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Background: Due to a lack of early diagnosis methods and effective drugs, pancreatic ductal 
adenocarcinoma (PDAC) has an extremely poor prognosis. DNA methylation, transcriptome expression and 
gene copy number variation (CNV) have critical relationships with development and progression of various 
diseases. The purpose of the study was to screen reliable early diagnostic biomarkers and potential drugs 
based on integrative multiomics analysis.
Methods: We used methylation, transcriptome and CNV profiles to build a diagnostic model for PDAC. 
The protein expression of three model-related genes were externally validated using PDAC samples. Then, 
potential therapeutic drugs for PDAC were identified by interaction information related to existing drugs 
and genes. 
Results: Four significant differentially methylated regions (DMRs) were selected from 589 common DMRs 
to build a high-performance diagnostic model for PDAC. Then, four hub genes, PHF12, FXYD3, PRKCB 
and ZNF582, were obtained. The external validation results showed that PHF12, FXYD3 and PRKCB 
protein expression levels were all upregulated in tumor tissues compared with adjacent normal tissues 
(P<0.05). Promising candidate drugs with activity against PDAC were screened and repurposed through 
gene expression analysis of online datasets. The five drugs, including topotecan, PD-0325901, panobinostat, 
paclitaxel and 17-AAG, with the highest activity among 27 PDAC cell lines were filtered.
Conclusions: Overall, the diagnostic model built based on four significant DMRs could accurately 
distinguish tumor and normal tissues. The five drug candidates might be repurposed as promising 
therapeutics for particular PDAC patients. 
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most 
common exocrine pancreatic cancer, accounting for 
approximately 95% of all pancreatic cancers. PDAC, which 
has the poorest 5-year survival rate of approximately 10% in 
USA, is a highly invasive tumor formed by pancreatic tubule 
lining cells (1). The limited number of treatments and early 
detection methods are main reasons for the poor prognosis (2).

It is generally believed that PDAC is caused by the 
accumulation of mutations in genes, especially tumor 
suppressor genes KRAS, leading to the development of 
invasive cancer from pancreatic intraepithelial neoplasia (3). 
The genetic and phenotypic heterogeneity of PDAC makes 
it quite complicated to formulate a generally effective 
therapy. Through whole-genome expression profiling, 
PDAC can be divided into 3–4 molecular subtypes, which 
can be distinguished by unique molecular and phenotypic 
characteristics (4,5). Therefore, early detection of pancreatic 
cancer is urgently needed and can be accomplished by 
the identification of effective early diagnostic markers. 
Epigenetic research has confirmed that changes in DNA 
methylation have a critical relationship with the ontogenesis 
and progression of various diseases by regulating gene 
expression without altering the DNA sequence and early 
tumorigenesis, which provides us with an opportunity to 
screen reliable and effective markers for early diagnosis and 
prognosis evaluation (6). Hypermethylation in cytosine-
phosphate-guanine (CpG) islands of tumor suppressor 

gene promoters may suppress gene transcription, which 
could cause dysfunction of the affected tumor suppressor 
genes and allow unrestricted cell growth and tumor 
occurrence (7). DNA methylation modification could arise 
at the early phase of tumorigenesis and last throughout 
tumor progression, which indicates that it could be a 
reliable biomarker for the early diagnosis of cancer and the 
prediction of patient prognosis (6). Copy number variations 
(CNVs) are also frequent genomic alteration events. A 
previous study has shown a close correlation between CNV 
and dysregulated gene expression in many cancer types (8). 
Integrative multiomics analysis makes it possible to explore 
diagnostic tumor markers.

The unsatisfactory therapeutic effect of drugs is one 
of the main reasons for the poor prognosis of PDAC. 
At present, gemcitabine plus nab-paclitaxel (GnP) and 
FOLFIRINOX are still the standard treatments for PDAC, 
but these regimens offer a limited advantage in overall 
survival due to drug resistance (9). The development of new 
anticancer drugs is time-consuming, expensive and low-
yield, so screening and repurposing of existing drugs is an 
alternative and attractive approach (10). The Drug-Gene 
Interaction database (DGIdb, https://www.dgidb.org) can 
be used to identify plausible drug candidates through drug-
gene interactions (11). 

This study screened a group of differentially methylated 
regions (DMRs) using methylation expression data of 
PDAC from The Cancer Genome Atlas (TCGA) and 
International Cancer Genome Consortium (ICGC) 
datasets. Some significant DMRs were selected to build 
a diagnostic model for PDAC. Then, some hub genes, 
which might facilitate important molecular mechanisms in 
oncogenesis, were obtained by combining the transcript 
profile and CNV data. We further filtered out some 
potential therapeutic drugs for PDAC using interaction 
information related to existing drugs and genes. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://jgo.amegroups.com/article/
view/10.21037/jgo-23-985/rc).

