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Abstract

Selecting appropriate feature subsets is a vital task in machine learning. Its main goal is to

remove noisy, irrelevant, and redundant feature subsets that could negatively impact the

learning model’s accuracy and improve classification performance without information loss.

Therefore, more advanced optimization methods have been employed to locate the optimal

subset of features. This paper presents a binary version of the dwarf mongoose optimization

called the BDMO algorithm to solve the high-dimensional feature selection problem. The

effectiveness of this approach was validated using 18 high-dimensional datasets from the

Arizona State University feature selection repository and compared the efficacy of the

BDMO with other well-known feature selection techniques in the literature. The results show

that the BDMO outperforms other methods producing the least average fitness value in 14

out of 18 datasets which means that it achieved 77.77% on the overall best fitness values.

The result also shows BDMO demonstrating stability by returning the least standard devia-

tion (SD) value in 13 of 18 datasets (72.22%). Furthermore, the study achieved higher vali-

dation accuracy in 15 of the 18 datasets (83.33%) over other methods. The proposed

approach also yielded the highest validation accuracy attainable in the COIL20 and Leuke-

mia datasets which vividly portray the superiority of the BDMO.

1. Introduction

The data dimension significantly affects the Machine Learning (ML) model’s performance in

data mining activities. In recent times, advanced devices that gather or generate data have

made an enormous amount of data available in various application areas [1]. Although, in

dealing with these huge and high-dimensional datasets, the major requirement is computa-

tional resources. Also, noise data like irrelevant and redundant features can significantly

degrade the ML model’s performance. There is a need to remove these noisy features from the

original dataset due to their ability to misinform the learning algorithm [2]. To this end, fea-

ture selection is imperative to settle the issue of dimensionality.

Feature selection (FS) is a search problem because it reduces the number of features from

the original dataset without losing information [3]. The main aim of FS is to select feature
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subsets that best represent the dataset and show the most to the intended concepts. It does not

just eliminate redundant or irrelevant data but also presents the benefit of interpretability and

readability [4]. Feature selection can be grouped into filter and wrapper methods [5]. However,

some researchers included a third category, embedded as found in [6]. The wrapper method

predicts the accuracy of the already determined algorithm for learning to generate the selected

features’ quality. It includes the classification algorithm, interacts with the classifiers, and yields

a better result than the filter approach. The filter approach, on the contrary, isolates feature

selection from the classifier learning and removes any bias of the learning algorithm from

interfering with the feature selection’s algorithm (Aggarwal et al., 2014) [7]. It usually concen-

trates on the overall characteristics of the data [8] and does not involve a learning model in

selection [9]. Examples of the filter method include t-test feature selection [10] and multivari-

ate relative discrimination criterion [11]. The wrapper-based approach is the most preferred

method for problems of classification.

Finding the optimal feature subsets in a wrapper-based technique is daunting because the

goal is to choose the minimum number of subsets with the maximum accuracy. Based on the

growing time required to locate the best feature subsets in a high-dimension dataset, feature

selection is considered an NP-hard problem [12]. Should we have a dataset with N feature, we

need a sum of 2N features to investigate and locate the optima feature [13, 14]. Therefore, there

is a need for a high-performing metaheuristic algorithm to reduce the processing time this

kind of problem may pose.

The wrapper-based feature selection methods can be grouped into swarm intelligent, evolu-

tionary-based algorithms, and physics-based algorithms. The inspiration for the swarm-based

algorithms is often from the collective and foraging behavior of whales, ants, grasshoppers,

fish, fireflies, and many other creatures in nature. Evolutionary-based approaches utilize the

biological theory of evolution, such as mutation and crossover in nature. Physics-based meth-

ods mimic various laws of physics that generally occur in nature.

Dwarf Mongoose Optimisation (DMO) algorithm is a new swarm-based metaheuristic

algorithm proposed by [15]. The DMO was developed on the principle of the social structure

and foraging nature of dwarf mongooses in their natural environment. Since the algorithm

was created, no variant of it has been proposed. The DMO algorithm was designed to solve

continuous optimization problems in a continuous search space. Therefore, this binary version

converts the search space into binary space and modifies the stepwise movement of the dwarf

mongoose in the search space to solve the feature selection problem.

The major goal of the work is to harness the efficiency of the DMO algorithm to solve high-

dimensional feature selection challenges. A binary variant of the DMO algorithm known as

the Binary Dwarf Mongoose Optimisation (BDMO) is proposed to explore and find minimal

feature subsets possible in high-dimensional datasets. The k-Nearest Neighbor (kNN) is used

as the classifier to evaluate the selected feature subsets’ goodness. This proposed method was

assessed using eighteen (18) high-dimensional datasets from the Arizona State University

(ASU) feature selection repository. Additionally, ten well-known methods were utilized to

ascertain the efficacy of the proposed BDMO. The main contributions of this work are sum-

marized as follows:

• The introduction of binary approaches of the DMO algorithm called BDMO to select the

smallest possible number of features from high-dimensional medical datasets.

• The binary DMO is achieved by adapting the main components of the standard DMO

• The binary search space was achieved by applying a low-cost and effective method where a

threshold is assigned to each variable
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• The proposed BDMO is evaluated and validated using eighteen (18) high-dimensional data-

sets from the Arizona State University (ASU) feature selection repository.

• The efficacy of the proposed FS method is compared with some other popular FS methods.

This article has seven sections. Section 2 presents a brief review of relevant literature,

whereas the motivation for the study is presented in Section 3. The dwarf mongoose algorithm

(DMO) is discussed in Section 4. Section 5 details the proposed BDMO approach and its appli-

cation in feature selection. Section 6 centers on the results of the experiments and a discussion

of the results. Finally, Section 7 concludes the work.

2. Related literature

Most metaheuristic algorithms are nature-inspired and can be categorized into four

approaches based on the source of inspiration: The swarm-based algorithms are based on the

cooperative and hunting behavior of whales, ants, grasshoppers, fish, fireflies, and a lot of

other creatures in nature [16]. Swarm-based methods include artificial bee colony [17] and bat

algorithms [18]. In the same vein, the evolutionary-based approaches utilize the biological the-

ory of evolution, such as mutation and crossover. An example includes Corel reefs optimiza-

tion [19].

On the other hand, physics-based methods mimic various laws of physics that generally

occur in nature. Some physics-based examples include gravitational search algorithm and

Equilibrium Optimizer [20, 21]. Different human activities inspire human-based methods,

and teaching-learning-based optimization [22] is an example. These metaheuristic algorithms

use exploitation and exploration activities to accomplish optimization.

The swarm-based methods are often biological systems that draw their inspiration from

nature. The agents follow a simple procedure even though no central management structure

controls how the individual agent is meant to behave [23]. Autonomy is a unique advantage of

swarm-based algorithms because each agent represents a solution to a particular problem as

they are not controlled by external management. Examples of algorithms in this category

include Particle Swarm Optimization (PSO), Ant Colony Optimization, and Artificial Bee Col-

ony (ABC) optimization.

Many proposed metaheuristic algorithms have provided optimal or near-optimal solutions

to many real-world applications, including various feature selection problems [24]. Some of

which include the Whale Optimization Algorithm (WOA) and its hybrid [16, 25, 26], Cuckoo

Search Optimization Algorithm (CSO) [27–29], DragonFly Algorithm (DA) (Chantar et al.,

2021; Cui et al., 2020; Sree Ranjini & Murugan, 2017) [30–32], Prairie Dog Optimization

(PDO) Algorithm [33] and many more.

Particle swarm optimization (PSO) is the most prominent swarm-based algorithm. An

improved binary version of the PSO was designed in 2008 by [34] to solve the gene selection

problem. This approach resets the global best result if there is no improvement for three con-

tinuous iterations to cater to the premature convergence of the PSO. Two years later, [35] pro-

posed a modified discrete PSO to solve the binary feature selection classification problem. The

study used an adaptive selection of subsets in estimating the features’ relevant weight probabil-

ity. The study [36] presented a catfish effect to solve binary feature selection challenges using

the PSO. Should the global best get trapped in local optimal, a repositioned and reset was done

on the weak nine-tenth particles.

