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Abstract: Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer,
is an extremely lethal disease due to late diagnosis, aggressiveness and lack of effective therapies.
Considering its intrinsic heterogeneity, patient stratification models based on transcriptomic and genomic
signatures, with partially overlapping subgroups, have been established. Besides molecular alterations,
PDAC tumours show a strong desmoplastic response, resulting in profound metabolic reprogramming
involving increased glucose and amino acid consumption, as well as lipid scavenging and biosynthesis.
Interestingly, recent works have also revealed the existence of metabolic subtypes with differential
prognosis within PDAC, which correlated to defined molecular subclasses in patients: lipogenic subtype
correlated with a classical/progenitor signature, while glycolytic tumours associated with the highly
aggressive basal/squamous profile. Bioinformatic analyses have demonstrated that the representative
genes of each metabolic subtype are up-regulated in PDAC samples and predict patient survival.
This suggests a relationship between the genetic signature, metabolic profile, and aggressiveness of the
tumour. Considering all this, defining metabolic subtypes represents a clear opportunity for patient
stratification considering tumour functional behaviour independently of their mutational background.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is considered one of the most aggressive solid
malignancies. It represents the third cause of cancer-related deaths in industrialised countries today [1]
and it is predicted to become the second by 2030 [2]. Despite progress in the understanding of the
molecular and genetic basis of this disease, five-year survival rates have remained below 10% after
diagnosis and one-year survival occurs in only 28% of cases [3].

The reasons for the poor prognosis of this disease include bad accessibility to the organ, absence of
distinct symptoms and high rate of metastasis, occurring in about 50% of patients [4]. On the other hand,
there are no reliable biomarkers approved for early diagnosis [5].

Currently, the only available curative option for PDAC patients is surgical resection followed by
adjuvant chemotherapy [4]. However, this occurs in a minority of patients, since 80–90% of them are
diagnosed with advanced disease when the tumour is not resectable [6,7]. In addition, the heterogeneity
and plasticity of PDAC tumours lead to chemoresistance [8]. In fact, several phase III trials of chemotherapy
agents or targeted therapies effective in other malignancies have failed to benefit unselected PDAC
populations. In addition, with the exception of the rare subset of mismatch repair-deficient tumours,
checkpoint inhibitors have failed to show efficacy in metastatic patients.

Under such circumstances, the solution possibly lies in early detection and proper classification
of patients [4]. Patient stratification has become an invaluable tool for the clinical management of
cancer patients, providing diagnostic and prognostic information and, crucially, guiding therapeutic
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decisions, especially when targeted therapies for a specific mutation or subgroup are available.
In fact, stratification had a key role improving survival rates in diseases such as breast cancer.
However, patient stratification based on histomorphological or molecular features in PDAC has proved
challenging, severely delaying the identification of such targeted therapies. This, together with the
undruggable nature of mutated K-RAS (although clinical trials are underway to inhibit the mutation
K-RASG12C), limits PDAC treatment to ineffective conventional chemotherapy. Genomic studies have
revealed subtypes of PDAC based on their molecular features, but diverse studies have reported
different classification systems incompletely overlapping. Interestingly, increasing efforts are being
made in different directions. In fact, recent data suggest that PDAC tumours could also be classified
attending to their metabolic phenotype.

In this review, we describe and analyse the correspondence of most of the published molecular
and metabolic signatures of PDAC and propose a modified metabolic signature that could stratify
patients according to metabolic needs independently of the mutational load.

2. PDAC Mutational Profile

Many studies have been conducted on PDAC samples to determine molecular aberrations at DNA,
RNA, protein and epigenetic levels [9]. In general terms, mutations in individual genes comprise 10 main
pathways: DNA damage repair (TP53 or BRCA2), cell cycle regulation (Cyclin-Dependent Kinase
Inhibitor 2A, CDKN2A), Transforming growth factor-beta (TGF-β) pathway (SMAD4), NOTCH and WNT
signalling, chromatin regulation, Extracellular Signalling Regulated Kinases (ERK)-Mitogen-Activated
Protein Kinases (MAPK) signalling (K-RAS, B-RAF), axonal guidance and RNA processing [10,11].