Methods

Data from the TCGA and ICGC cohorts

The RNA-sequencing (RNA-seq) profiles, methylation 
expression data, CNV data and corresponding clinical 
information of PDAC were downloaded from the Genomic 
Data Commons Application Programming Interface of 
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TCGA (https://cancergenome.nih.gov/), containing 184 
tumor and 10 normal cases as of March 2020. Methylation 
expression data of PDAC were also downloaded from 
ICGC (https://icgc.org/), which contained 261 tumor and 
25 normal cases as of July 2013.

Data preprocessing

For methylation expression data from Human Methylation 
450k, the missing value was replaced using the K-nearest 
neighbor (k-NN) algorithm. The probe was removed if the 
missing value of a probe exceeded 50% of the total samples; 
otherwise, it was filled with the mean value of ten adjacent 
probes. For RNA-seq data, genes with low expression levels, 
defined as an expression value of fragments per kilobase 
million (FPKM) <1 in more than 90% of samples, were 
removed. Samples with no survival time or missing event 
values were also removed.

Differential methylation analysis

Differential methylation analysis was performed using 
datasets from TCGA and ICGC, which had the same test 
platform. DMR was regarded as a false discovery rate (FDR) 
<0.05. To ensure the reliability of filtered methylation sites, 
only sites with fold change ≥2 for methylation difference 
level and average value of tumor sample ≥0.3 were filtered. 
Differences in methylation levels and similarity between 
normal and tumor tissues were both compared.

Correlation analysis of methylation and gene expression

Considering that gene expression and methylation and 
CNV had a causal relationship, genes associated with 
DMRs were filtered down using a regression model. As 
this method incorporates CNV and other potential factors 
that affect gene expression, the correlation analysis was 
more reasonable. Here, we established the following model: 
Gexpr = α*Gmethy + β*GCNV + ε, in which Gexpr represents the 
gene expression level, Gmethy is the gene methylation level, 
GCNV is the gene CNV status, and α and β are coefficients. 
ε was used as an error term because gene expression might 
be affected by the environment, quantitative trait loci, and 
upstream and downstream regulatory genes. According to 
the model, parameters were selected using least absolute 
shrinkage and selection operator (LASSO) regression, which 
used the L1-norm as the regular term of the loss function 

and could optimize the model by removing parameters with 
a coefficient of 0. 

We filtered the results according to the following criteria: 
(I) if α≠0 and β=0, then preserved; (II) if α≠0 and β≠0, 
then the gene with coefficient α/β≥4 was preserved. Genes 
meeting both criteria were used for subsequent analysis. In 
addition, we also evaluated the correlation between gene 
methylation and its expression levels to further verify the 
results.

Construction of a diagnostic model with DMRs

To make the sample size larger, we merged the methylation 
data of TCGA and ICGC and then eliminated the batch 
effect. According to the categories of the samples, the 
random forest algorithm with the R package random forest 
and LASSO regression model were used to perform further 
dimensional reduction on the DMRs.

According to the random forest algorithm, the random 
variables of mtry and ntree parameters were set to 1–50 
and 500, respectively, for each split. First, the mtry and 
ntree values with the lowest error rates were selected as 
the optimal values. Then, DMRs were sorted according to 
the importance of the results. For the LASSO regression 
model, 10-fold cross-validation was performed to determine 
the optimal lambda value, and DMRs with the lowest error 
rate were selected. DMRs shared by both algorithms were 
finally selected and then randomly divided into a training set 
and validation set in equal proportions. Then, a diagnostic 
model for PDAC was built with the logistic regression 
method. To avoid the bias effect of single sample grouping 
on the model, we conducted 100 random groupings and 
evaluated the area under the curve (AUC) value of the 
model under each grouping.

Marker gene characteristics test of the diagnostic model

The relationship of the methylation level of the selected 
DMRs and their corresponding gene expression levels 
was tested in tumorous and adjacent normal samples. The 
expression levels of PHF12, FXYD3, PRKCB and ZNF582, 
regulated by the four corresponding DMRs, were also 
analyzed in different tumor stages. Then, patients in TCGA 
were divided into high and low groups according to the 
median value of each gene expression, and prognostic 
survival analysis was performed to test their prognostic 
predictive values.
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Coexpression network analysis

Pearson correlation coefficients of all selected genes and 
the four genes were calculated, and a correlation test 
was also conducted with preprocessed expression profile 
data in TCGA. Genes with FDR <0.001 were defined 
as coexpressed genes of the four genes. Weighted gene 
coexpression network analysis (WGCNA), which can be 
used to find highly relevant gene clusters and correlations 
among modules and samples, was used to further study the 
correlation patterns among the coexpressed genes. Before 
conducting WGCNA, abnormal samples were evaluated 
and removed in subsequent analysis. Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis of the 
genes was performed using the R package clusterProfiler.