In [37], a PSO-based feature selection was presented, which enhanced the efficacy of detect-

ing skin cancer. Furthermore, Ji et al. [38] developed a co-evolution binary version of the PSO

for feature selection. This method divided the population into sub-swarms and assigned
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various inertia weight strategies for diversity improvement. Banka & Dara [39] presented a

hamming distance based on PSO to update the velocity for high-dimensional feature selection.

The study showed the efficacy of this method in outperforming other traditional methods on

three high-dimensional cancer datasets. The work by [40] presents another recent PSO-based

approach to solving feature selection issues.

More swarm intelligence metaheuristic algorithms developed recently have their versions

proposed to solve the feature selection problems. The grey wolf optimization algorithm

(GWO) was inspired by the chasing procedure of a group of grey wolves in their natural envi-

ronment [41]. The algorithm emulates the hierarchy of leadership and chasing approach of

grey wolves in their natural setting. The GWO has been used recently for solving feature selec-

tion problems in data mining. Emary et al. [42] proposed a feature selection method based on

multi-objective GWO in searching for the most appropriate and useful features. The hybrid

approach employed the lower computation complexity in the filter method to advance the

wrapper method’s performance. It was tested using different UCI datasets and achieved much

robustness and stability.

Li et al. [43] proposed a novel predictive-based framework that hybridized an improved

GWO (IGWO) and kernel extreme learning machine (KELM) known as IGWO-KELM and

applied to problems in medical diagnosis. Moreover, Too et al. [44] proposed a novel viable

binary variant of the grey wolf optimizer (CBGWO) to solve the feature selection challenge in

the electromagnetic classification of signals. They extracted some time-frequency features

from the STFT coefficient, and the new method was used to evaluate the optimal subset from

the initial dataset. Sreedharan et al. [45] developed a system for recognizing facial emotion

known as Facial Emotion Recognition (FER) that can analyze essential human facial expres-

sions, like normal, smile, unhappy, angry, amaze, terrified, and irritate. The manner of recog-

nition of the FER system was categorized into four activities, preprocessing, extraction of

feature, selection of feature, and classification.

The authors in [46] presented a hybridization of a popular metaheuristic optimizer called

GWO and a gradient descent algorithm which was used to resolve feature selection issues.

Similarly, a newly proposed hybridized technique comprised the Extended Binary Cuckoo

Search, Genetic Algorithm, and Whale Optimization Algorithm, which aimed to reduce the

time required to search a huge database during image retrieval. This approach was compared

with other popular classification algorithms like KNN, NB, Random Forest–RF, CatBoost,

considering Recall, Precision, error rate, F-measure, etc. [47].

The Salp Swarm algorithm (SSA) developed by Mirjalili et al. [48] is another recently devel-

oped swarm-based metaheuristic algorithm. Two years after the SSA was developed, Ibrahim

et al. [49] presented a hybridized optimization technique for feature selection problems. The

proposed algorithm combined the SSA algorithm and the PSO called SSAPSO to improve the

efficacy of both exploitation and exploration phases. A year later, Tubishat et al. [50] proposed

a technique for selecting optimal feature subsets in the wrapper method and solving feature

selection problems. They included two enhancements into the base SSA: Based Learning at the

starting phase of SSA to improve its population diversity in the search space. Secondly, it

included developing and using a new local search algorithm with SSA to enhance its

exploitation.

In the same year, [51] developed a new version of SSA for feature selection known as the

Improved Follower of Salp swarm Algorithm, which used the Sine Cosine algorithm and Dis-

rupts Operator (ISSAFD), to update the followers’ position in the SSA by utilizing mathemati-

cal functions of sinusoidal as inspired from the Sine Cosine Algorithm (SCA). The

enhancement improved the exploration phase and avoided getting stuck in the local zone.

Hegazy et al. (2020) Hegazy et al. [52] improved the structure of basic SSA to enhance the
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solution accuracy, reliability, and convergence speed and was called ISSA. Inertia weight was

added as a new control parameter to adjust the best solution. After that, Jain & Dharavath [53]

presented a feature selection technique that improved the SSOA–Salp Swarm Optimization

Algorithm called memetic–MSSOA, which they transformed into binary to get the best classi-

fication accuracy.

The evolution-based algorithms utilize the biological evolution theory like mutation and

crossover in nature. The Genetic Algorithm (GA) developed by Holland [54] is a classic exam-

ple in this category. The first time the GA was used in solving the feature selection problem

was in 1993 [55]. Afterwards, Huang & Wang [56] employed the GA to solve the feature selec-

tion problem in synchronisation with the support vector machine (SVM) classifier. A few

years later, Nemati et al. [57] proposed a hybridized GA with Ant Colony Optimisation

(ANO) to select optimal subsets of features to predict protein function. After that, de Stefano

et al. [58] utilized the GA for feature selection to solve handwriting recognition of characters.

Rejer [59] designed an aggressive mutation and embedded it into the GA to solve the feature

selection challenge in the brain-computer interface. In this approach, some sets of offspring

were generated by each parent by mutating another gene of the chromosome that

corresponds.

More recent works have also been conducted on feature selection as an optimization

problem. [60, 61], the authors proposed a binary mantra ray foraging optimization and

binary seagull optimizer to tackle the feature selection problem. Both studies adopted S and

V-shaped transfer functions to binarize the baseline mantra ray foraging optimization and

seagull optimization algorithms. The former created eight versions of the BMRFO, and the

latter formed four versions of each method since the base algorithms were developed in

continuous search space. The former study was evaluated using eighteen UCI repository

datasets, and their results were compared with sixteen well-known methods. The authors

reported that the proposed method outperformed other methods in the study regarding the

number of features selected and classification accuracy, while the latter employed twenty-

five benchmark functions to validate the performance of the BSOA. The study by [38] pro-

posed an improved binary PSO (IBPSO) combined with levy flight as a local search tech-

nique to reduce the number of selected features and improve the classification accuracy.

The study experimentation was conducted using sixteen classical datasets from the UCI

repository. More so, Ma et al. [62] also created a binary hunger games search optimization

algorithm (BHGSO) using the S and V-Shaped transfer function, which was evaluated on

sixteen UCI datasets. The average classification accuracy of the result is 95% on most of the

tested datasets. However, these related studies, except for the BHGSO, were not applied to

high-dimensional datasets, which depict a real-world scenario to assess the robustness of

the proposed methods.

As more nature-inspired methods emerge in the feature selection arena, Hichem et al. [63]

presented a novel binary grasshopper optimization algorithm (NBGOA) to solve the feature

selection optimization problem. The authors assessed their implementation using twenty-

dimensional datasets and compared them with five popular feature selection problems. The

study results showed a better performance in terms of the number of features selected, maxi-

mizing the accuracy of classification, and reduced computational time compared with five

other state-of-the-art algorithms. Conversely, only three of the twenty datasets are high-

dimensional. Meanwhile, our study employed all eighteen high-dimensional datasets with fea-

tures varying from 1000 to over 22,000 from different categories. Remarkably, more state-of-

the-art methods were compared with the BDMO, which portrays the efficacy of our proposed

method in solving real-world problems.
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3. Motivation

The past decades have witnessed how meta-heuristic algorithms have grown popular and

proved their abilities in several optimization fields, including feature selection (FS) problems.

The popularity can be attributed to the success of these algorithms in solving problems, which

has also drawn lots of efforts in developing better-performing metaheuristic algorithms. FS-

based optimization algorithms aim to find the optimal feature subset without information loss,

an NP-hard problem. There is no actual solution to the FS problem. However, methods can be

developed that find a better solution.

The No Free Lunch (NFL) theorem postulates that there is no guarantee that an algorithm

would produce optimal results for other problems because it was able to find optimal results

for some problems. The NFL means no one-size-fits-all algorithm exists for all optimization

problems [64]. The reliance on this theory has driven research in this area. More researchers

are coming up with high-performing metaheuristic algorithms for FS problems. The success of

these FS-based metaheuristic algorithms motivated this study.

This study proposed a binary variant of the DMO called BDMO) is proposed to explore

and find minimal feature subsets possible in high-dimensional datasets. The k-Nearest Neigh-

bor (kNN) is used as the classifier to evaluate the selected feature subsets’ goodness. This classi-

fier was selected due to its popular use in the FS domain and for its suitability in dealing with

large dataset dimensions yielding higher classification accuracy than other classifiers [16, 65].