Altogether, K-RAS gain of function, accounting for up to 90% of PDAC cases, and inactivation
of the tumour suppressor genes p16/CDKN2A, SMAD4 and TP53 contribute to PDAC formation,
maintenance, progression and, ultimately, metastasis onset. Occasionally, the mutations occur in other
components of the pathway in which they are involved [9,12,13]. In addition, genome-wide and
exome-wide analyses have identified a long list of less frequent alterations in genes related to axon
orientation or DNA damage repair, such as BRCA1 or BRCA2 [12,14,15]. Moreover, most PDACs show
complex patterns of chromosomal rearrangement [16,17].

Some findings have suggested a linear pathway of evolution from normal cells to PDAC cells,
in which not all mutations occur at the same time. Telomere shortening is considered the trigger of
pancreatic tumorigenesis by inducing genetic instability, coupled with a mutation in the K-RAS gene.
Surviving cells are then altered by loss of CDKN2A function. In third place, the tumour suppressor genes
TP53 and SMAD4 are inactivated, leading to intermediate stages called pancreatic intraductal neoplasias
(PanINs) and, ultimately, full-blown PDAC [10,18]. However, it seems that in some cases, CDKN2A,
TP53 and SMAD4 mutations can occur in a single event, which is called “punctuated equilibrium” [11].

2.1. K-RAS

K-RAS is one of the three mutationally activated forms of the Ras protein, together with H-RAS
and N-RAS. It is the most represented one among all cancers bearing RAS mutations, and the one
exclusively mutated in PDAC. Moreover, it is known to be the main driver mutation for this disease,
since K-RAS is mutated in >90% of the cases, thus making PDAC the most RAS-addicted of all cancer
types [19]. However, K-RAS activation alone is not sufficient for PDAC development [20,21].

Ras proteins are small GTPases that act as signalling switches regulating cell proliferation, survival,
differentiation and inflammation, by activating the MAPK module. In a normal scenario, Ras is found
in its inactive form coupled to guanosine diphosphate (GDP) and, upon activation by diverse
extracellular stimuli, Ras becomes active by coupling guanosine triphosphate (GTP), thus switching on
downstream effectors such as ERKs, Jun Amino-Terminal Kinases (JNKs), Stress-Activated Protein
Kinases (p38/SAPKs) and PI3K/PDK1/AKT, amongst others [22,23]. In PDAC and other cancers bearing
oncogenic K-RAS mutations, this protein is constitutively active in a GTP-bound state. PDAC-associated
K-RAS alterations mainly harbour missense mutations that depend on allele dosage for tumorigenesis
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and metastasis onset, and contribute to PDAC evolution from PanINs to final cancer formation with
the loss of other key PDAC-driving players [24].

2.2. p16/CDKN2A

Along the evolutionary course of PDAC onset, K-RAS mutation is followed by the occurrence of
genetic alterations in the tumour suppressor gene CDKN2A in 95% of PDAC patients [24]. Tumour
suppressor genes are important to restrain aberrant cell proliferation in the context of oncogenic
signalling and, to that end, these genes rely on different strategies such as cell cycle arrest, apoptosis or
senescence induction. Specifically, the gene CDKN2A, encoding for P16INK4a and P14RF proteins,
shows a dual mechanism: P16INK4a inhibits Cyclin Dependent Kinases (CDK) 2 and 4, thus preventing
cell cycle to progress into S-phase, while P14RF triggers P53 by inhibiting its inhibitor, Mouse double
minute 2 homolog (MDM2), thereby inducing growth arrest and apoptosis [25].

2.3. TP53

P53, the protein encoded by the TP53 gene, is known to be the “genome guardian” due to its essential
role upon chromatin damage. Amongst its main functions, we find cell cycle blockade and activation
of DNA repair enzymes. Ultimately, P53 may lead the cell to a senescence state and/or apoptosis
when DNA damage is no longer reparable. Genetic inactivation of TP53 is present in up to 75% of
all PDAC cases and appear in advanced PanINs after loss of CDKN2A. Loss of functional P53 leads
to an uncontrolled state of proliferation [25]. Importantly, mutant P53 may contribute to metastatic
progression of K-RAS-driving PDAC-bearing mice, highlighting a novel role of this transcription factor
in late stages of PDAC beyond the malignant transformation of PanINs into PDAC [26,27].

