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Abstract: By virtue of the advances in sensing techniques, finite element (FE) model updating
(FEMU) using static and dynamic data has been recently employed to improve identification on
updating parameters. Using heterogeneous data can provide useful information to improve parameter
identifiability in FEMU. It is worth noting that the useful information from the heterogeneous data
may be diluted in the conventional FEM framework. The conventional FEMU framework in previous
studies have used heterogeneous data at once to compute residuals in the objective function, and they
are condensed to be a scalar. In this implementation, it should be careful to formulate the objective
function with proper weighting factors to consider the scale of measurement and relative significances.
Otherwise, the information from heterogeneous data cannot be efficiently utilized. For FEMU of the
bridge, parameter compensation may exist due to mutual dependence among updating parameters.
This aggravates the parameter identifiability to make the results of the FEMU worse. To address
the limitation of the conventional FEMU method, this study proposes a sequential framework for
the FEMU of existing bridges. The proposed FEMU method uses two steps to utilize static and
dynamic data in a sequential manner. By using them separately, the influence of the parameter
compensation can be suppressed. The proposed FEMU method is verified through numerical and
experimental study. Through these verifications, the limitation of the conventional FEMU method is
investigated in terms of parameter identifiability and predictive performance. The proposed FEMU
method shows much smaller variabilities in the updating parameters than the conventional one by
providing the better predictions than those of the conventional one in calibration and validation data.
Based on numerical and experimental study, the proposed FEMU method can improve the parameter
identifiability using the heterogeneous data and it seems to be promising and efficient framework for
FEMU of the existing bridge.

Keywords: finite element model updating; heterogeneous data; parameter compensation; parameter
identifiability; sequential framework

1. Introduction

Structural deterioration under external conditions (e.g., traffic loading) degrades the performance
of the bridge along with time. It is important to evaluate the conditions of the existing bridges and
assess their performances under potential scenarios (e.g., earthquake). In this context, finite element

Sensors 2019, 19, 5099; doi:10.3390/s19235099 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9312-9468
https://orcid.org/0000-0003-0672-5160
http://dx.doi.org/10.3390/s19235099
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/23/5099?type=check_update&version=2


Sensors 2019, 19, 5099 2 of 18

(FE) model has been widely used for the condition assessment. Typically, an initial FE model lacks in
representing the real behaviors of the existing bridges due to the deterioration and imprecise model
parameters (stiffness and boundary conditions) in FE models. As a result, it is crucial for successful
prognostic analysis to represent the current condition of the bridge by improving the accuracy of the
FE model. FE model updating (FEMU) is such a process to associate FE models with corresponding
existing bridges based on experimental data. This process is an inverse problem of identifying updating
parameters (i.e., model parameters) by refining an initial FE model using experimental data [1,2].

FEMU employs an iterative optimization scheme of adjusting model parameters by minimizing
residuals between measured and computed reference properties. The reference properties can be
categorized into modal properties from dynamic data (e.g., natural frequency and mode-shape) and
static data (e.g., displacement and strain). Conventionally, the modal properties have been widely used
for FEMU, since modal properties can be readily extracted from ambient vibration tests [3,4]. The FEMU
using natural frequencies and mode-shapes have been applied to suspension bridges [5,6], cable-stayed
bridges [3,7], pre-stressed concrete girder bridges [8–10] and steel-box girder bridge [11]. To improve
the results of FEMU, model flexibility [12] has been also investigated. As sensing techniques for static
data become more advanced [13,14], static data such as displacement and strain can be measured more
reliably. As a result, the static data has been investigated to the FEMU [15–17]. Hereafter, the dataset
with a single type of experimental data is referred to as homogeneous data.

It is worth noting that FEMU using homogeneous data (only modal or static data) has some
limitations as follows: (1) homogeneous data cannot provide sufficient information in the case that
model parameters are inter-dependent to the experimental data (i.e., parameter compensation), so that it
may pose FEMU problems to an ill-posed problem; and (2) the accuracy of the response in extrapolation
cannot be ensured. For example, FEMU based on modal data cannot ensure the accuracy of the
static responses. As a result, a compulsory FEMU results in a wrong FE model based on residual
minimization (i.e., minimization of objective function using optimization). Therefore, the updated FE
model should be validated using independent data to evaluate the validity of the FEMU result.

In FEMU of bridges, it is very important to identify the stiffness of the superstructures (e.g.,
girder and cross beam) and support conditions for representing the dynamic and static behavior of the
bridge. Since both the stiffness of the superstructures and support conditions are mutually dependent
(i.e., parameter compensation), it is not easy to guarantee the identifiability using homogeneous data.
This can result in similar responses from a different set of the updating parameters. Such a problem
regarding to identifiability is referred to as equifinality [18]. The way of alleviating equifinality is
to utilize additional and useful information by exploring different types of the experimental data.
In this context, there have been several works to use both modal and static data for the FEMU [19–21].
Hereafter, the dataset with different types of the experimental data is referred to as heterogeneous data.