Drug-gene interaction analysis

DGIdb, which provides information on the interactions 
between drugs and genes, was used to screen potential drugs 
for PDAC by searching with the four hub genes.

Immunohistochemical (IHC) validation of the protein 
expression of model-related genes

Thirty PDAC patients who underwent curative resection 
with no neoadjuvant therapy before surgery at The First 
Affiliated Hospital of Zhengzhou University (Zhengzhou, 
China) between February 2019 and November 2021 
participated in the retrospective investigation. The study 
was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013) and approved by ethics 
committee of The First Affiliated Hospital of Zhengzhou 
University (No. 2023-KY-0863-002). Informed consent was 
waived due to the retrospective nature of the study.

All hematoxylin and eosin-stained slides of tumor and 
adjacent nontumor samples were collected and confirmed 
by two experienced pathologists. Three genes, PHF12, 
FXYD3 and PRKCB, were selected for further validation by 
IHC method as previously described (12). All formalin-fixed 
paraffin-embedded PDAC samples were chosen to test the 
protein levels of the three genes.

Sl ides  w i th  4  µm sec t ions  were  prepared  for 
deparaffinizing and blocking endogenous peroxidase activity. 
After washing the slides with phosphate buffered saline and 
incubating them with bovine serum, further incubation 
with primary and secondary antibodies were followed. 
All sections were counterstained with hematoxylin after 

incubating with 3,3'-diaminobenzidine solution. The 
IHC slides were analyzed by Image-Pro Plus 6.0 software 
(Media Cybernetics, Rockville, MD, USA). The results 
were recorded by two pathologists. For PHF12, FXYD3 
and PRKCB expression analysis, relevant primary antibodies 
(PHF12, SC-514864, 200 µg/mL, Santa Cruz, CA, USA; 
FXYD3, AB205534, 1:1,000, Abcam, Cambridge, UK; 
PRKCB, BS-0267R, 1:1,000, Bioss, Beijing, China) were 
used. The results are expressed as the mean areal density 
(MAD).

Western blotting evaluation of the protein expression of 
model-related genes

To further evaluate the gene expression of PHF12, FXYD3 
and PRKCB, another six pairs of fresh-frozen PDAC and 
adjacent normal samples were collected and tested using 
Western blotting.

Proteins were isolated from fresh-frozen tissues and 
processed as described earlier (12). The proteins were 
treated with primary rabbit polyclonal antibodies (PHF12, 
SC-514864, 200 µg/mL, Santa Cruz; FXYD3, AB205534, 
1:1,000, Abcam; PRKCB, BS-0267R, 1:1,000, Bioss) and 
GAPDH (GB12002, 1:1,000, Servicebio, Wuhan, China), 
then with a horseradish peroxidase-conjugated goat anti-
rabbit secondary antibody (GB23303, 1:3,000, Servicebio). 
Finally, the bound immunocomplexes were detected by 
enhanced chemiluminescence methods.

Statistical analysis

The GeneCodis tool (http://genecodis.cnb.csic.es/) was 
used for gene annotation, including Gene Ontology (GO), 
biological process (BP), cellular component (CC), molecular 
function (MF) and KEGG pathway enrichment analyses. 
Hyp_c <0.05 was used as the threshold for the significant 
enrichment of GO terms and KEGG pathways. All analyses 
were performed using R (version 3.6.1) software, and chip 
data preprocessing and probe annotation were performed 
using Bioconductor related packages. A t-test was used for 
paired data, and a U test was used for unpaired data. Values 
with P<0.05 were regarded as statistically significant.

Results

Data preprocessing

The analysis procedure for this study is shown as a 



Journal of Gastrointestinal Oncology, Vol 15, No 3 June 2024 1269

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2024;15(3):1265-1281 | https://dx.doi.org/10.21037/jgo-23-985

flowchart in Figure 1. After merging the TCGA and ICGC 
datasets and eliminating batch effects, differences between 
the two datasets of tumor samples and normal samples were 
eliminated, indicating that the merged dataset had low bias 
for subsequent analysis (Figure S1). A total of 46 DMRs 
with cumulative importance >95% were used for subsequent 
analysis.

