PAM50, we first applied PCA on the mutation profile of tumors,

used the first two principal components to visualize the tumors,
and colored them based on the PAM50 subtypes. Figure 7A
shows the illustration of the PAM50 subtypes based on somatic
mutation. One can figure out by the comparison of Figures 3A,
7 that the location of tumors are the same in these figures,
while having different color scheme, one based on MSDEC and
another based on PAM50 subtypes. In spite of Figure 3 that
shows high separation in the MSDEC subtypes, the PAM50
subtypes in Figure 7A do not have favorable separation and
all the subtypes seems to be mixed up in 2D space. Moreover,
since PAM50 is clustering tumors based on gene expression,
we plotted the tumors on the 2D space based on the first
two principal components of the gene expression profiles to
have a fair notion of the visualization of PAM50 subtypes.
Figure 7B shows the illustration of PAM50 clusters based on
gene expression. Same as in Figure 7A, the other illustrations
of PAM50 subtypes in Figure 7B does not demonstrate high
separability.

Moreover, we computed the silhouette criterion for assessing
MSDEC and PAM50 clustering quantitatively. The silhouette
criterion measures the difference between the similarity of a
tumor to its own cluster (cohesion) compared to its similarity
to other clusters (separation). The value of this criterion ranges
from −1 to +1. The higher the silhouette, the better tumors
are matched to their own clusters rather than other clusters.
For a tumor i in cluster Ck, the silhouette value is computed as
formula 18.

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(18)

where a(i) and b(i) are the cohesion and separation values for
tumor i, which are calculated as follows:

a(i) =
1

|Ck| − 1

∑

j 6=i,j∈Ck

d(i, j) (19)

b(i) = min
l 6=k

1

|Cl|
∑

j∈Cl

d(i, j) (20)

d(i, j) is the Euclidean distance between tumors i and j.
The silhouette criterion for a clustering method is computed
by averaging the s(i) values over all tumors. This criterion
demonstrates that how tightly are the tumors in a cluster and
how far are the tumors in diverse clusters. Therefore, this can
be a measure for assessing the appropriateness of clustering
methods. The computed silhouette criterion for MSDEC was
0.07011, while the computed silhouette criterion for PAM50
clusters based on gene expression and mutation profiles was
0.00956 and−0.00577, respectively. Comparison of the silhouette
for MSDEC and PAM50 shows that MSDEC yields more
appropriate subtypes.

3.6. Evaluation of Supervised Methods
Five classifiers, namely, RF, SVM, MLP, KNN, and NB, were
compared using tenfold cross-validation. In tenfold cross-
validation, the whole set of tumors was randomly divided into
ten subsets with almost the same size. Then, one subset was
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FIGURE 7 | Visualization of PAM50 subtypes based on somatic mutation and gene expression profiles of the tumors. (A) Visualization based on somatic mutation

profiles. The axes are the first two principal components of the propagated mutation profiles. (B) Visualization based on gene expression profiles. The axes are the first

two principal components of gene expression profiles.

put aside, and the model was trained with nine other subsets
and evaluated with the remaining subsets. This process was
repeated, such that each of the ten subsets was considered as
the test data once. In this study, the tenfold cross-validation was
repeated 100 times, and the average performance of the model
was reported. The performance of the model was measured
by standard evaluation criteria such as Accuracy, Sensitivity,
Precision, F-measure, and AUC.

Accuracy =
∑k

i=1
TPi+TNi

TPi+TNi+FPi+FNi

k
(21)

Precision =
∑k

i=1 TPi
∑k

i=1(TPi + FPi)
(22)

Recall =
∑k

i=1 TPi
∑k

i=1(TPi + FNi)
(23)

F −measure =
2 · Precision · Recall
Precision+ Recall

(24)

where TPi, TNi, FPi, and FNi stand for the number of True
Positives, True Negatives, False Positives, and False Negatives
of class {Ci}ki=1. Since the values of Accuracy, Precision, Recall,
and F-measure are dependent on the value of a threshold, we
also evaluated methods using AUC, which is the area under the
receiver operating characteristic (ROC) curve. The ROC curve
plots True Positive Rate (TPR) vs. False Positive Rate (FPR). For
each class i, AUCi is the area under the curve plotting TPRi vs.
FPRi. Moreover, AUC for all classes is the area under the ROC
curve of all classes, which is plotted with two approaches, namely,
micro_average and macro_average. In micro_average, the ROC

curve plots TPRmicro vs. FPRmicro, while in macro_average, the
ROC curve plots TPRmacro vs. FPRmacro. AUC criterion indicates
the efficiency of methods independent of the threshold value.