When both modal and static data are simultaneously employed into FEMU, they are combined
into a scalar by a residual sum to quantify the goodness-of-fit of model parameters for heterogeneous
data. Using heterogeneous data at once can dilute the useful information from each type of the
data. For example, a certain type of heterogeneous data (having large scale) can dominate the
residual sum in the objective function. Therefore, it is important to balance their influences by
assigning proper weighting factors and need special cares for formulating the objective function.
Unfortunately, the optimal weighting factors and the formulation of the objective function are
case-dependent and they may be achieved by the trial-and-error method. Despite its importance,
the previous studies have employed the heterogeneous data at once [19–21] without careful formulation
of the objective function.

To deal with the abovementioned issues in using heterogeneous data, this study proposes a
simple and efficient framework for FEMU of the bridge. The main contributions of this study are
summarized as follows: (1) this study shows the limitation of using all heterogeneous data at once under
parameter compensation in FEMU of the bridge and (2) a sequential FEMU method using two-step
is proposed to overcome the limitation and improve parameter identifiability. The rationale behind
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the proposed FEMU method is to elicit useful information from the heterogeneous data separately
in a sequential framework. In the first step, static data is used to identify the boundary condition
using neural network [18]. Then, identified values of boundary conditions are fixed and stiffness of
the superstructure is updated through dynamic FEMU. By doing so, the parameter compensation
in FEMU can be addressed and the useful information from the heterogeneous data can be utilized.
Consequently, the results of the FEMU are significantly improved with consistent identifiability of the
model parameters.

The rest of this paper is organized as follows. Section 2 presents the existing FEMU and the
proposed FEMU. In Section 3, the proposed FEMU method is evaluated using a numerical example
of the plate girder bridge. Section 4 shows the field experiment of the real bridge and evaluates the
proposed FEMU method. In the numerical study and experimental study using field data, the proposed
FEMU method was evaluated with the existing FEMU for heterogeneous data (modal and static data).
Lastly, the conclusion and further studies are presented in Section 5.

2. Research Backgrounds

This section provides overviews of the conventional and proposed FEMU methods for bridges.
For simplicity, this study employed a deterministic FEMU based on residual minimization using
global optimization. However, these FEMU could be applied to other non-deterministic FEMU such as
Bayesian inference. We first presented sensing techniques to measure the heterogeneous data such as
the modal property, deflection and rotational angle at supports. Then, the conventional FEMU was
presented with its limitations for using the heterogeneous data. Lastly, the sequential framework for
FEMU was proposed to improve the parameter identifiability.

2.1. Heterogeneous Sensor Systems for Modal and Static Data

Heterogeneous data in previous studies for FEMU includes modal properties [2,3,9,12], deflection
including strain [13,15,16,21]. The modal properties, deflection and strain with a load test have
been widely used, while the rotational angle at supports has been recently investigated [14,22,23].
The rotational angle at supports can provide the information on the support conditions and this has
the significant influence on both static and dynamic behaviors of the bridge. The measurement system
for heterogeneous data is illustrated in Table 1.

Table 1. Measurement systems for heterogeneous data for finite element model updating (FEMU).

Sensor Specification Performance
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Gyro sensors are one of the representative sensors to measure the angular speed at the
supports—the velocity of the rotational angle [22]. However, using the angular speed is limited
to FEMU of the bridge, since the precisions of the gyro sensors are not sufficiently accurate to measure
the small response of the rotational angle at the support. Most bridges have a very small response at
the support except for the long-span bridges such as suspension and cable-stayed bridges. On the
other hand, inclinometers can measure the rotational degrees at supports directly. However, it is not
suitable to measure the rotational angle at the support of the bridge, since it has a poor resolution and
accuracy to measure the rotational angles less than 3 × 10−3 degree.

In this context, vision-based systems have received much attention, since dynamic and static
displacements can be measured using the camera and target with reasonable accuracy and sampling
rate [13,14,23]. In addition, displacements at targets can be converted into rotational angle at support
with the known distance from the support to target panel [14,23]. In a real application of the
vision-systems for the bridge, the vision-based systems are easily affected by external conditions
such as weather and illumination. These systems work properly only when installed in the correct
line of camera sight. In addition, the distance from the camera to the target panel affects the
measurement accuracy. In this study, the vision-based system was adopted to measure the rotational
angle of bridges [14]. The vision-based system for rotational angle is composed of a laser source,
a frame grabber and a camcorder. In order to produce the point in a target panel, the green laser
module was used with the wavelength of 532 nm, divergence of 0.5 m·rad and operating distance
of 50 m. The frame grabber has a resolution of 640 pixels × 480 pixels with the capture speed of
30 frames per second. For the camera, a commercially available home video camcorder (Sony pj340
(https://www.sony.com/electronics/support/memory-camcorders-hdr-pj-series/hdr-pj340)) was used.