Identification of DMRs among TCGA and ICGC groups

The comparison of tumor and normal samples from 
the TCGA and ICGC yielded 7,628 and 9,463 DMRs, 
respectively (supplementary file 1 available at https://cdn.
amegroups.cn/static/public/jgo-23-985-1.xls), with high 
internal consistency (Figure S2A,S2B). The methylation 

trend indicated that there were more hypermethylation sites 
than hypomethylation sites in the tumor group in both the 
TCGA and ICGC datasets (Figure 2A,2B). According to the 
distribution of these DMRs on the genome, they were mainly 
concentrated on the island, N shore, and S shore but were 
rarely distributed on the N shelf and S shelf (Figure S2C,S2D). 
There were 4,164 DMRs, including 3,624 hypermethylated 
regions and 540 hypomethylated regions, that were shared 
by the two datasets, and these were rarely distributed on the 
N shelf and S shelf (Figure 2C,2D).

Potential regulatory genes for DMRs

The TCGA dataset provided PDAC gene expression and 
CNV data. We used three omics datasets to analyze 4,164 
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Figure 1 Flowchart describing the procedure of building a diagnostic model and exploring potential therapeutic drugs by comprehensive 
multiomics analysis of PDAC. TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genome Consortium; DMRs, differentially 
methylated regions; LASSO, least absolute shrinkage and selection operator; RNA-seq, RNA-sequencing; CNV, copy number variation; 
WGCNA, weighted gene coexpression network analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; DGIdb, Drug-Gene 
Interaction database; PDAC, pancreatic ductal adenocarcinoma; IHC, immunohistochemical.

https://cdn.amegroups.cn/static/public/JGO-23-985-Supplementary.pdf
https://cdn.amegroups.cn/static/public/jgo-23-985-1.xls
https://cdn.amegroups.cn/static/public/jgo-23-985-1.xls
https://cdn.amegroups.cn/static/public/JGO-23-985-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-985-Supplementary.pdf


Ge et al. Drug screen for pancreatic cancer1270

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2024;15(3):1265-1281 | https://dx.doi.org/10.21037/jgo-23-985

genes possibly regulated by DMRs and finally obtained 285 
genes involving 589 DMRs (supplementary file 2 available at 
https://cdn.amegroups.cn/static/public/jgo-23-985-2.xls). The 
expression levels of these genes were significantly negatively 
correlated with the methylation levels (Figure 3A,3B). The 
significance test of the correlation coefficient only had 34 
genes with P values ≥0.05, and the other 555 genes had P 
values <0.05 (supplementary file 2 available at https://cdn.
amegroups.cn/static/public/jgo-23-985-2.xls), which showed 
that the method had better performance. KEGG pathway 
enrichment analysis showed that the 285 potential regulatory 

genes were mainly involved in neuroactive ligand-receptor 
interactions, pathways in cancer, the PI3K-Akt signaling 
pathway, the MAPK signaling pathway, the calcium signaling 
pathway, and other components. These pathways were closely 
related to the cancer signaling process (Figure 3C).

Diagnostic model constructed with DMRs

After merging the TCGA and ICGC datasets, we randomly 
divided the tumor and normal samples into a training set 
(tumor/normal: 222/18) and a validation set (tumor/normal: 
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Figure 2 Identification and distribution of DMRs in TCGA and ICGC cohorts, which had 7,628 and 9,463 DMRs, respectively. 
(A) Different methylation levels between tumor and adjacent normal tissues of the TCGA cohort. (B) Different methylation levels 
between tumor and adjacent normal tissues of the ICGC cohort. (C) 4,164 DMRs shared by the TCGA and ICGC cohorts, with 3,624 
hypermethylated regions and 540 hypomethylated regions. (D) Distribution of DMRs in the genome, mainly concentrated on the island, N 
shore, and S shore. DMRs, differentially methylated regions; Hyper-M, hypermethylated; Hypo-M, hypomethylated; ICGC, International 
Cancer Genome Consortium; TCGA, The Cancer Genome Atlas; PDAC, pancreatic ductal adenocarcinoma.
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223/17). Random forest and LASSO methods were used 
to obtain 46 and 15 DMRs, respectively (Figure 4A,4B). 
cg10547050, cg08823209, cg03306374, and cg09568464, 
shared by both methods, were used to construct a PDAC 
diagnostic risk score model with the following formula: 
(−10.86 × expression level of cg10547050) + (−10.38 × 
expression level of cg08823209) + (7.18 × expression level 
of cg03306374) + (12.02 × expression level of cg09568464). 