TPRi =
TPi

TPi + FNi
(25)

FPRi =
FPi

FPi + TNi
(26)

TPRmacro =
∑k

i=1 TPRi

k
(27)

FPRmacro =
∑k

i=1 FPRi

k
(28)

TPRmicro =
∑k

i=1 TPi
∑k

i=1 TPi + FNi

(29)

FPRmicro =
∑k

i=1 FPi
∑k

i=1 FPi + TNi

(30)

According to Supplementary Figure 15, NB method has the
worst performance, and SVM, KNN, and MLP have average
performances. The best method with regard to all criteria is the
RF with AUC of 99%, Accuracy of 86%, Precision of 90%, Recall
of 85%, and F-measure of 87%, which has achieved great results.
It can be concluded that the discovered subtypes by MSDEC
method are separable; also, these subtypes can be predicted only
by receivingmutations of 16 important genes for new tumors that
were obtained using RF. The 16 important genes is as follows:
AKT2,CARD11, EIF4A2, FLNA,HNF1A, IDH2, LAMA1, LTBP1,
MAP2K1,NCOR2,NOS2, PPP1R12A, PTPRU, SMC1A,TPR, and

Frontiers in Genetics | www.frontiersin.org 12 November 2020 | Volume 11 | Article 553587

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Rohani and Eslahchi MSDEC

UPF3B. The mutational frequency of 16 important genes in each
subtype is shown in Supplementary Figure 16. Figure 8 shows
the ROC curves of the RF classifier for each subtype. The value of
AUC is excellent for each subtype and very close to one. However,
the value of AUC for the Proliferous subtype is equal to one,
which indicates that the model fits well on the tumors of the
Proliferous subtype.

3.7. GSEA Enrichment
To find a family of genes that are related to cancer, we enriched
the gene signature of each subtype (see Supplementary Material)
by Gene Set Enrichment Analysis (GSEA) tool (Subramanian

et al., 2005). We recognized that the most of these genes belong
to transcription factor and protein kinase gene families, which are
known to be associated with the progression of breast cancer. The
results are described in Supplementary Figures 17–20. Besides,
Figure 9 shows the GSEA enrichment of 16 important genes,
obtained using RF. It verifies that many of these genes are the
most important genes in cancer.

4. DISCUSSION

Cancer is a heterogeneous disease; so, accurate classification
of cancer is crucial to find the appropriate treatment. Recent

FIGURE 8 | Area under the ROC curves of the random forest (RF).

FIGURE 9 | GSEA enrichment of 16 important genes. The numbers show how many of important genes are incorporated in each family.
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advances in molecular biology have provided high-quality and
diverse data for the researchers. Recently, somatic mutation has
attracted much attention in molecular cancer subtypes detection
because it is more stable than other types of data and is commonly
used for cancer treatment due to a large number of guidelines
for single-gene mutations. In this study, the novel breast cancer
molecular subtypes were presented using the profile of somatic
mutations. Four discovered subtypes were obtained using
network propagation with DEC. To analyze the characteristics of
tumors in each subtype, we conducted numerous experiments,
including finding gene signatures, protein complexes, gene
families, and clinical features.

The results show that the Primary and Proliferous subtypes
are mainly ER+, PR+, HER2−, and wild-type TP53; however,
they have different important gene signature and protein
complexes. Also, both of these subtypes contain the early
stage and noninvasive tumors; the tumors in Primary have
a higher probability of survival. Moreover, Progressive and
Perlious subtypes are mainly PR− and have mutated TP53 gene.
Numerous tumor suppressors and oncogenes were found in
the gene signature of these two subtypes suggesting that these
subtypes contain invasive tumors. It is noteworthy that these
subtypes are different in terms of crucial protein complexes
and gene signature. Moreover, the Perlious tumors have a lower
probability of survival.

The RF classification algorithm was used for supervised
classification to detect subtypes for new breast cancer patients.
Also, 16 critical genes were identified using RF that can be
used for detecting breast cancer subtypes of new tumors.
Consequently, the MSDEC subtypes obtained from somatic
mutations were clinically meaningful and provide an informative

insight into molecular subtype diagnosis and suggesting efficient
clues for cancer treatment.

For future research, we intend to use the proposed method
to detect subtypes of other cancers, such as glioblastoma.
Moreover, we aim to use other data such as gene expression
and methylation features of tumors for finding more appropriate
subtypes. Furthermore, we propose to examine the importance of
each data in detecting cancer subtypes.
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