The rotational angle is calculated from the displacement obtained by image processing
techniques [13]. The laser is firmly attached at the bottom of the bridge girder or a bridge deck
at support. The target panel is installed at a bridge pier or an abutment on the other side, which
is regarded as a fixed location. The target should be installed perpendicular to the laser beam.
The distance between the laser and target can be pre-determined. The target size with four white
spots can be determined by considering the actual size of target area, which can be traced by a camera
with a telescopic lens. To convert the pixel information to actual displacement, a target image with
four spots is captured. The horizontal and vertical lengths (Lx, Ly) can be determined by considering
the maximum displacement of the laser source. A transformation matrix and scaling factors can be
calculated using direction vectors and the actual size of the target. When a moving vehicle runs over
the bridge, the support will rotate together with the attached laser pointer. The projected laser on the
target can be traced by a camcorder, while the displacement can be calculated by the computed scaling
factors and a transformation matrix. Finally, the rotational angle at the support can be calculated using
the measured displacement divided by the distance from the laser source to target. The accuracy of the
system was verified from laboratory tests [14] and field test [23]. In this system, the noise level for
the distance up to 30 m is found to be around 1.8 × 10−4 degree. The vision-based rotational angle
measurement system and its application procedure are illustrated in Figure 1.Sensors 2019, 19, x FOR PEER REVIEW 5 of 21 
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The measured static data contains high frequency components due to measurement noise, so that
a third-order Butterworth filter was applied as a low-pass filter with the cut-off frequency of 1 Hz to
remove the measurement noise. It is clearly seen in Figure 2 that the noise components was removed
successfully using the filter and the only static component remains.
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In order to reliably construct the FE model of the bridges, more advanced sensing techniques
are required for measuring various dynamic and static data. In the case of measuring dynamic
data, sufficient excitation is the most important to extract more modes with reliable and accurate
mode-shapes. In this context, it is necessary to develop more efficient ways of exciting the bridges
without blocking the traffics [24]. For the computer-vision system, the reliability of the static data is
reduced due to the illumination of the target panel and data drift caused by the fixation of the camera.
To address the illumination, recent advance in the image processing techniques is introduced to reduce
the effect of light [25]. One way of addressing these issues is to indirectly estimate displacement by
fusing acceleration data and strain data [26]. In this context, advances in the sensing technique for
FEMU should be required to improve the accuracy and reliability of the heterogeneous data.

2.2. Conventional FE Model Updating Using One-Stage Framework

In FEMU for bridges, model parameters are typically parameterized as updating parameters
to identify the stiffness of superstructures and boundary condition (e.g., support and abutment).
These model parameters have the influence on the dynamic and static behavior of the bridges.
When these model parameters are selected as updating parameters for FEMU, the mutual dependence
between them may exist. The mutual dependence can result in the similar objective function values with
different combination of the updating parameters. For example, the support condition is modeled by the
spring element to represent the support condition ranging from movable to fixed condition [22,27,28].
When updating FE models with stiffness of the superstructure and spring elements at the support,
“increasing the stiffness of the superstructures with decrease of the spring constant” can give similar
effects in the objective function to “decreasing the stiffness of the superstructures with increase of the
spring values”. This mutual dependence is termed as parameter compensation, and it aggravates
the parameter identifiability in FEMU. One remedy for the parameter compensation is to provide
additional and useful information on updating parameters.

Conventional FEMU using heterogeneous data (modal and static data) has been investigated
by previous studies for FEMU of the bridges [19–21]. In these studies, modal and static data were
used for the objective function. The residual in the objective function can be defined as a squared
sum of the difference between the heterogeneous data and corresponding predictions. In the FEMU,
updating parameters are identified by minimizing the residual sum (i.e., objective function) and it can
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be interpreted as the minimization problem in optimization. General formulation for the objective
function is defined as:

J = α
∑N

i=1 w f
i

√(
f EXP
i − f FEM

i
f EXP
i

)2
+ β

∑N
i=1 wΦ

i

(
1−MAC

(
ΦEXP

i , ΦFEM
i

))
+ Υ

∑M
j=1 ω

γ
j

√(
yEXP

j −yFEM
j

yEXP
j

)2

, (1)

where N is the number of the identified modal properties; f FEM
i and f EXP

i denote the i-th natural

frequencies from the FE model and experiment, respectively; MAC
(
ΦEXP

i , ΦFEM
i

)
is the modal assurance

criterion (MAC) value between the ith mode-shapes from the FE model (ΦFEM
i ) and experiment (ΦEXP

i );