The results showed that the risk scores of tumor samples 
were significantly higher than those of normal samples 
(Figure 4C). Furthermore, the ability of the model to classify 
tumor and normal samples was also evaluated. The results 
showed that the model could strongly classify the two 
groups of samples in both the training set and validation 
set, with AUC values reaching 0.984 and 0.988, respectively 
(Figure 4D).
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Analysis of marker genes regulated by DMRs in the 
diagnostic model

The expression of the four DMRs in tumor and normal 
tissues was analyzed. The results indicated that the levels of 
cg03306374 and cg09568464 were both significantly higher 
in tumorous tissue than in normal tissue, and the other two 
DMRs showed the opposite pattern (Figure 5A,5B). We 
further analyzed the methylation levels of all methylation 
sites within the upstream 2 kb transcription start site (TSS) 
of the four genes regulated by the DMRs. The results 
showed that these sites all had a high degree of methylation, 
which was consistent with the methylation trend of the 
four DMRs. Although only the expression of FXYD3 was 
significantly different between tumor and normal tissues 
(P<0.05), the expression patterns of the other three DMR-
regulated genes, PHF12, PRKCB, and ZNF582, were also 
consistent with their methylation patterns (Figure 5C). 

Correlation tests for the levels of the four DMRs and the 
corresponding gene expression levels in tumorous tissue all 
revealed significant negative results (P<0.05) (Figure 5D). In 
the analysis of gene expression in different stages of PDAC, 
only the expression of ZNF582 was significantly lower in 
stage IV than in the early stages (P<0.05), and there was 
a significant correlation between ZNF582 expression and 
prognosis (Figure 5E). Survival analysis indicated that 
the group with low expression of ZNF582 had a worse 
prognosis (P<0.05), but the other three genes did not have 
significant prognostic values (P>0.05) (Figure 5F).

Coexpression network and functional analysis of the genes

As shown in the supplementary file 3 (available at https://
cdn.amegroups.cn/static/public/jgo-23-985-3.xls), 5,696 
genes obtained by coexpression analysis were significantly 
related to the four hub genes. All these genes were 

https://cdn.amegroups.cn/static/public/jgo-23-985-3.xls
https://cdn.amegroups.cn/static/public/jgo-23-985-3.xls
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Figure 5 Expression of the 4 DMRs and corresponding regulatory genes in the diagnostic model. Expression levels of the 4 DMRs in tumor 
and normal samples from the TCGA dataset (A) and ICGC dataset (B). (C) Expression levels of 4 hub DMR-regulated genes in tumor 
samples and normal samples from GEPIA2 (http://gepia2.cancer-pku.cn/). (D) Correlation between the expression levels of 4 DMRs and the 
corresponding gene expression levels in tumorous tissue from the TCGA dataset. (E) Expression levels of 4 hub genes in different stages of 
PDAC. (F) Prognostic survival analysis of 4 hub genes by dividing samples into high and low groups according to the median value of each 
gene expression in TCGA. *, P<0.05; **, P<0.01; ***, P<0.001. TPM, transcripts per million; FPKM, fragments per kilobase million; DMRs, 
differentially methylated regions; TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genome Consortium; PDAC, pancreatic 
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Figure 6 Analysis of coexpression network and hub genes. (A) Cluster dendrogram of 5,696 coexpressed genes, which are significantly 
related to 4 hub genes. Nine modules were obtained. Enrichment analysis of the 4 modules, in which PHF12 belonged to the green module 
(B), FXYD3 to the yellow module (C), PRKCB to the brown module (D), and ZNF582 to the turquoise module (E). *, P<0.05; **, P<0.01; ***, 
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aggregated into nine modules (Figure 6A). PHF12, FXYD3, 
PRKCB and ZNF582 belonged to the green, yellow, brown 
and turquoise modules, respectively. The module-enriched 
KEGG pathway analysis indicated that green module genes 
were mainly related to herpes simplex virus 1 infection. The 
yellow module genes were mainly related to cytokine-cytokine 
receptor interactions and chemokine signaling pathways. The 
brown module and turquoise module genes were both mainly 
related to metabolic pathways (Figure 6B-6E).

Potential drug analysis by PDAC-related signatures

To predict drugs with potential therapeutic effects for 
PDAC, the four hub genes were introduced into DGIdb. In 
the DGIdb, drugs that might interact with the four genes 
were analyzed. The results revealed that only 18 genes had 
potential interactions with PRKCB (supplementary file 4 
available at https://cdn.amegroups.cn/static/public/jgo-23-
985-4.xls). These drugs mainly acted as inhibitors of PRKCB, 
and only one drug acted as an activator (Figure 7A).