2.4. SMAD4

SMAD4 serves as the central mediator of TGF-β pathway and it is known to be the fourth
and, together with TP53, ultimate driver for PDAC initiation [28]. However, the role of SMAD4
in the pathogenesis of PDAC is complex and its final results are context-dependent. On the one
hand, the TGF-β pathway is a well-accepted epithelial-to-mesenchymal transition (EMT) inducer [29],
and also in PDAC [25], thus highlighting its pro-tumorigenic potential. Conversely, Smad4 signalling
in the KPC (LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre) mouse PDAC model mediates a tumour
suppressive process known as “lethal EMT”. In this scenario, Smad4 triggers apoptosis through
repression of the gastrointestinal lineage-master regulator Klf5 and, consequently, inhibits PDAC
progression induced by Klf5/Sox4. Consequently, the loss of SMAD4 tumour suppressive function
may contribute to pancreatic oncogenesis through the TFG-β canonical pathway [30].

3. PDAC Molecular Signatures

Besides purely mutational analyses, a considerable number of genomic and transcriptomic studies
in patient samples have identified the existence of PDAC subtypes with prognostic and biological
relevance, as detailed below.

Collisson et al. [31] reported the first exhaustive transcriptomic analysis on clinical samples,
and based their classification on gene expression and molecular profiling. PDAC tissues were classified
into “classical”, “quasi-mesenchymal” and “exocrine-like” (Table 1), with different prognoses and
responses to selected therapies. The classical subtype showed high expression of epithelial and
adhesion-associated genes, such as the transcription factor GATA6, and favourable prognosis regarding
survival after PDAC resection. On the other hand, the quasi-mesenchymal subtype exhibited high
expression of mesenchymal-associated genes, was relatively less dependent on K-RAS than the classical
one, and, importantly, was associated with poor prognosis. Finally, the exocrine-like subtype revealed
high expression of digestive exocrine enzyme genes. However, the last subtype was not found in
cancer cell lines, raising concerns about its specificity [32].
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Table 1. Molecular Pancreatic Ductal Adenocarcinoma (PDAC) signatures.

Author Type of Study Type and Number of
PDAC Samples

Dysregulated Pathways
and Mutations Outcome

Collison et al. [31] Transcriptional

1. Clinical samples
microarray datasets

Microdissected (n = 27)
GSE15471 (n = 36)
GSE11838 (n = 107)
GSE16515 (n = 52)

E-MEXP-950 (n = 50)
2. Validation:

Mouse cell lines (n = 15)
Human cell lines (n = 19)

Classical: (↑) Adhesion-
associated genes (GATA6).
More K-RAS-dependent

Good

Quasi-mesenchymal: (↑)
Mesenchymal associated genes Bad

Exocrine: (↑) Digestive exocrine
enzyme genes

Moffit et al. [33] Transcriptional

1. Microarray data
Primary tumour (n = 145)
Metastatic tumour (n = 61)

Cell lines (n = 17)
Pancreas normal samples (n = 46)

Distant site adjacent samples (n = 88)
2. Validation

Primary tumours (n = 15)
PDXs (n = 37)

Cell lines (n = 3)
CAF lines (n = 6)

Classical: Classical Collison ((↑)
adhesion-associated genes (GATA6))

and SMAD4
Good

Basal: (↑) Genes also highly expressed
in basal tumours in bladder and

breast cancer
Bad

Normal stroma: (↑) Pancreatic stellate
cells, smooth muscle actin, vimentin

and desmin markers
Good

Activated stroma: (↑) Macrophages,
tumour promotion and fibroblast

activation-associated genes
Bad

Bailey et al. [10] Mutational
Transcriptional

Primary PDAC tumour samples and
rare acinar cell carcinoma (n = 382)

PDAC exomes (n = 74)

Squamous: Hypermethylation and (↓)
pancreatic endodermal cell fate genes.

TP53, KDM6A and TP63∆N
Bad

Pancreatic progenitor: (↑) Pancreatic
early development genes (PDX1) Good

ADEX: (↑) K-RAS activation and
pancreatic late development and

differentiation genes

Immunogenic: (↑) Immune
suppression and strong

immune infiltration

Zhao et al. [34]
Transcriptional
(metanalysis)

1. Microarray datasets of PDAC
primary tumour samples (n = 1268)

TCGA (n = 172)
GSE79670 (n = 51)

TCGC PACA-AU (n = 71)
MTAB-1791 (n = 195)
ICGC array (n = 178)
GSE71729 (n = 145)
GSE62165 (n = 118)
GSE62452 (n = 69)
GSE57495 (n = 63)
GSE60980 (n = 49)
GSE77858 (n = 46)
GSE55643 (n = 45)
GSE15471 (n = 39)