ω
f
i and ωΦ

i are the weighting factors for the residuals of the natural frequencies and mode-shapes

to impose the relative significance of each quantity, where (
∑
ω

f
i =

∑
ω∅

i = 1); M is the number of
the measured static responses yFEM

i and yEXP
i denote the ith static responses from the FE model and

experiment, respectively and ωγj is the weighting factors for ith static responses (
∑
ω
γ
i = 1). α, β and γ

are weighting factors for each responses, where 0 ≤ α, β,γ ≤ 1 and α+ β+ γ = 1.
When heterogeneous data is simultaneously used for the FEMU, the objective function should be

carefully formulated with well-balanced weighting factors. However, the optimal weighting factor
is not known in advance and they can be achieved by trial-and-error method. A certain type of the
residuals can be dominated in the objective function with improper weighting factors, so that the
objective function cannot evaluate the goodness-of-fit of each residual properly to identify the correct
values of the updating parameters. The flowchart for the conventional FEMU method is illustrated in
Figure 3a.
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2.3. Proposed FE Model Updating Using Sequential Framework

To address the abovementioned limitations, a sequential framework for FEMU is proposed in this
study. Boundary conditions can significantly affect the responses of the bridge, so that the updating



Sensors 2019, 19, 5099 7 of 18

parameter for the boundary conditions is typically considered in FEMU. Considering that the existing
bridges generally exhibit the deterioration of the support conditions, the identification of the support
conditions is necessary. There are several studies that consider the effect of the boundary conditions in
FEMU. In these studies, the boundary condition was considered as the important updating parameter
in FEMU [1,7,23]. The underlying reasons for using the sequential framework are as follows: (1)
parameter compensation can be alleviated by separating updating parameters in a sequential manner;
and (2) a set of well-balanced weighting factors is not required in objective function, so that the issues
regarding weighting factors can be avoided. By doing that, the sequential framework for FEMU of the
bridge can significantly improve the parameter identification. The sequential framework proposed in
this study was performed as the following two steps for FEMU:

1. Boundary condition identification using a neural network (N.N.) with static data (1st step): static
data (i.e., displacement (δ) and rotational angle of the support (θ)) is used to identify the boundary
condition. The boundary condition is a model by rotational spring constant at support, and the
rotational spring constant is set to represent the support condition from the movable support to
fixed support. The rotational spring constant is identified using our previously proposed FEMU
method [23]. To learn the relationship between the static data and support condition, the N.N. is
trained with the ratio of the static data from the spring constant calculated from the initial model.
Once the N.N. is trained and validated, the rotational spring constant is identified from the ratio
of the measured static data the N.N. technique.

2. FEMU using modal data (2nd step): Once the rotational spring constants at support are identified,
FEMU using modal data is performed to identify the stiffness of the superstructure. In the second
step, the identified values of the rotational spring constant are fixed during this step. The objective
function in this step is shown in Table 2.

3. Validity evaluation of the updated FE model using validation data: To diagnose the predictive
performance of the updated FE model, it is evaluated using the validation data in the extrapolation
(i.e., not used in the objective function).

Table 2. Comparison of FEMU methods.

Method
Date for FEMU Objective Function
Static Modal

Conventional method O O
α
∑N

i=1 w f
i

(
f EXP
i − f FEM

i
f EXP
i

)2
+ β

∑M
j=1 ω

MAC j

j

1−
√

MAC2
j

MAC j
+

Υ
∑M

k=1 ω
y
k

(
yEXP

k −yFEM
k

yEXP
k

)2

Proposed method

1st step O - N.N.

2nd step - O ∑N
i=1 w f

i

(
f EXP
i − f FEM

i
f EXP
i

)2
+

∑M
j=1 ω

MAC j

j

1−
√

MAC2
j

MAC j

The flowchart for the proposed FEMU method is illustrated in Figure 3b.

3. Numerical Verification

This section evaluated the proposed FEMU method using the numerical study with the FE
model of the plate girder bridge. The conventional FEMU method was also performed to compare its
performance with that of the proposed FEMU method. There are two reasons for using this simple FE
model: (1) the limitation of the conventional FEMU method can be investigated by using the updating
parameters having the mutual dependence (two spring constants at supports and Young’s modulus of
the bridge members such as girder, slab, and cross beam); and (2) the performance of two methods can
be easily evaluated using identification results of the true values of the updating parameters.
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3.1. Preliminary Work for FE Model Updating