This proposed method was assessed using eighteen (18) high-dimensional datasets from the

Arizona State University (ASU) feature selection repository. Additionally, ten well-known

methods were utilized to ascertain the efficacy of the proposed BDMO.

4. Dwarf mongoose optimisation algorithm

The DMO is a member of the stochastic population-based metaheuristic algorithm developed

by [15]. This algorithm mimicked the social and foraging behavior of the dwarf mongoose,

also referred to as Helogale. The animals forage in groups, but individual dwarf mongoose

does a thorough food search as feeding is not a collective exercise. Due to their seminomadic

attribute, they build their sleeping mound close to an abundant food source and search for the

next abundant food source. As shown in Eq (1), the DMO begins its update by initializing the

mongoose’s candidate population. The population is stochastically generated between a partic-

ular problem’s lower bound (LB) and upper bound (UB).

X ¼

x1;1 x1;2 � � � x1;d� 1 x1;d

x2;1 x2;2 � � � x2;d� 1 x2;d

..

. ..
.

xi;j
..
. ..

.

xn;1 xn;2 � � � xn;d� 1 xn;d

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

1

where X is the set of the present population of candidates that are randomly generated using

Eq (2), xi,j indicates the position of the jth dimension of the ith population, n indicates the size

of the population, and d refers to the problem dimension.

xi;j ¼ unifrndðVarMin; VarMax; VarSizeÞ 2

where unifrnd is a random number that is uniformly distributed, VarMin and VarMax are

lower bound and upper bound, respectively, VarSize is the problem dimension of the problem.

So far, the best solution at every iteration is the best solution obtained.
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Like the other metaheuristic algorithms, the DMO has two phases: exploitation (individual

mongoose carry out a thorough search in a particular region) and exploration (a random

search for a new abundant food source or new sleeping mound). The activities in the two

phases are carried out by the three main social structures of the DMO: the alpha group, the

scout group, and babysitters. The optimization step of the DMO algorithm is illustrated in

Fig 1.

The alpha female (α) controls the rest of the family unit and is selected based on Eq 3.

a ¼
fitiPn
i¼1
fiti

3

n−bs corresponds to the number of mongooses in the alpha group. Babysitters’ number is rep-

resented by bs while peep indicates the female alpha’s sound to ensure that the family is kept

on the right path.

The abundant food source determines the sleeping mound position, and it is expressed in

Eq 4 below.

Xiþ1 ¼ Xi þ phi � peep 4

where phi is a random uniformly distributed number [–1,1]. After every iteration, the sleeping

mound is evaluated; Eq 5 represents the sleeping mound.

smi ¼
fitiþ1 � fiti

maxfjfitiþ1; fitijg
5

Fig 1. The optimization procedures of DMO [15].

https://doi.org/10.1371/journal.pone.0274850.g001
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An average value is given in Eq 6 when a sleeping mound is found.

φ ¼
Pn

i¼1
smi

n
6

As soon as the babysitter exchange criterium is attained, there is a movement to the scout-

ing phase to evaluate the next sleeping mound, determined by the available food source.

The scout group searches for the next sleeping mound to ensure exploration since mon-

goose is known not to return to a previous sleeping mound. Foraging and scouting are done

concurrently in DMOA with the rationale that the farther the family forage, the likelihood of

locating the next sleeping mound simulated in Eq 7.

Xiþ1 ¼
Xi � CF � phi � rand � ½Xi � M

!
� if φiþ1

> φi

Xi þ CF � phi � rand � ½Xi � M
!
� else

7

8
<

:

where rand is a random number between [0,1], CF ¼ 1 � iter
Maxiter

� � 2 iter
Maxiter

� �

indicates the

parameter that directs the collective-volatile movement of the mongoose’s group, which line-

arly reduces during iterations. M!¼
Pn

i¼1

Xi�smi
Xi

denotes the vector which motivates the mon-

goose’s movement to another sleeping mound.

The babysitter’s group remains with the juveniles when the scouting and foraging group

searches for a sleeping mound and food source. The number of members of this group is

deducted from the total number of candidate population since they do not go foraging or

scouting. However, when a certain parameter is met, as given in Eq 7, the babysitters exchange

with the foraging or scouting group to search for food. Algorithm listing 1 presents the pseu-

docode for the standard DMO optimization algorithm,
Algorithm 1 Pseudocode of the DMO
begin
Initialize the algorithm parameters:
[peep]
Initialize the mongoose populations (search agents): n
Initialize the number of babysitters: bs
Set n = n-bs
Set babysitter exchange parameter L
For iter = 1: max_iter

Calculate the fitness of the mongoose
Set time counter C
Find the alpha based on Eq 3
a ¼

fitiPn

i¼1
fiti

produce a candidate food position using Eq 4
Xiþ1 ¼ Xi þ phi � peep
Evaluate new fitness of Xi+1
Evaluate sleeping mound using Eq 5
smi ¼

fitiþ1 � fiti
maxfjfitiþ1 ;fiti jg

Compute the average value of the sleeping mound found using Eq 6.

φ ¼
Pn

i¼1
smi

n

Compute the movement vector using

M!¼
Pn

i¼1

Xi�smi
Xi

Exchange babysitters if C�L, and set
fiti ¼ 0

Simulate the scout mongoose next position using Eq 7.
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Xiþ1 ¼
Xi � CF � rand � ½Xi � M

!
� if φiþ1

> φi Exploration

Xi þ CF � rand � ½Xi � M
!
� else Exploitation

8
<

:

Update best solution so far
End For
Return best solution
End

5. The proposed approach

The DMO algorithm was utilized in solving engineering optimization problems. It outper-

formed other popular metaheuristic algorithms like Arithmetic Optimization Algorithm

(AOA), PSO, Salp Swarm Algorithm (SSA), and Ant Colony Optimization (ACO) in solving

some engineering problems. The efficacy of DMO in solving these global optimization issues

motivated its binary version for solving feature selection challenges in this paper. In BDMO,

the position of a dwarf mongoose can be seen as a feature subset. Every feature subset can have

N features, where N happens to be the number of features in the original feature set. The fewer

the number of selected feature subsets and the higher the accuracy of classification, the better

the solution [66]. The proposed fitness function was used to evaluate each solution that relies

on two main objectives: the number of feature subsets selected and the accuracy of the solution

as produced by the classifier, KNN.

The algorithm commences with a population, the set of solutions generated randomly. The

fitness function proposed is then used to assess each solution. The population’s fittest solution

is represented as BestSol (Mongoose). DMO’s main loop is iterated a couple of times. In every

iteration, the positions of the solutions are updated according to the foraging behaviors of the

alpha group.

5.1. Binary dwarf mongoose optimization

In the dwarf mongoose optimization (DMO), the position vectors of the dwarf mongoose pop-

ulation are continuous values. In some peculiar issues, such as feature selection, solutions are

restricted to binary values {0,1}. The approach was proposed to enhance the efficiency of the

baseline DMO for high-dimensional feature selection issues. To tackle the feature selection

problem, we represent the solution in binary form, 0 and 1. Usually, 1 represents the feature

subset selected, while 0 denotes the unselected feature subsets. If, for instance, given solution X
= {1,0,0,1,1,1,0,1,0,0}, this indicates selecting features in the first, fourth, fifth, sixth, and eighth

position without selecting the others in the second, third, seventh, ninth, and tenth positions.

5.2. BDMO for feature selection

This section applies BDMO to high-dimensional datasets feature selection scenarios and classi-

fication issues. Feature selection is a necessary data preprocessing procedure to illustrate the

best relevant, applicable, and essential feature space(s). This approach entails choosing a subset

with the utmost discrete and appropriate feature(s) out of a huge class of features for record

representation in a dataset for predictive modeling [67]. Practically, a traditional search that

caters to all the feature spaces is unrealistic in application to high-dimensional datasets.

Assuming there are 1000 features in total in a dataset, the probable number of solutions would

be 21000 = 1.071509e+301. Finding this number of subsets is daunting; therefore, the BDMO is

used to solve this complex issue.

5.2.1. Representation of the solution. For every solution, the dimension’s number D is

the same as the features’ number, and therefore, each dimension in the dataset indicates the
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index of the corresponding feature. For example, if a solution has 2000 dimensions, 2000 fea-

tures are contained in the solution.