https://cdn.amegroups.cn/static/public/jgo-23-985-4.xls
https://cdn.amegroups.cn/static/public/jgo-23-985-4.xls
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Figure 7 Potential drug analysis by PDAC-related signatures. (A) Potential drugs interacted with PRKCB, among which only ingenol 
mebutate acted as an activator. (B) Consistency cluster matrix of PDAC samples in TCGA. (C) Clustering analysis divided PDAC samples into 
C1 and C2 categories using the k-NN algorithm. (D) Overall survival rates of patients in the C1 and C2 groups. (E) Response of 27 PDAC 
cell lines to selected drugs. Activity area indicates sensitivity of the drugs to a certain cell line. A greater value indicates more sensitivity of the 
drug. Predicted prob is the probability that PDAC cell lines are predicted to be in the C2 category. PDAC, pancreatic ductal adenocarcinoma; 
TCGA, The Cancer Genome Atlas; t-SNE, t-distributed stochastic neighbor embedding; k-NN, k-nearest neighbor.
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Based on the expression data of PHF12, FXYD3, PRKCB 
and ZNF582, PDAC samples in the TCGA could be further 
clustered into the optimal C1 and C2 groups (Figure 7B,7C). 
The two groups also had significantly different prognoses, 
in which patients in the C1 group had a better outcome 
(Figure 7D). Using the k-NN algorithm, 27 PDAC cell 
lines from the Cancer Cell Line Encyclopedia (CCLE, 
https://portals.broadinstitute.org/ccle) were all divided into 
the C2 group based on the four gene expression profiles 
(supplementary file 5 available at https://cdn.amegroups.
cn/static/public/jgo-23-985-5.xls). According to the drug 
responses of the 27 cell lines, the drugs topotecan, PD-
0325901, panobinostat, paclitaxel and tanespimycin (17-
AAG) were predicted as the five most effective candidate 
drugs (Figure 7E).

Validation of protein expression of the model-related genes

To further validate the results, IHC analysis was conducted 
to determine PHF12 ,  FXYD3  and PRKCB  protein 
expression levels in PDAC. The results showed that 
PHF12, FXYD3 and PRKCB proteins were all upregulated 
in tumor tissues compared with adjacent normal pancreatic 
tissues (P<0.05) (Figure 8A). From the immunostaining, 
we observed that the positive immunoreactivity of PHF12 
was primarily localized in the cell nucleus, and FXYD3 
and PRKCB were both primarily localized in the cytoplasm 
and cytomembrane (Figure 8B). Western blotting was also 
applied to analyze PHF12, FXYD3 and PRKCB protein 
expression in fresh PDAC tissues and adjacent nontumor 
tissues. The same results were obtained with IHC analysis, 
which showed elevated protein expression of PHF12, 
FXYD3 and PRKCB in tumor tissues compared to adjacent 
normal tissues (P<0.05) (Figure 8C,8D; Figure S3).

Discussion

To provide a new strategy for the diagnosis and treatment 
of pancreatic cancer, it is necessary to perform in-depth 
exploration of its pathogenesis. In recent years, studies on 
the correlation between epigenetics and the occurrence and 
development of pancreatic cancer have become increasingly 
common (13,14). DNA methylation is a predominant 
epigenetic modification that affects gene transcription and 
expression and participates in many physiological activities 
of cells, such as the inactivation of the X chromosome, cell 
senescence, and tumorigenesis. Aberrant hypermethylation 
of CpG islands in the enhancer and promoter regions 

of tumor suppressor genes plays an important role 
in tumorigenesis, tumor development and invasion. 
Hypermethylation of tumor suppressor gene promoters 
would result in downregulation or silencing of gene 
expression, while hypomethylation in the promoter region 
of oncogenes would cause an increase in gene expression 
(15,16). DNA methylation often occurs at the early stage of 
tumorigenesis, which has been confirmed in colorectal (17), 
breast (18), pancreatic (5) and lung cancers (19).

In this study, we analyzed PDAC methylation data in 
the TCGA and ICGC databases. In the tumor group, 
the number of hypermethylated regions (Hyper-M) was 
greater than the number of hypomethylated (Hypo-M) 
regions. This showed that hypermethylation promotes 
the downregulation of genes, especially tumor suppressor 
genes, which might play an important role in the formation 
of PDAC. DNA methylation always precedes somatic cell 
mutation and occurs in the early stage of tumorigenesis. 
A study has shown that DNA methylation is virtually 
unregulated in every cancer, as cancer cells exhibit extensive 
differential methylation compared to normal cells (20). 
To construct a diagnostic predictive model for PDAC, we 
merged data from TCGA and ICGC and randomly assigned 
them to the training set and validation set. The four most 
important DMRs, cg10547050, cg08823209, cg03306374 
and cg09568464, were selected, and a diagnostic model 
was constructed for PDAC, which could well classify the 
tumor and adjacent normal samples both in the training 
set and validation set, with AUC values reaching 0.984 and 
0.988, respectively. This meant that the DNA methylation 
signatures could be used as potential early diagnostic 
biomarkers for pancreatic cancer.