The FE model consists of 162 beam elements and 318 shell elements with 535 nodes. The FE model
was constructed in the commercial FE software (i.e., ANSYS Mechanical APDL). Dynamic analysis
was performed by modal analysis to compute the modal properties, while static analysis with 6 points
load of 5 ton·f was simulated to compute static data (e.g., displacement at center and rotational angles
at support). The geometry of the FE model and the FE analysis results are described in Figure 4.Sensors 2019, 19, x FOR PEER REVIEW 9 of 21 
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For updating parameters in FEMU, four model parameters were chosen as: (1) rotational spring
constant at the left support (KA), (2) rotational spring constant at the left support (KB), (3) Young’s
modulus of the main girder (KG) and (4) Young’s modulus of the slab and cross beam (KG, KS and KC).
Since the slab and the cross beam are related to the lateral load distribution performance of bridges,
they were grouped as one updating parameter. To generate synthetic data, the true values of these
updating parameters were used as tabulated in Table 3. The modal properties and static data are also
shown in Figure 4b–e. To emphasize the limitation of the conventional FEMU method (i.e., parameter
compensation and dilution of the information), the target data in Table 4 were injected by additive
Gaussian noise to account for the presence of the measurement noise. Since the noise levels of the
modal properties are relatively smaller than the static data (deflection and rotational angle) in reality,
the modal properties were perturbed by Gaussian noise to have 80 dB of signal-to-noise ratio (SNR).
On the other hand, the Gaussian noises for the static data were generated with the high-noise level
(SNR = 60 dB). With different random seeds, five synthetic data was generated.

Based on perturbation of the nominal values in Table 3, the upper and lower bounds were
determined as: (1) the range of the rotational spring constants (KA and KB) was set between
1 × 107 N·m/rad and 1 × 1013 N·m/rad based on the change of the natural frequencies, since the
outside of this range does not change the natural frequencies; and (2) to actuate the parameter
compensation, the range between upper and lower bound for KG, KS and KC were determined from
0.3 to 1.5 (i.e., −70%–50%).
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Table 3. Relative error of updating parameters.

Model
KA (N·m/rad) KB (N·m/rad) KG (Ratio (1)) KS and KC (Ratio)

Best Mean C.V. Best Mean C.V. Best Mean C.V. Best Mean C.V.

Target 3.00 × 108 - - 8.00 × 109 - - 0.90 - - 0.80 - -

Conventional
method

(relative error) (2)

3.02 × 108

(0.50%)
2.22 × 108

(−25.86%)
0.49 8.03 × 109

(0.39%)
8.14 × 109

(1.75%)
0.02 0.94

(4.74%)
0.93

(2.91%) 0.03 0.73
(−8.70%)

0.80
(−0.05%) 0.09

Proposed Method
(relative error)

3.09 × 108

(1.17%)
3.09 × 108

(1.17%)
0.01 7.94 × 109

(−0.71%)
7.94 × 109

(−0.71%)
0.02 0.90

(−0.21%)
0.90

(0.35%) 0.01 0.80
(0.25%)

0.80
(−0.42%) 0.02

(1) Ratio: Target Stiffness
Nominal Stiffness , (2) relative error: Updated−Target

Target × 100 (%).

Table 4. Comparison of predictive performance.

Model 1st Bending
(Hz)

1st Torsion
(Hz)

2nd Bending
(Hz)

δC/θA
(mm/rad)

δC/θB
(mm/rad)

Target
(before perturbed) *

5.13
(5.14)

5.54
(5.55)

15.60
(15.61)

9.80
(9.82)

33.10
(33.11)

Conv.
(relative error)

5.16
(0.58%)

5.54
(0.06%)

15.42
(−1.15%)

9.95
(1.53%)

33.11
(0.03%)

Prop.
(relative error)

5.13
(−0.04%)

5.54
(−0.03%)

15.60
(−0.06%)

9.84
(0.39%)

33.04
(−0.18)

* Before perturbed: response of FE model before noise injected.

3.2. FE Model Updating for Numerical Verification

The proposed FEMU using sequential framework was performed. In the first step, the rotational
spring constants at the supports were identified using the N.N. with the ratio of the static data.
In order to construct the N.N., 200 training samples were randomly generated for each repetition. It is
worth noting that space-filling design such as optimized Latin-hypercube sample or quasi-random
sequence can suppress the variability in the N.N. construction. However, this study intentionally
generated the training samples using random sampling to evaluate the robustness to the variability in
the construction of the N.N. The N.N. was constructed using an input layer with two nodes (δ/θA
and δ/θB), two hidden layers (five and three nodes for each layer, respectively) and an output layer
with two nodes (KA and KB). The training samples were split into 70% for training data sets, 15% for
validation data sets. The remaining 15% of the training samples was used for test data sets to evaluate
the generalized predictions of the N.N. As a global optimizer, the genetic algorithm (G.A.) [29] was
used to identify the updating parameters for the conventional FEMU method and the second step
in the proposed FEMU method. G.A. was employed by MATLAB with 100 generations. The other
hyper-parameters for G.A. were used by the default setting. The conventional and proposed FEMU
were performed for the five synthetic data.