In every solution, the limit of the dimension is in the range of [0, 1]. The static threshold of 0.5

is utilized to ascertain if a feature is to be selected or not, as shown in Eq 8 below. For a feature to

be selected, the position index must be 0.5 and above, which rounds the value to 1, and any feature

with the position index of less than 0.5 is rounded down to 0 and will not be selected.

BestSold ¼
BestSoldi > 0:5 feature is selected

BestSoldi � 0:5 unselectedfeature
8

(

where BestSoldi is the best solution i in dimension d. Thereby, a mongoose’s position shows that a

feature set is selected as the value of position increases for the dimensions [42].

5.3. Fitness function

To simplify this study, we employ the classification error rate (CEE) as the fitness function in

assessing the performance of selected features using the solution. The calculation of fitness

function (Fit) is given below:

# Fit ¼ CEE ¼
Number of wrongly classified
Total number of instances

9

The CEE denotes the classification error rate in the kNN (kNN, k = 5) algorithm (Emary &

Zawbaa, 2019; Xue et al., 2014) [42, 68]. In kNN, the Euclidean distance (ED) used to measure

k neighbor’s distance is defined by [69] as:

EDðY;XÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiXD

d¼1

q

ðXd � YdÞ
2

10

where X and Y indicate the specific features in an instance and D signifies the total number of

features used. The best reduct of the wrapper-based technique was generated using the kNN

classifier where K = 5 [70]. In cross-validation for assessment, every dataset in this proposed

method is divided into training and testing samples of 80% and 20%, respectively. The training

samples were utilized for feature selection evaluation, while the remaining hidden samples

were employed to test [71]. This paper utilized straight cross-validation with K = 10 to resolve

the over-fitting challenges. This validation method partitioned the training samples into ten-

fold equal size first. After this, the 9 (k−1) were used as training set for the classifier, and the

last one-fold utilised for validation information. The process of evaluation was repeated ten

times which replaces the training and validation folds. The different results of the average data

rounds are recorded. The updating equation of the alpha group is a function of the movement

vectorM! that is calculated in Eq 8. The pseudocode for the proposed BDMO is shown in algo-

rithm listing 2.
Algorithm 2 Pseudocode of the BDMO
Input: Searchagent_no, Max_iter, fs
begin
Initialize the algorithm parameters:
[peep]
Initialize BDMO population from feature set fs
Let AlphaGroup = fs[:Searchagent_no]
bs = fs[Searchagent_no:]
nAlphaGroup = size(AlphaGroup)
no_bs = size(bs)
Set babysitter exchange parameter L
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Evaluate the fitness of each fs, AlphaGroup
Define the best solution, BestSol from fs
while maximum iteration (Max_iter) is not reached

Select a set of dimension rates using tournament selection
Calculate the fitness of the mongoose
# Fit ¼ CEE ¼ Number of wrongly classified

Total number of instances

Set time counter C
produce a candidate food position using Eq 4
Bestfsiþ1 ¼ Bestfsi þ phi � peep
fiti = Evaluate new fitness of Bestfsi+1 using Eq 8

Bestfsd ¼
Bestfsiþ1 > 0:5 feature is selected

Bestfsiþ1 � 0:5 unselectedfeature

(

Evaluate sleeping mound using Eq 5
smi ¼

fitiþ1 � fiti
maxfjfitiþ1 ;fiti jg

Compute the average value of the sleeping mound found using Eq 6.

φ ¼
Pn

i¼1
smi

n

Compute the movement vector using

M!¼
Pn

i¼1

fsi�smi
fsi

Exchange babysitters if C�L, and set
fiti ¼ 0

Simulate the scout mongoose next position using Eq 7.

Bestfsiþ1 ¼
Bestfsi � CF � rand � ½Bestfsi � M

!
� if φiþ1

> φi Exploration

Bestfsi þ CF � rand � ½Bestfsi � M
!
� else Exploitation

8
<

:

Update best solution Bestfs
Store Bestfsd

end for
end while
Output Global best solution, Bestfs, all Bestfsd

The steps of optimization of the proposed BDMO algorithm to solve the FS problem are

shown in Fig 2. This figure begins its step with parameter definition followed by generating its

initial population representing the feature selection problem’s set of solutions. After that, each

candidate solution’s fitness function depends on evaluating and selecting the best features.

Then, the identification and retention of the current best solution are made. Next, the BDMO

algorithm updates the current population using either Eq 7 or 8, which also depends on the fit-

ness function’s quality. The process is designed so that if the fitness function’s probability of the

current solution is higher than 0.5, Eq 7 is chosen for the update. Contrarywise this, and the cur-

rent solution is updated by Eq 8. Notably, the probability stated is the position index’s computa-

tion factor (Position index) > = 0.5. Subsequently, each solution’s fitness function is the

computation of Eq 9, and after the population is updated, the best solution is established. The

BDMO then checks that the stopping criteria are met. If so, the algorithm returns the overall

best solution candidate. Conversely, the algorithm then repeatedly performs the previous steps

by checking whether the Position index is> = 0.5 until it reaches the final stop condition.

6. Experimental results and discussion

This section presents the experimental setup and discusses the results and discussions.

6.1. Dataset (High-dimensional)

Eighteen high-dimensional datasets were obtained from the Arizona State University feature

selection repository to evaluate this proposed method’s performance. The details of the
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employed datasets, including their feature number, classes, instances, and categories, are pre-

sented in Table 1. Each dataset comprises many features of not less than one thousand (1000)

and is multiclass, ranging from 2 to 20 classes. High-dimensional datasets often represent real-

world situations and are also more challenging. Not most metaheuristic algorithms perform

satisfactorily with high-dimensional and multiclass data.

6.2. Experimental setup

The proposed binary DMO algorithm was implemented using MATLAB. To assess the efficacy

of the proposed technique, ten well-known approaches: Spatial bound whale optimization

Fig 2. Flowchart depicting the structure of the BDMO algorithm.

https://doi.org/10.1371/journal.pone.0274850.g002
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algorithm (SBWOA), Simplified spatial bound whale optimization algorithms (S-SBWOA)

[44], Binary Particle Swarm Optimization (BPSO), Jaya algorithm (JA), crow search algorithm

(CSA), cooperative swarm optimizer (CSA), moth flame optimization (MFO), hamming dis-

tance-based binary particle swarm optimization (HDBPSO), salp swarm algorithm (SSA), and

generalized normal distribution optimization (GNDO) were compared with the BDMO.

The experiment of this study ran twenty (20) times and evaluated each method two hun-

dred times for every dataset. The choice of 20 independent runs of the respective algorithms is

premised on the belief that it will give enough room to measure the stability of the algorithms.

After rigorous parametric analysis, the parameters for the proposed method are set as follows

in all experiments: the population size is ten (10) and one hundred (100) iterations. The pro-

posed method performed better with a small population size and the number of iterations,

hence our choice of the set parameters. The selected optimizers’ population size and the num-

ber of iterations are also the same for fair comparison [30, 66]. All algorithms implement the

same fitness function. The computer specification for this implementation is Core i7, 3.60GHz

CPU with 16GB RAM. Other parameter settings presented in Table 2 are as reported by their

respective authors.

6.3. Results and analysis

This sub-section presents the results produced by this proposed approach. The criteria below

were used to assess the proposed method:

• The standard deviation and mean of the fitness values obtained from various methods are

presented.

• The proposed and competitive techniques’ validation and testing accuracies are also

presented.

• The average number of features selected from each dataset across the 20 runs is presented.

Table 1. Dataset and their properties.

Number Datasets # features # instances # Classes Categories

1 ALLAML 7129 72 2 Biological

2 CLL-SUB-111 11,340 111 3 Biological

3 COIL20 1024 1440 20 Face image

4 Colon 2000 62 2 Biological

5 GLA-BRA-180 49,151 180 4 Biological

6 GLI-85 22,283 85 2 Biological

7 GLIOMA 4434 50 4 Biological

8 Leukemia 7070 72 2 Biological

9 Lung 3312 203 5 Biological

10 Lymphoma 4026 96 9 Biological

11 Nci9 9712 60 9 Biological

12 Orlraw10P 10,306 100 10 Face image

13 Prostate_GE 5966 102 2 Biological

14 SMK-CAN-187 19,993 187 2 Biological

15 TOX-171 1748 171 4 Biological

16 warpAR10P 2400 130 10 Face image

17 warpPIE10P 2420 210 10 Face image

18 Yale 1024 165 15 Face image

https://doi.org/10.1371/journal.pone.0274850.t001
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• The convergence curve of the proposed method is presented.