Recently, a study has disclosed that genes with 
hypermethylation are always tumor suppressors and are 
usually silenced or expressed at low levels in pancreatic 
cancer (21). Furthermore, the most common genes with 
hypomethylation are oncogenes of which its activity or 
expression increases in the context of tumor progression (21).  
In this study, we also selectively analyzed the genes 
regulated by the model-related DMRs. The expression 
of FXYD3 in tumor tissues was significantly higher than 
that in normal tissues (P<0.05), while the expression of 
cg08823209, which regulates FXYD3, showed the opposite 
result. Another three genes and their corresponding 
DMRs all showed a significant negative correlation, which 
was consistent with the negative regulation mode of 
methylation on gene expression. In our external validation 
cohort, the protein expression levels of PHF12, FXYD3 

https://cdn.amegroups.cn/static/public/jgo-23-985-5.xls
https://cdn.amegroups.cn/static/public/jgo-23-985-5.xls
https://cdn.amegroups.cn/static/public/JGO-23-985-Supplementary.pdf
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Figure 8 Measurement of PHF12, FXYD3 and PRKCB protein levels in our cohort. (A) The mean protein expression levels of PHF12, 
FXYD3 and PRKCB in PDAC were all significantly higher than those in adjacent nontumor tissue by immunohistochemistry. (B) 
Representative immunohistochemical staining images of PHF12, FXYD3 and PRKCB, among which PHF12 is primarily localized in the 
cell nucleus, and FXYD3 and PRKCB are both primarily expressed in the cytoplasm and cytomembrane. Original magnification: ×200. (C) 
Representative Western blotting images show that the proteins PHF12, FXYD3 and PRKCB were all overexpressed in PDAC tissue compared 
with normal adjacent tissue. (D) Western blotting analysis demonstrates that the mean grayscale values of PHF12, FXYD3 and PRKCB are all 
higher in fresh-frozen PDAC tissues than in matched adjacent normal tissues. MAD, mean areal density; GAPDH, glyceraldehyde-3-phosphate 
dehydrogenase; PDAC, pancreatic ductal adenocarcinoma.
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and PRKCB were all significantly upregulated in tumor 
tissues. If we could screen abnormal genes or methylation 
sites at the early stage of intraepithelial neoplasia, then 
we could screen patients with early-stage tumors and give 
appropriate treatment. ZNF582 was more highly expressed 
in stage I PDAC than in other stages and had a significant 
relationship with prognosis, indicating that it might serve as 
a prognostic marker.

KEGG enrichment analysis of the coexpressed genes 
showed that they were mainly related to herpes simplex 
virus 1 infection, cytokine-cytokine receptor interactions, 
chemokine signaling pathways, and metabolic pathways, 
which indicated that all these selected genes might be 
involved in the formation and development of pancreatic 
cancer. Therefore, we analyzed the functions of the four 
genes to further comprehend their effects on tumorigenesis 
and tumor progression. PHF12, plant homeodomain (PHD) 
zinc finger protein 12, encodes a member of the PHD 
zinc finger family of proteins involved in the regulation of 
ribosomal biogenesis and senescence (22). FXYD, domain-
containing ion transport regulator 3 (FXYD3), encodes 
a cell membrane protein that can regulate the function 
of ion pumps and ion channels and plays a role in tumor 
progression. FXYD3 has been reported to be highly 
expressed in several types of cancers, including bladder 
cancer and breast cancer, and is related to survival and 
metastasis (23,24). FXYD3 overexpression has also been 
reported in preclinical PDAC models (25). Protein kinase 
C beta (PRKCB) is a protein kinase C (PKC) gene family 
member coding PRKCB protein, and is involved in many 
different cellular functions, such as B-cell activation, apoptosis 
induction and endothelial cell proliferation (26). PRKCB1 
was considered a suppressor of tumorigenic behavior both 
in vitro and in an in vivo pancreatic cancer model (27) and 
its overexpression could also promote gastric cancer cell 
proliferation and mobility (28). ZNF582 is widely regarded 
as a tumor suppressor gene. Hypermethylation of ZNF582 
has been reported in esophageal squamous cell carcinoma 
and cervical cancer (29,30).

To search for potential drugs that might have therapeutic 
effects on pancreatic cancer, the DGIdb database was 
used to analyze drugs associated with the four genes. 
Only PRKCB had corresponding drug information in the 
database, and 28 drugs were found, among which 27 drugs 
all acted as inhibitors. We further verified whether the 
potential drugs had been investigated or tested in vitro or 
in vivo. First, the responses to these drugs were assessed 
in 27 pancreatic cancer cell lines, all clustered into the C2 

category based on the expression of the four genes. The 
results indicated that the cell lines showed similar responses 
as patients in the C2 group in the TCGA, and this group 
of patients had shorter survival times than those in the C1 
group.