Based on the objective function in Table 2, the conventional FEMU was performed to identify
the true values of the updating parameters. The results of the updating parameter were tabulated
in Table 3 with their summary statistics (e.g., mean and coefficient of variation (C.V.)). The updating
result shows that (1) the relative error of the rotational spring constant was up to 26% from the true
value on average (i.e., mean) and (2) the relative error of the stiffness of members were up to 3% from
the true value.

In the proposed method, the rotational spring constants were firstly estimated using the ratio
of the static data. Based on the results from N.N. (Table 3), the relative errors of both best and mean
value were less than 2% with the C.V. of 0.02. This implies that the values of the rotational spring
constant were well identified to the true values. Once the rotational spring constants were identified,
the FEMU was performed using modal data (natural frequency and MAC value) to identify the stiffness
of the bridge members (KG, KS and KC). In this step, the rotational spring constants were fixed to the
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identified value from each estimation in the first step. The relative errors of all updating parameters
were less than 1% from the true value, and the C.V. was computed less than 0.02. Table 4 shows the
updating results of the modal and static data. The relative errors of these data were significantly
improved than those of the conventional FEMU method.

The proposed FEMU method provides more accurate values of the updating parameters than
those of the conventional FEMU method. In addition, the conventional FEMU method generally
provides the larger values of the C.V. than those of the proposed FEMU method. These results reveal
that the parameter identifiability can be enhanced using the heterogeneous data in the sequential
framework rather than using them at once (i.e., one-stage).

4. Experimental Verification through a Field Test

4.1. Target Bridge and Field Experiment

The field test of the existing bridge was used for verification of the proposed FEMU method.
The test bridge was a pre-stressed concrete bridge with the length of 30 m and width of 12.6 m.
The bridge consisted of a concrete slab and four main girders with three cross-beams and two
diaphragms, as shown in Figure 5. Fifteen accelerometers were installed to measure the vibration for
modal identification, while the static data was measured by the four cameras using two lasers and four
targets as presented in Section 2.1 and Figure 1. The sensor configuration is shown in Figure 5.
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and loading positions of load cases.

To induce the static deflection and rotational angle at supports, loading tests were conducted using
the truck with the weight of 25.78 ton·f. The rotational angles at supports were measured with a laser
using the cameras and targets installed on each support [14], while another camera and target were
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installed at the abutment and the center of the main girder to measure the deflection of the bridge [13].
To obtain the static data (rotational angle and deflection), two load cases were performed as: (1) the
first load case is to obtain the static data for calibration data (Load Case 1 in Figure 5b; and (2) the
validation data was measured using Load Case 2 in Figure 9e to evaluate validity of the updated FE
model (i.e., extrapolation in the prediction). These load cases were repeated by six times for averaging.
A set of the filtered static data was averaged and the results are plotted in Figures 6 and 7.Sensors 2019, 19, x FOR PEER REVIEW 12 of 21 
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Figure 6. Rotation angles and deflections measurements of L.C. 1: calibration data. (a) Rotation angles:
avg. value at the abutment bound = 4.40 × 10−3 deg. Avg. value at the pier bound = 5.38 × 10−3

deg. and (b) deflections: avg. value at the interior girder = 0.99 mm. Avg. value at the exterior
girder = 0.43 mm.
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Figure 7. Rotation angles and deflections measurements of L.C. 2: validation data. (a) Rotation angles
avg. value at the abutment bound = 3.92 × 10−3 deg. Avg. value at the pier bound = 4.66 × 10−3

deg. and (b) deflections: avg. value at the interior girder = 0.82 mm. Avg. value at the exterior
girder = 1.03 mm.

Fifteen accelerometers with a 5-by-3 array were installed on the bridge deck to extract the modal
properties including vertical bending, torsional and lateral bending mode. The ambient vibration test
was conducted for 3 hours with the sampling frequency of 100 Hz. The measured accelerations were
analyzed using both stochastic subspace identification (SSI) [30] and frequency domain decomposition
(FDD) [31]. Stabilization chart (SC) of the SSI was plotted with singular values (SV) of FDD in Figure 8a.
Three modes were identified as shown in Figure 8b–d.
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Figure 8. Extracted modal properties. (a) Selects modes from the stabilization chart (SC) and SVD
result; (b) bending mode: 5.63 HZ; (c) torsional mode: 7.00 Hz and (d) transverse bending mode:
9.84 Hz.

4.2. Preliminary Work for Experimental Verification

ANSYS Mechanical APDL was used to construct an initial FE model based on construction
drawings. Girder and cross beams were modeled using beam elements, while concrete slabs and barrier
were modeled using shell elements. To represent the deterioration of the supports, a 1-D rotational
spring element was used for constraint the rotation of the boundary condition and it was applied at
the nodes of both ends. Figure 9 shows an initial FE model with two load cases for calibration and
validation data.