• The average time of computation of all runs is shown.

• The Wilcoxon sign-rank test of BDMO and other techniques are stated.

6.3.1. Comparison of the proposed method with other state-of-the-art methods. In this

sub-section, the goal is to compare the performance of the proposed method with other well-

known methods such as the Spatial bound whale optimization algorithm, SBWOA &

S-SBWOA [44], BPSO [72], JA [22], CSO [73], CSA [74], MFO [75], HDBPSO [39], SSA [76],

and GNDO [77].

Tables 3 and 4 report the fitness values’ mean and standard deviation for BDMO and other

algorithms used for the comparison. A critical look at the results presented in Table 3 shows

that the BDMO is efficacious at finding the exact minima. These best fitness values are bolded

in the tables. Compared with the rival methods, the BDMO produced the optimal mean fitness

for most datasets (14 datasets of 18). The performance of the BDMO can be attributed to the

effective search mechanism adapted from DMO and the low-cost and effective method used to

convert the continuous search space of DMO to binary search space [78]. The BPSO was next

competitive as it produced optimal mean fitness values in 6 datasets, SBWOA in 3, and

S-SBWOA in 1 dataset. Friedman’s test was used to rank the significance of the algorithms

based on their performance in minimizing fitness, as is shown in Table 3. The BDMO ranked

first, closely followed by SBWOA.

The bolded values in Table 3 depict the best mean fitness values obtained in the experiment.

For instance, in datasets 1 to 6 and 11 to 18, the BDMO produced the least mean fitness values,

showing its efficacy over other methods in the experiment. The next competitive method is the

BPSO with the same values as the BDMO on 4 occasions, beating the BDMO in 1 instance.

The SBWOA produced a better fitness value mean on 2 datasets and S-SBWOA on 1 dataset.

The bolded values in Table 4 show the best standard deviation values obtained in the experi-

ment. For example, in datasets 1 to 4, 6 & 7, and 11 to 17, the BDMO produced the least stan-

dard deviation, showing its efficacy over other methods in the experiment. The next

competitive method is the BPSO which ties with the BDMO on 6 occasions and beats the

BDMO on 2 datasets. The SBWOA and S-SBWOA could produce better standard deviation

on 1 dataset each.

BDMO shows a high consistency and strength compared to other methods by generating

the smallest standard deviation value in 14 cases out of 18, which portrays remarkable

Table 2. Experiment’s parameter setting.

Parameter Value

K-fold cross-validation number 10

Agent number 10

Number of runs 20

Maximum iterations 100

Dimension of problems Features’ number in the dataset

Length of CSA flight 1.5

CSO’s social factor 0.2

CSA’s awareness probability 1.5

MFO’s Parameter b 1

HDBPSO’s acceleration factors 2

Parameters c1, c2 in BPSO 2,2

https://doi.org/10.1371/journal.pone.0274850.t002
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performance in resolving high-dimensional feature selection issues. For example, on

ALLAML, GLI-85, Orlraws10P, Prostate_GE, and warPIE10P datasets, the proposed BDMO

produced 0, which is the smallest value obtainable as against BPSO, which is its closest rival

with the same value on ALLAML, GLI-85, and Orlraws10P. Finally, the BDMO is the best

Table 3. Mean fitness values.

No Datasets BDMO SBWOA S-SBWOS JA MFO BPSO CSA CSO GNDO SSA HDBPSO

1 ALLAML 0.0714 0.0827 0.0970 0.1387 0.1317 0.0714 0.1453 0.1443 0.1385 0.1532 0.1673

2 CLL-SUB-111 0.1818 0.2609 0.2719 0.3240 0.3138 0.1818 0.3476 0.3408 0.3320 0.3612 0.3926

3 COIL20 0.0003 0.0045 NA NA NA 0.0010 NA NA NA NA NA

4 Colon 0.0833 0.0980 0.1003 0.1538 0.1395 NA 0.1665 0.1585 0.1548 0.1693 0.1988

5 GLA-BRA-180 0.1931 0.1917 NA NA NA 0.1944 NA NA NA NA NA

6 GLI-85 0.0588 0.0717 0.0775 0.0967 0.0967 0.0588 0.1092 0.1092 0.1050 0.1183 0.1442

7 GLIOMA 0.20 0.1275 0.1358 0.1688 0.1658 0.20 0.1721 0.1767 0.1688 0.1817 0.1979

8 Leukemia 0.0321 0.0337 0.0397 0.0725 0.0693 0.0107 0.0840 0.0812 0.0772 0.0858 0.1003

9 Lung 0.0388 0.0207 0.0217 0.0280 0.0260 0.045 0.0295 0.0287 0.0301 0.0320 0.0394

10 Lymphoma 0.1184 0.0651 0.0624 0.0798 0.0755 0.1263 0.0799 0.0829 0.0799 0.0820 0.0910

11 Nci9 0.1667 0.4695 0.4793 0.5487 0.5348 0.1667 0.5570 0.5590 0.5482 0.5690 0.5973

12 Orlraw10P 0.050 0.060 0.0621 0.1036 0.1021 0.050 0.1043 0.1057 0.1036 0.1057 0.1136

13 Prostate_GE 0.05 0.0945 0.1053 0.1278 0.1242 0.145 0.1363 0.1363 0.1339 0.1425 0.1602

14 SMK-CAN-187 0.0554 0.2372 0.2468 0.2713 0.2629 0.0622 0.2828 0.2740 0.2770 0.2870 0.3033

15 TOX-171 0.1177 0.2221 0.2317 0.2346 0.2275 0.1368 0.2704 0.2454 0.2454 0.2717 0.3142

16 warpPIE10P 0.0476 0.1129 0.1167 0.1371 0.1354 0.1179 0.1476 0.1423 0.1385 0.1521 0.1665

17 warpAR10P 0.2442 0.3878 0.4121 0.4837 0.4774 0.2789 0.5055 0.4965 0.4946 0.5092 0.5426

18 Yale 0.2681 0.3499 0.3632 0.3823 0.3641 0.2833 0.3960 0.3767 0.3869 0.3998 0.4297

Friedman’s test mean rank 2.53 3 3.47 5.77 4.5 4.2 8.1 7.67 6.67 9.43 10.67

Rank 1 2 3 6 5 4 9 8 7 10 11

https://doi.org/10.1371/journal.pone.0274850.t003

Table 4. Standard deviation of fitness values.

No Datasets BDMO SBWOA S-SBWOS JA MFO BPSO CSA CSO GNDO SSA HDBPSO

1 ALLAML 0 0.0380 0.0290 0.0364 0.0343 0 0.0361 0.0346 0.0393 0.0346 0.0326

2 CLL-SUB-111 5.6953e-17 0.0336 0.0346 0.0367 0.0342 5.6953e-17 0.0335 0.0343 0.0399 0.0382 0.0344

3 COIL20 0.0016 0.0032 NA NA NA 0.0016 NA NA NA NA NA

4 Colon 4.2715e-17 0.0369 0.0324 0.0425 0.0434 NA 0.0466 0.0515 0.0442 0.0474 0.0544

5 GLA-BRA-180 0.0062 0.0188 NA NA NA 8.543e-17 NA NA NA NA NA

6 GLI-85 0 0.0484 0.0277 0.0361 0.0361 0 0.0380 0.0447 0.0416 0.0452 0.0469

7 GLIOMA 8.543e-17 0.0311 0.0600 0.0628 0.0577 8.543e-17 0.0578 0.0607 0.0621 0.0669 0.0788

8 Leukemia 0.0365 0.0231 0.0287 0.0371 0.0361 0.0262 0.0339 0.0403 0.0379 0.0349 0.0385

9 Lung 0.0128 0.0101 0.0088 0.0091 0.0083 0.0103 0.0084 0.0093 0.0098

10 Lymphoma 0.0234 0.0153 0.0151 0.0220 0.0231 0.0265 0.0232 0.0248 0.0213 0.0236 0.0251

11 Nci9 5.6953e-17 0.0520 0.0606 0.0670 0.0586 5.6953e-17 0.0599 0.0624 0.0623 0.0599 0.0578

12 Orlraw10P 0 0.0183 0.0193 0.0207 0.0224 0 0.0218 0.0238 0.0240 0.0224 0.0243

13 Prostate_GE 0 0.0197 0.0346 0.0254 0.0260 0.0154 0.0271 0.0261 0.0259 0.0220 0.0256

14 SMK-CAN-187 0.0060 0.0265 0.0327 0.0423 0.0384 0.0127 0.0404 0.0434 0.0425 0.0405 0.0410

15 TOX-171 0.0234 0.0385 0.0360 0.0389 0.0330 0.0239 0.0358 0.0270 0.0271 0.0347 0.0299

16 warpAR10P 0.0188 0.0474 0.0331 0.0583 0.0617 0.0246 0.0613 0.0607 0.0647 0.0312 0.0311