According to the degree of response of the 27 
pancreatic cancer cell lines to the drugs, topotecan, PD-
0325901, panobinostat, paclitaxel and 17-AAG had the 
highest activity, indicating that they might have potential 
therapeutic roles for pancreatic cancer, especially for the C2 
group. Topotecan is an inhibitor of topoisomerase I, which 
can form a complex with DNA and cause double-stranded 
DNA damage. Currently, topotecan is regarded as the first-
line chemotherapy drug for refractory small cell lung cancer 
in many countries (31), and it is also used to treat recurrent 
ovarian cancer (32). However, a phase II trial of topotecan 
performed by Scher et al. demonstrated that it had limited 
activity in patients suffering from advanced or metastatic 
pancreatic cancer with a dosage of 1.5 mg/m2/d for 5 days 
intravenously and repeated every 21 days (33). Furthermore, 
although topotecan has demonstrated a wide range of 
antitumor activity in other preclinical and phase I studies, 
a phase II study was ineffective for patients with pancreatic 
carcinoma (34). PD-0325901 (mirdametinib) is a selective, 
non-ATP-competitive mitogen-activated extracellular 
signal-regulated kinase 1/2 (MEK1/2) inhibitor. MEK/
ERK regulates cell proliferation, survival and differentiation 
stimulated by extracellular signals (35). PD-0325901 
potently suppressed MEK/ERK pathways and displayed 
strong anti-proliferative, apoptotic, anti-angiogenesis 
and anti-tumor activity in head and neck squamous cell 
carcinoma cells and triple-negative breast cancer cells 
(35,36). Williams et al. explored the activation of PD-0325901 
in response to radiation in multiple pancreatic tumor cell 
lines and xenografts and found that PD-0325901 could 
result in growth arrest, apoptosis, and radiosensitization (37).  
A phase 1 study performed by van Geel et al. revealed that 
PD-0325901 combined with the human epidermal growth 
factor receptor inhibitor dacomitinib did not show acceptable 
antitumor activity in patients with KRAS mutation-positive 
pancreatic cancer (38). These studies indicated that the 
effect of PD-0325901 in clinical models needs further 
verification, combining with other antitumor treatments 
might be the direction of future research (38).

Preclinical and clinical data suggested that panobinostat, 
a nonselective histone deacetylase inhibitor, had potential 
inhibitory activity in hepatocellular, pancreatic, colorectal, 
gastric, gastrointestinal stromal tumors, and myeloma 
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(39,40). Panobinostat in combination with other antitumor 
drugs, such as gemcitabine, bortezomib, BEZ235, MK-
1775, and IMC-RON8, could work more efficiently 
than monotherapy for pancreatic cancer (41). GnP and 
FOLFIRINOX, established as first-line treatment, 
have improved survival time for patients suffering from 
pancreatic cancer in the last few years. In addition, GnP 
after FOLFIRINOX are expected to be one of the second-
line recommendations for patients with unresectable 
pancreatic cancer (42,43). A phase II study showed that 17-
AAG, a heat shock protein 90 inhibitor, combined with 
gemcitabine appeared to decrease levels of checkpoint 
kinase 1 (Chk1), which prevented S-phase checkpoint 
inhibition, but clinical trials had not revealed similar results 
to support the clinical significance of such regimens (44,45). 
Another phase II multicenter study combining gemcitabine 
and 17-AAG also did not result in increased 6-month and 
overall survival times, as expected, in an interim analysis of 
21 patients with stage IV pancreatic cancer (46).

A limitation of the study is that the results were mainly 
obtained by bioinformation analysis. The results of 
preclinical tumor cell experiments need to be applied quite 
cautiously to clinical treatment. More careful and rigorous 
clinical trials should be designed to verify the preclinical 
results.

Conclusions

In summary, we screened four significant DMRs using 
multiomics profiles of PDAC from TCGA and ICGC 
datasets. The diagnostic model constructed based on the 
DMRs showed excellent performance for distinguishing 
tumor and normal tissues. Furthermore, four genes, 
PHF12, FXYD3, PRKCB and ZNF582, regulated by the 
corresponding DMRs were identified. Moreover, drug 
target analysis revealed that PRKCB might be a potential 
gene target, as it had 28 potential interactions. Five 
potential drugs were screened out, and these might serve as 
promising therapeutics for particular PDAC patients. 
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