Since the identified modes include the vertical bending, torsional and lateral bending mode,
the stiffness of the superstructures were chosen to improve the accuracy of these modes. On the other
hand, the rotational spring constant were considered to represent the support conditions. In this
context, five updating parameters were selected as: (1) two rotational spring constants at supports
(2EA), (2) the relative stiffness ratio of the girder (1EA), (3) the relative stiffness ratio of the main slab
(1EA) and (4) the relative stiffness ratio of the cross beam (1EA). The details of the updating parameters
are shown in Table 5.

Table 5. Updating parameters.

Parameter (Notation) Change in Variable Initial Value (Nominal Value) Range

Rotational Spring Constant at Abutment (KA)
Linear

1 (1 N·m/rad) 1 × 107–1 × 1014

(Movable–Fixed)Rotational Spring Constant at Pier (KP) 1 (1 N·m/rad)

Relative Stiffness Ratio of Girder (KG) Linear 1 (34.13 GPa) 0.3–2.0
Relative Stiffness Ratio of Slab (KS) Linear 1 (34.13 GPa) 0.3–2.0

Relative Stiffness Ratio of Cross beam (KC) Linear 1 (34.13 GPa) 0.3–2.0
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Figure 9. FE model of a pre-stressed bridge. (a) FE model of the test bridge; (b) shell element of
the FE model; (c) beam element of the FE model; (d) Load Case 1 for calibration and (e) Load Case
2 for validation.

The change of the natural frequencies according to the change of the rotational spring constant
was linear. The support condition acts as a movable end (i.e., the roller) below 1 × 107 times of the
nominal value (1 N·m/rad) with constant natural frequencies, and the natural frequencies linearly
increase between 1 × 107 and 1 × 1014 times of the nominal value. The natural frequencies converged
to the specific values over 1 × 1014 times of the nominal values by changing support condition into the
fixed end. Based on these observations, the ranges of the rotational spring constant were set between
1 × 107 and 1 × 1014 N·m/rad. To consider the contribution of the tendons in the girders on the stiffness,
the upper bounds for relative stiffness ratio were set to 2.0 times to the nominal value (34.13 GPa).
The lower bounds of the updating parameters were set to 0.3 times of the nominal value based on the
following reasons: (1) there may be a reduction in the stiffness of the cross-beam due to the imperfect
connectivity between the girder and cross beam; and (2) this aggravates the parameter compensation
among the updating parameters to investigate the limitation of the conventional method. In this
context, the range of the relative stiffness ratio was between 0.3 and 2.0.

To quantify the relative contributions of the updating parameters for the target responses, Fourier
amplitude sensitivity testing (FAST) was used [32] as a global sensitivity analysis. The relative stiffness
ratio of the girder mainly contributed to the output variance in the vertical bending and torsional
modes (f 1 and f 2) and deflection of internal girder (δInt). The relative stiffness ratios of both slab and
cross-beam generally had an influence on the modal data. Especially in the lateral bending mode (f3),
the relative stiffness ratio of the slab was the largest influential one among the updating parameters.
For deflection of the internal girder, the only influential parameter was the relative stiffness of the
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girder. The rotational spring constants were the most influential parameters for the rotational angle at
each support, and other parameters seems to be non-influential. Based on these observations, five
model parameters were sufficiently influential to update the initial FE model using the measured
modal and static data.

4.3. FE Model Updating for Field Experimental Verification

The FEMU was performed using both the conventional and proposed method. The G.A. was
employed to update the FE model using 100 generations with default hyper-parameters. The FEMU
was performed by 10 repetitions. In this experimental study, the mode-shape was not considered from
the objective function in Table 2. In ambient vibration tests, mode-shapes are easily contaminated
by the low signal-to-noise ratio, insufficient excitation and so on. In addition, the mode-shapes
were not intentionally used to aggravate the identifiability of the updating parameters. As a result,
the mode-shape was used only for mode pairing.

In the conventional FEMU of the one-stage framework, the heterogeneous data was used
simultaneously as: (1) three static responses of load case 1 (δInt, θAbutment and θPier) and (2) first three
natural frequencies (f 1, f 2 and f 3). Figure 10 shows the updated results and their summary statistics
through 10 repetitions. The results show that (1) the relative error of the deflection and natural
frequencies are less than 7% from those of the experimental data; and (2) the relative error of the both
rotation angles are up to 17%. Compared to the initial FE model, the conventional FEMU method
improves the static and dynamic behaviors of the FE model. However, the coefficient of variation
(C.V.) of the relative stiffness ratio of the girder and rotational spring constant were estimated to
be 0.61–1.32. This implies that there is the parameter compensation between these two updating
parameters. Stated differently, the large values of the C.V. indicate a lack of the parameter identifiability
under the identical experimental data. Since the additional stiffness of the tendon in the girders was
not considered in the FE modeling, it was expected that the updated value of the girder increased from
the nominal value. However, the relative stiffness ratio of the girder was identified near 74% of the
nominal value and this updating result seemed to be unrealistic.