17 warpPIE10P 0 0.0243 0.0243 0.0284 0.0267 0.0053 0.0298 0.0375 0.0268 0.0617 0.0637

18 Yale 0.0178 0.0331 0.0291 0.0445 0.0413 0.0148 0.0385 0.0375 0.0347 0.0355 0.0438

https://doi.org/10.1371/journal.pone.0274850.t004
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performing high-dimensional feature selection algorithm to locate the global optimum, lead-

ing to suitable performance.

In Fig 3, the results of validation accuracy are illustrated. The BDMO outperforms other

methods in producing exceptional values of validation accuracy in 15 of 18 datasets. Moreover,

the BPSO is next, producing exceptional values in 7 datasets, S-SBWOA and SBWOA were the

best in 2 datasets. Finally, MFO recorded a tie with three other methods on the Lung dataset.

In 2 datasets (COIL20 and Leukemia), the proposed BDMO generated the highest achievable

validation accuracy of 100%, while the BPSO produced the same accuracy rate in the Leukemia

dataset. Based on test results, the proposed BDMO performed competitively, which implies

that our proposed method could explore the untried feature space to locate the optimum fea-

ture sets, enabling it to generate the highest accuracies on most occasions.

Fig 4 displays the average feature subsets selected. The results show that the S-SBWOA and

SBWOA selected significantly lower features than the BDMO and other methods. Since the

BDMO produced the highest prediction accuracy in 83% of the case, we can therefore infer

that there may be information loss with these methods. For instance, on the GLA-BRA-180

dataset, SBWOA selected approximately 1,100 features subsets from over 49,000 features,

whereas BDMO selected 24,788 features. On GLI-85 with over 22,000 features, S-SBWOA and

SBWOA selected approximately 2,200 and 3,400, respectively, and the BDMO selected 11,220,

which supports our assumption of information loss. In another case, the BPSO, the main com-

petitor, produced less feature size than our proposed method. However, the BDMO selected

fewer features in many cases than the other seven methods. For this reason, we intend to

improve the ability of the proposed BDMO to reduce its computational cost in future research.

6.3.2. Convergence analysis. The analysis of the convergence behavior of the BDMO,

BPSO, and SBWOA, which are the best performing methods in this study, was reported in this

subsection. This analysis focuses on how the three methods behave when employed to solve

the high-dimensional optimization problem of feature selection. Fig 5 depicts the outcome of

Fig 3. Comparison between the proposed BDMO and the state-of-the-art methods based on accuracy validation on all selected high-dimensional feature

selection datasets.

https://doi.org/10.1371/journal.pone.0274850.g003
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convergence curves for the three most prominent approaches in this study. The figure indi-

cates that DBMO converged faster and deeper. This is because it found the optimum solution

early in the iteration process. Also, the robustness and stability of BDMO ensure that it stays

near or at the optimal solution as the optimization progresses. The figure also shows that the

BDMO improves the solution throughout the iteration process. Among these three

approaches, the SBWOA’s convergence rate was not as good as the proposed method and

BPSO.

6.3.3. Computational time. Another area of consideration in feature selection is compu-

tation speed, particularly in higher dimensional situations. The average computation cost for

the proposed approach with other competitive methods is shown in Table 5. It can be vividly

noticed that the SBWOA and S-SBWOA have a higher computation speed than the BDMO.

The BDMO competed with other methods in finding optimal feature sets in considerably less

time, although not as fast as the SBWOA and S-SBWOA, which has the mechanism to com-

press the population size and can reduce the solution number in later iterations. The added

computational cost of the BDMO arises from the DMO’s process of alpha selection and the

number of objective function evaluations. This is a limitation to be improved on in the future.

Even though the proposed approach performed excellently to get higher validation accuracy,

least average, and standard deviation of the fitness values, it consumes more computational

time than the two methods in this paper in a high-dimensional scenario.

6.3.4. Validation accuracy and F-measure. Fig 4 shows the validation accuracy of our

proposed method and other methods in the study. In 15 out of 18 cases, the BDMO produced

the highest validation accuracies over other methods. Our proposed approach also generated

the highest accuracy values of 100% on two (Colon and Leukemia) datasets. The BPSO is usu-

ally the biggest rival with 7 best validation values and produced 100% accuracy on the 1 (Leu-

kemia) dataset. S-SBWOA is next in validation accuracy results on 2 datasets, SBWOA and

MFO on 1 dataset. The bolded values in Table 6 show the best precision values obtained in the

Fig 4. Average feature selected by BDMO and other approaches.

https://doi.org/10.1371/journal.pone.0274850.g004
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experiment. For example, the BPSO produced the highest precision values in 15 out of 18 data-

sets. This is followed by the BDMO, which yielded the highest precision values, 12 out of 18,

and CSA on 1 dataset. To further test the results of experiments in this study, the F-measure

test was conducted with the values in Table 7 above. The BPSO also outperformed in this test

by producing 15 highest results out of 18 datasets employed in this study. The BDMO followed

closely by yielding 12 highest F-measure values out of 18 datasets and the S-SWOA on one

occasion. These consistent results show the potency of our proposed approach in solving the

problem of feature selection in high-dimensional cases.

6.4. Wilcoxon rank test

The experimental results obtained are tested statistically using Wilcoxon’s test and presented

in Table 8. From the results, the BDMO significantly outperforms the SBWOA, S-SBWOA,

JA, MFO, BPSO, CSA, CSO, GNDO, SSA, and HDPSO on most of the datasets judging by the

positive ranks returned by the BDMO. Also, the BPSO was competitive, judging by the num-

ber of ties returned between its comparison. At a significance level set at α = 0.05, Wilcoxon’s

test showed a significant difference in all cases, which implies that the BDMO significantly out-

performed all the algorithms.

Categorically, the BDMO outperformed or was competitive in 90% of all cases. The results

also confirmed the searchability, stability, and efficiency of the BDMO in solving the feature

selection optimization problems used in this study. The performance of BDMO was not hin-

dered by the characteristics associated with the feature selection problems, which is choosing

the optimal number subset of features that will guarantee high performance. This performance

can be attributed to the balanced exploitation and exploration introduced by each optimiza-

tion phase of the DMO.

Fig 5. Illustration of the convergence curves for the three most prominent approaches employed in this study,

namely BDMO, BPSO, and SBWOA to solve all the selected high-dimensional feature selection datasets.

https://doi.org/10.1371/journal.pone.0274850.g005

Table 5. Average time of computation of BDMO and other approaches (in seconds).