L1: (↑) Metabolic genes

L2: (↑) Metabolic, cell proliferation
and epithelium genes (CDKN2A) Bad

L3: (↑) Collagen and ECM
associated genes

L4: (↑) Immune profile Good

L5: (↑) Neuroendocrine and insulin
related pathways Good

L6: (↑) Metabolic and digestive
enzyme genes

Lomberk et al. [35] Epigenetic

1. PDXs (n = 24)
2. Clinical samples
microarray datasets
GSE71729 (n = 145)

ICGC (n = 178)
TCGA (n = 172)

Classical: (↑) TFs involved in
pancreatic development, metabolic

regulators and Ras signalling
Good

Basal: (↑) TF proliferative and
transcription nodes Bad

Maurer et al. [36]
Transcriptional
Computational

modelling

1. Primary PDAC tumour
samples (n = 122)

2. Clinical samples
microarray datasets

GSE71729 (UNC) (n = 125)
ICGC (n = 93)

TCGA (n= 127)

Classical: Classical Moffit Good

Basal: Basal Moffit Bad

Immune-rich: (↑) immune and
interleukin levels Good

ECM-rich: (↑) matrix
extracellular pathways Bad

Dijk et al. [37] Transcriptional

1. Primary PDAC tumour
samples (n = 90)

2. Pancreatic cancer PDXs
cohort (n = 14)

3. PDAC Cell lines cohort (n = 51)

Epithelial: (↑) MYC, mitochondrial
components and ribosome signature Good

Mesenchymal: (↑) K-RAS, pathways
related to EMT, stromal signalling

and TGF-β
Bad

Compound pancreatic: Similar to the
mesenchymal subtype and (↑)

endocrine pathways
Good
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Table 1. Cont.

Author Type of Study Type and Number of
PDAC Samples

Dysregulated Pathways
and Mutations Outcome

Chan-Seng-Yue
et al. [38]

Whole genome
sequencing

Transcriptional

Laser capture microdissected samples
from late-stage PDAC

1. WGS (n = 314)
2. Bulk RNAseq (n = 248)

3. Single-cell RNAseq (n = 15)

Classical A/B: (↑) SMAD4 and
GATA6 alterations Good

Basal-like A/B: (↑) EMT and TGF-β
pathways, loss of CDKN2A, TP53

mutations, K-RAS imbalance
Bad

Hybrid Mid

Nicolle et al. [39] Transcriptional PDXs (n = 76) Graded types between classical and
basal based on tumour differentiation

Grade
dependant

For each classification, type of study, type and number of samples, dysregulated pathways and mutations and prognosis
are described in each column. Up-regulated and down-regulated pathways are shown as (↑) and (↓), respectively. CAF,
Cancer-Associated Fibroblast; EMT, Epithelial-to-Mesenchymal Transition; PDAC, Pancreatic Ductal Adenocarcinoma;
PDX, Patient-Derived Xenograft; TF, Transcription Factor; WGS, Whole Genome Sequencing.

Moffitt et al. [33] performed transcriptional analysis to classify PDAC tumours into two subtypes
within two different tissues (Table 1): tumour and stroma. Based on tumour cells, PDAC samples
were classified into “classical” and “basal” subtypes. The classical group was enriched in SMAD4
and GATA6, while the basal subtype was molecularly similar to basal tumours in bladder and breast
cancer. Although classical tumours showed better prognosis, patients with basal tumours responded
better to adjuvant therapy. On the other hand, the stroma was divided into “normal” and “activated”
subtypes. The normal stromal group showed high levels of markers for pancreatic stellate cells,
smooth muscle actin, vimentin and desmin. However, the activated stromal subtype was defined by
a complex set of genes associated with macrophages, tumour promotion and fibroblast activation;
this described an activated pro-tumorigenic inflammatory stromal response with poor prognosis.
Comparing their signature with Collisson’s [31], Moffitt et al. found an overlap between both classical
subtypes, while genes in the quasi-mesenchymal subtype seemed a mixed selection of genes from
basal and stromal subtypes (Table 2) [33].

Table 2. Molecular subtypes corresponding to PDAC classification.