The proposed FEMU using sequential framework consists of two steps. In the first step,
the rotational spring constants were estimated using the N.N. and measured ratio of the static data
from the field experiment. The architecture of N.N. and splitting data are identical to those in the
numerical verification. Based on the results from 10 repetitions, the best identified value and their
summary statics were computed. The values of the rotational springs were identified as shown in
Figure 10d–e with the C.V. less than 0.04. As shown in Figure 11, the updated FE model from the
first step was not sufficient to represent the target static and dynamic behaviors yet. To improve the
accuracy of the updated FE model from the first step, FEMU was performed using modal data to
identify the updating parameters of the superstructures. In this step, the rotational spring constants
were fixed to the identified value from each repetition. As shown in Figure 10, the C.V. of the relative
stiffness ratios were computed between 0.14 and 0.44, which were less than those of the conventional
FEMU method. This indicates that the proposed FEMU method improves the parameter identifiability
the smaller C.V. than those of the conventional method. As expected, the updated value of the girder
increases around 130% of the nominal value due to effects of the tendons. As shown in Figure 11,
the relative errors of all target data are less than 10%. This indicates that the updated FE model from
the proposed FEM method is better calibrated than that of the conventional FEMU method. Figure 12
compares the accuracy for the validation data (i.e., static responses of load case (2) from each method.
The proposed FEMU method only provides less than 10% of the relative errors for the validation data.
This indicates that the proposed FEMU method is much more reliable to improve the extrapolation
predictions (validation data) than the conventional FEMU method.

Through the experimental verification, it could be concluded that the proposed FEMU method
could improve the parameter identifiability using the sequential framework. As a result, the updated
responses for both calibration and validation data were significantly improved with much lower



Sensors 2019, 19, 5099 15 of 18

parameter variability (i.e., smaller C.V.). Based on these results, it could be concluded that the proposed
FEMU method could provide better results of the FEMU against the conventional one.Sensors 2019, 19, x FOR PEER REVIEW 17 of 21 
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5. Conclusions

As sensing techniques become more advanced, various types of the experimental data can be
measured. As a result, various responses from the infra-structures are available using the accelerometer,
optical fiber sensing and vision-based systems. The heterogeneous data including static and modal
data can provide informative information for structural behaviors and using the heterogeneous data
for FEMU has been investigated by the previous study to improve the updating results. In this context,
using the heterogeneous data can alleviate the parameter compensation among the updating parameter
by providing additional information on updating parameters.

Conventionally, FEMU employs both static and modal data simultaneously to formulate the
objective function (i.e., one-stage approach). When the static and modal data is simultaneously used to
formulate the objective function, FEMU should be carefully performed to maximize the utilization
of information in the heterogeneous data and avoid the certain type of the responses dominates the
residual sum in the objective function. In this context, there are two goals of this study as follows:
(1) this study shows the limitation of the conventional FEMU method through the numerical and
experimental study; and (2) The FEMU method using a new sequential framework is proposed to
address the abovementioned limitations and improve the parameter identifiability. The proposed
FEMU method consists of two steps; firstly, the proposed FEMU method identifies the rotational spring
constants at the support condition using static data and N.N. Once the rotational spring constants
are identified, they are fixed to the identified values and FEMU using modal properties is performed
to identify the remaining updating parameters (e.g., stiffness of the superstructures). By doing so,
parameter compensation can be minimized by identifying the updating parameters separately; (2) the
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information from static and modal data can be independent utilized and (3) the optimal weighting
factor does not needed to balance relative significances between modal and static data. The proposed
FEMU method was evaluated by numerical and experimental study with the conventional FEMU
method. Based on the results, the following summaries could be drawn as:

• In the numerical study, the proposed FEMU method identified more accurate values of the updating
parameters under the presence of the noise. As a result, the proposed method provided the
better predictive performances over calibration and validation data than those of the conventional
FEMU method.

• In the experimental verification, the conventional FEMU method generally provided larger values
of the C.V. than those of the proposed FEMU methods. This large C.V. indicates a lack of the
parameter identifiability due to parameter compensation. In addition, the identified values from
the proposed method were more realistic than those of the conventional method (i.e., additional
stiffness by the tendon in the girders).

• For calibration data in experimental verification, the proposed FEMU method provided more
accurate predictions than those of the conventional FEMU method. In addition, more accurate
predictions in extrapolation were also observed. This implies that the proposed FEMU method
identified the accurate updating parameters and improved the static and dynamic behaviors of
the existing structure.

The parameter identifiability could be enhanced using the heterogeneous data sequentially rather
than using them at once. The proposed FEMU method could update the initial FE model accurately,
so that the updated FE model from the proposed FEMU method could improve the reliability for
predictive performances for further applications (e.g., condition and risk assessments using the updated
FE model).
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