No Datasets BDMO SBWOA S-SBWOS JA MFO BPSO CSA CSO GNDO SSA HDBPSO

1 ALLAML 11.2 3.1 2.2 14.4 14.5 13.9 13.4 8.8 28.0 13.2 24.6

2 CLL-SUB-111 18.8 5.8 4.2 32.0 31.7 22.1 29.1 18.9 56.3 28.8 54.5

3 COIL20 74.7 23.7 NA NA NA 52.8 NA NA NA NA NA

4 Colon 6.1 1.4 0.9 2.4 2.5 5.8 2.4 1.8 4.7 2.3 3.9

5 GLA-BRA-180 108.8 76.4 NA NA NA 119.3 NA NA NA NA NA

6 GLI-85 25.5 14.8 8.7 48.2 47.6 35.9 46.6 31.4 92.8 45.0 88.2

7 GLIOMA 6.8 2.1 1.4 3.6 3.8 8.2 3.4 3.0 7.0 3.3 10.5

8 Leukemia 10.5 3.2 2.2 13.9 14.5 12.8 13.8 8.7 27.3 13.4 24.8

9 Lung 14.1 4.5 3.1 18.5 18.6 12.6 18.0 10.2 32.1 16.4 30.0

10 Lymphoma 9.8 2.7 1.8 5.5 9.4 10.3 5.4 3.8 11.0 5.0 19.0

11 Nci9 10.8 3.6 2.5 15.6 16.4 15.1 15.0 10.9 29.3 14.9 27.9

12 Orlraw10P 15.9 5.3 3.5 27.0 27.2 19.1 24.6 15.7 50.1 23.6 48.4

13 Prostate_GE 12.1 3.4 2.5 16.8 17.0 13.6 15.7 10.2 32.0 15.3 27.2

14 SMK-CAN-187 53.5 22.6 14.3 94.9 95.2 53.3 89.7 53.1 183.1 88.4 174.6

15 TOX-171 17.6 6.2 4.6 26.7 25.3 17.1 24.5 13.5 48.7 24.2 41.7

16 warpAR10P 8.1 2.1 1.5 4.5 4.6 0.7 4.5 2.9 7.8 4.0 14.7

17 warpPIE10P 12.2 3.5 2.3 14.1 14.0 10.5 13.9 7.2 26.4 13.3 22.9

18 Yale 6.9 2.1 1.4 3.2 3.2 5.8 3.1 1.9 6.2 3.0 4.4

https://doi.org/10.1371/journal.pone.0274850.t005
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6.5. Discussion

It can be stated clearly from the results gotten that the proposed BDMO outperforms other

methods in terms of accuracy and its ability to find the best subset of features, which shows its

superiority over some well-known methods like S-SBWOA, SBWOA, JA, BPSO, MFO, SSA,

Table 6. Precision of BDMO and other approaches.

No Datasets BDMO SBWOA S-SBWOS JA MFO BPSO CSA CSO GNDO SSA HDBPSO

1 ALLAML 1 0.8442 0.8328 0.8142 0.8211 1 0.8121 0.8099 0.8082 0.8126 0.8115

2 CLL-SUB-111 1 0.6955 0.6802 0.6652 0.6483 0.7 0.6410 0.6440 0.6625 0.6546 0.6552

3 COIL20 0.9890 NA NA NA 0.9890 NA NA NA NA NA

4 Colon 0.875 0.8162 0.8202 0.8072 0.7953 1 0.7930 0.8050 0.7987 0.8132 0.8062

5 GLA-BRA-180 0.8214 0.6667 NA NA NA 0.8276 NA NA NA NA NA

6 GLI-85 0.9091 0.7026 0.6896 0.6812 0.7031 0.9091 0.6699 0.6924 0.7063 0.7175 0.6975

7 GLIOMA 0.625 0.7644 0.7562 0.7702 0.7681 0.625 0.7725 0.7652 0.7663 0.7479 0.7681

8 Leukemia 0.9 0.8873 0.8993 0.8851 0.8917 0.9 0.8856 0.8916 0.8892 0.8977 0.8882

9 Lung 1 0.9426 0.9358 0.9486 0.9508 1 0.9491 0.9207 0.8832 0.9489 0.9333

10 Lymphoma 0.875 0.9366 0.9319 0.9429 0.9371 0.875 0.9383 0.6278 0.6395 0.9333 0.6344

11 Nci9 0.9 0.6721 0.6404 0.6518 0.6405 0.8 0.6463 0.2964 0.2876 0.6658 0.2805

12 Orlraw10P 0.9444 0.9362 0.9411 0.9412 0.9403 0.9444 0.9420 0.9255 0.9275 0.9390 0.9255

13 Prostate_GE 0.9091 0.8772 0.8641 0.8661 0.8742 0.9091 0.8727 0.8674 0.8618 0.8729 0.8691

14 SMK-CAN-187 0.7391 0.6572 0.6751 0.6466 0.6532 0.7391 0.6533 0.6585 0.6571 0.6608 0.6489

15 TOX-171 0.9091 0.7035 0.6731 0.6900 0.6705 1 0.6570 0.6750 0.6697 0.6672 0.6640

16 warpAR10P 0.6364 0.5986 0.5789 0.5900 0.5998 0.8235 0.5916 0.5233 0.5039 0.5905 0.5091

17 warpPIE10P 0.8919 0.8807 0.8902 0.8675 0.8638 0.8919 0.8813 0.8642 0.8719 0.8725 0.8681

18 Yale 0.8214 0.7020 0.6779 0.7060 0.7017 0.8462 0.7015 0.6251 0. .6217 0.6976 0.6447

https://doi.org/10.1371/journal.pone.0274850.t006

Table 7. F-measure of BDMO and other approaches.

No Datasets BDMO SBWOA S-SBWOS JA MFO BPSO CSA CSO GNDO SSA HDBPSO

1 ALLAML 0.75 0.8915 0.8972 0.8799 0.8885 0.75 0.8822 0.8780 0.8784 0.8819 0.8818

2 CLL-SUB-111 0.8235 0.6505 0.6430 0.6041 0.5852 0.8235 0.5823 0.5814 0.5992 0.5923 0.5943

3 COIL20 0.9945 NA NA NA 0.9945 NA NA NA NA NA

4 Colon 0.875 0.8322 0.8334 0.8225 0.8091 0.9333 0.8159 0.8129 0.8111 0.8274 0.8231

5 GLA-BRA-180 0.8364 0.7692 NA NA NA 0.8421 NA NA NA NA NA

6 GLI-85 0.9091 0.7316 0.7047 0.7203 0.7454 0.9091 0.7194 0.7259 0.7493 0.7714 0.7326

7 GLIOMA 0.7692 0.7225 0.7128 0.7240 0.7312 0.7692 0.7283 0.7312 0.7269 0.7182 0.7348

8 Leukemia 0.9474 0.9129 0.9314 0.9163 0.9269 0.9474 0.9220 0.9231 0.9235 0.9264 0.9198

9 Lung 0.9167 0.8447 0.8599 0.9009 0.8741 0.96 0.8826 0.8917 0.8635 0.8807 0.9066

10 Lymphoma 0.8235 0.6157 0.6308 0.6576 0.6373 0.8235 0.6540 0.6436 0.6555 0.6242 0.6488

11 Nci9 0.9 0.3334 0.2645 0.3049 0.2993 0.8421 0.2980 0.3037 0.2998 0.2933 0.2899

12 Orlraw10P 0.9714 0.8939 0.8998 0.8997 0.8974 0.9714 0.8970 0.8903 0.8935 0.8939 0.8903

13 Prostate_GE 0.9524 0.8665 0.8319 0.8331 0.8437 0.9524 0.8489 0.8356 0.8312 0.8422 0.8406

14 SMK-CAN-187 0.8095 0.6179 0.6159 0.6013 0.6073 0.8095 0.6070 0.6141 0.6049 0.6052 0.6084

15 TOX-171 0.8511 0.6711 0.6428 0.6556 0.6389 0.8889 0.6265 0.6393 0.6354 0.6386 0.6302

16 warpAR10P 0.7180 0.4690 0.4578 0.4343 0.4198 0.9714 0.4273 0.4317 0.4290 0.4232 0.4260

17 warpPIE10P 0.9429 0.8585 0.8705 0.8442 0.8435 0.9429 0.8597 0.8407 0.8506 0.8484 0.8442

18 Yale 0.8519 0.5428 0.5289 0.5449 0.5447 0.8302 0.5369 0.5236 0.5267 0.5362 0.5356

https://doi.org/10.1371/journal.pone.0274850.t007
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CSO, CSA, GNDO, and HDBPSO. Although the BDMO selected a good number of features, it

did not perform excellently in terms of computational time compared to SBWOA and

S-SBWOA. This method also showed its strength in producing the smallest mean, standard

deviations of the fitness values, and confirmed by the precision & F-measure values obtained

with the p-value of the Wilcoxon test conducted, shown in Tables 4 to 7.

Table 8. Results of Wilcoxon sign test on validation accuracy.

Algorithms N Mean Rank Sum of Ranks Z Asymp. Sig. (2-tailed)

SBWOA—BDMO Negative Ranks 15 8.80 132.00 -2.627b 0.009

Positive Ranks 2 10.50 21.00

Ties 1

Total 18

S-SBWOS–BDMO Negative Ranks 13 8.08 105.00 -2.556b 0.011

Positive Ranks 2 7.50 15.00

Ties 1

Total 16

JA—BDMO Negative Ranks 14 9.36 131.00 -3.258b 0.001

Positive Ranks 2 2.50 5.00

Ties 0

Total 16

MFO—BDMO Negative Ranks 13 8.73 113.50 -3.039b 0.002

Positive Ranks 2 3.25 6.50

Ties 1

Total 16

BSPO—BDMO Negative Ranks 9 5.67 51.00 -2.395b 0.017

Positive Ranks 1 4.00 4.00

Ties 8

Total 18

CSA—BDMO Negative Ranks 14 9.36 131.00 -3.258b 0.001

Positive Ranks 2 2.50 5.00

Ties 0

Total 16

CSO—BDMO Negative Ranks 14 9.36 131.00 -3.258b 0.001

Positive Ranks 2 2.50 5.00

Ties 0

Total 16

GNDO—BDMO Negative Ranks 14 9.36 131.00 -3.258b 0.001

Positive Ranks 2 2.50 5.00

Ties 0

Total 16

SSA—BDMO Negative Ranks 14 9.36 131.00 -3.258b 0.001

Positive Ranks 2 2.50 5.00

Ties 0

Total 16

HDBPSO–BDMO Negative Ranks 14 8.50 119.00 -3.351b <,001

Positive Ranks 1 1.00 1.00

Ties 1

Total 16

b. Based on positive ranks.

https://doi.org/10.1371/journal.pone.0274850.t008
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Overall, the conclusion can be drawn that the BDMO significantly increased efficiency in

handling the task of high-dimensional feature selection. The performance of BDMO can be

attributed to the optimization process of the DMO, where the fittest mongoose is selected as

the alpha in a generation. The remaining mongooses gravitate toward the alpha in the next

generation, and a new alpha is selected continuously until the end of the optimization process.

The search space is effectively covered by the choice of movement steps of DMO to avoid

being trapped in local optima. Furthermore, the ability of mongooses to scout for an abundant

source of food and sleeping mound without returning to the previous sleeping mound

increases the probability of selecting good dimension boundaries. By taking advantage of this

mechanism, the BDMO selected features that can considerably boost classification accuracy.

In general, we can infer that the BDMO is a potent tool for higher dimension feature selection

and can be employed in application areas that have to do with higher dimensional data, like

the field of medicine, where medical records increase regularly.

With the power of this proposed approach comes its limitations. The first observable short-

coming is the higher computational time of the BDMO compared to 2 of the competitive (the

S-SBWOA and SBWOA) approaches in this study. We utilized the kNN classifier as a learning

algorithm to validate performance. However, in future work, we intend to employ other popu-

lar classifiers like Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF),

and Neural Networks (NN), which may come with an additional cost of computation. Also,

the strategy of population compression can be employed to improve the cost of computation

of the BDMO.

7. Conclusion

This study proposed a binary variant of the newly developed Dwarf Mongoose optimization

algorithm called BDMO to handle high-dimensional feature selection challenges. This pro-

posed method leverages the advantages and properties of the DMO in employing local and

global search behaviors. Eighteen (18) high-dimensional datasets were employed to validate

this approach. Then the proposed approach was compared with other popular methods. The

results showed that our proposed method is reliable and efficient in handling high-dimen-

sional optimization problems in feature selection. The proposed method has also overtaken its

competitors, considering its fitness values. The proposed method also produced the highest

accuracy, closely followed by the BPSO, SBWOA, and S-SBWOA. The BPSO produced the

highest values for F-measure and precision for the largest percentage of datasets, although our

BDMO closely followed it. The precision and F-measure were utilized to confirm the results

produced by our method with a competitive result with its closest rival, the BPSO. Eventually,

our proposed approach will be a suitable tool in the clinical and medical fields where high-

dimensional data are generated frequently, and higher data are involved in the diagnosis.

The BDMO, as presented, only converted the continuous search space of the DMO to suit

the binary search space in feature selection problems. However, the optimization process of

the BDMO can be improved to solve the problem of the high number of features selection

encountered in the course of this study. Future efforts can be made to modify or hybridize the

BDMO with other well-known state-of-the-art population-based optimization algorithms.

Also, some form of intelligence or machine learning capabilities can be incorporated into the

BDMO to improve its performance for solving complex real-world application problems in

different domains.

Author Contributions

Conceptualization: Absalom E. Ezugwu.

PLOS ONE Binary dwarf mongoose optimizer for solving feature selection problems

PLOS ONE | https://doi.org/10.1371/journal.pone.0274850 October 6, 2022 22 / 26

https://doi.org/10.1371/journal.pone.0274850


Data curation: Olatunji A. Akinola.

Formal analysis: Olatunji A. Akinola.

Investigation: Olatunji A. Akinola.

Methodology: Jeffrey O. Agushaka.

Resources: Absalom E. Ezugwu.

Supervision: Absalom E. Ezugwu.

Validation: Olatunji A. Akinola, Jeffrey O. Agushaka.

Visualization: Olatunji A. Akinola, Jeffrey O. Agushaka.

Writing – original draft: Olatunji A. Akinola, Absalom E. Ezugwu.

Writing – review & editing: Jeffrey O. Agushaka, Absalom E. Ezugwu.

References
1. Nguyen B. H., Xue B., & Zhang M. (2020). A survey on swarm intelligence approaches to feature selec-

tion in data mining. Swarm and Evolutionary Computation, 54(October 2019), 100663. https://doi.org/

10.1016/j.swevo.2020.100663

2. Zhang L., Shan L., & Wang J. (2017). Optimal feature selection using distance-based discrete firefly

algorithm with mutual information criterion. Neural Computing and Applications, 28(9), 2795–2808.

https://doi.org/10.1007/s00521-016-2204-0

3. Liu H., & Motoda H. (2012). Feature selection for knowledge discovery and data mining (Vol. 454).

Springer Science & Business Media.

4. Ma B., & Xia Y. (2017). A tribe competition-based genetic algorithm for feature selection in pattern clas-

sification. Applied Soft Computing Journal, 58, 328–338. https://doi.org/10.1016/j.asoc.2017.04.042

5. Gokalp O., Tasci E., & Ugur A. (2020). A novel wrapper feature selection algorithm based on iterated

greedy metaheuristic for sentiment classification. Expert Systems with Applications, 146, 113176.

6. Jalota, C., & Agrawal, R. (2021). Feature selection algorithms and student academic performance: A

study. In International Conference on Innovative Computing and Communications (pp. 317–328).

Springer, Singapore.

7. Dey Sarkar S., Goswami S., Agarwal A., & Aktar J. (2014). A novel feature selection technique for text

classification using Naive Bayes. International scholarly research notices, 2014.

8. Xu Z., King I., Lyu M. R. T., & Jin R. (2010). Discriminative semi-supervised feature selection via mani-

fold regularization. IEEE Transactions on Neural networks, 21(7), 1033–1047. https://doi.org/10.1109/

TNN.2010.2047114 PMID: 20570772

9. Jiang S., Chin K. S., Wang L., Qu G., & Tsui K. L. (2017). Modified genetic algorithm-based feature

selection combined with pre-trained deep neural network for demand forecasting in outpatient depart-

ment. Expert Systems with Applications, 82, 216–230. https://doi.org/10.1016/j.eswa.2017.04.017

10. Wang D., Zhang H., Liu R., Lv W., & Wang D. (2014). T-Test feature selection approach based on term

frequency for text categorization. Pattern Recognition Letters, 45(1), 1–10. https://doi.org/10.1016/j.

patrec.2014.02.013

11. Labani M., Moradi P., Ahmadizar F., & Jalili M. (2018). A novel multivariate filter method for feature

selection in text classification problems. Engineering Applications of Artificial Intelligence, 70(May

2016), 25–37. https://doi.org/10.1016/j.engappai.2017.12.014
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