Authors Common Subtypes Others
Collisson et al. [31] Classical Quasi-mesenchymal Exocrine-like

Moffit et al. [33] Classical Basal-like Normal and activated
stroma

Bailey et al. [39] Progenitor Squamous ADEX Immunogenic
Zhao et al. [34] L1 L2 L6 L3, L4 and L5

Lomberk et al. [35] Classical Basal
Maurer et al. [36] Classical Basal Immune-rich and ECM-rich

Dijk et al. [37] Epithelial Mesenchymal Secretory Compound pancreatic
Chan-Seng-Yue et al. [38] Classical (A, B) Basal-like (A, B) Hybrid

Nicolle et al. [39] From Classical to Basal

Correlated subtypes are grouped in columns. Colours define the subgroups with the best (green) or worst (red)
prognosis. ECM, Extracellular Matrix.

Later, Bailey et al. [10] defined new molecular subtypes of PDAC based on comprehensive
integrated genomic analysis and RNA expression profiles: “squamous”, “pancreatic progenitor”,
“aberrantly differentiated endocrine exocrine” (ADEX) and “immunogenic” (Table 1). The squamous
subtype was linked to hypermethylation and down-regulation of genes determining endodermal
identity in pancreas, with poor prognosis in patients. It was also enriched in TP53 and KDM6A
mutations and up-regulation of the transcriptional network TP63∆N. PDAC progenitor-type tumours
expressed genes involved in early development of the pancreas, such as PDX1. The ADEX class
overexpressed transcriptional pathways present in K-RAS activation and in late stages of pancreatic
development and differentiation. Lastly, the immunogenic subtype had pancreatic progenitor features,
but it was related to acquired immune suppression pathways (CTLA4 and PD-1) and strong immune
infiltration (B and T cells). When they compared their classification with earlier studies, three of their
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classes directly overlapped with Collisson’s groups [31]: Collisson’s classical, quasi-mesenchymal
and exocrine-like subtypes matched Bailey’s pancreatic progenitor, squamous and ADEX groups,
respectively (Table 2). In addition, 50% of the squamous subtype tumours were included in Moffitt’s
basal subgroup [33].

In 2018, Zhao et al. [34] conducted a retrospective meta-analysis of complete transcriptome data
from patients with PDAC (Table 1). They obtained six different subtypes grouped in tumour- (L1, L2
and L6) and stromal-specific (L3, L4 and L5) subtypes. L1, L2 and L6 were all enriched in metabolic
genes, as detailed in Section 5. Besides metabolism, the subtypes were differentially enriched in other
routes: L2 was related to cell proliferation and epithelium genes, such as CDKN2A; L3 had increased
regulation of collagen and extracellular matrix (ECM)-associated genes; L4 had an immune profile;
L5 was involved in neuroendocrine and insulin-related pathways; L6 showed activity of digestive
enzymes. Each expression profile was related to clinical data: epithelium and proliferation in L2
showed the poorest prognosis, immune and neuroendocrine profiles at L4 and L5 showed the best
outcomes. Considering the above stratifications of PDAC, Zhao et al. found that L1 and L6 were very
similar to the classical Moffit’s subtype, while L2 approached their basal subtype (Table 2). L1, L2 and
L6 were close to the activated subtype. In Bailey’s dataset, L1 and L4 approximated the immunogenic
subtype, L2 the squamous, L3 the pancreatic progenitor and L6 resembled the ADEX subtype. Finally,
L1 and L3 were similar to Collison’s classical subtype, L2 approached the quasi-mesenchymal and L6
related to the exocrine-like one.

Lomberk et al. [35] identified epigenomic landscapes of PDAC subtypes by performing
an integrative analysis of genome-wide Chromatin Immunoprecipitation-sequencing (ChIP-seq) on
multiple histone modifications, as well as RNA-sequencing (RNA-seq) and DNA methylation studies
(Table 1). They reported two subtypes: “classical” and “basal”, which correlated with clinical parameters.
Super enhancer mapping coupled with Transcription Factor (TF) binding motif and up-regulation
analysis showed that classical tumours were related to TFs involved in development of the pancreas,
metabolic regulators and K-RAS signalling, while basal tumours correlated with proliferative and EMT
TF nodes. The basal samples were linked to a more aggressive phenotype than the classical ones.

Maurer et al. [36] used Laser Capture Microdissection (LCM) to separate stromal and epithelial
compartments of PDAC bulk tumour samples, and confirmed using machine learning techniques that
stromal contamination may interfere with PDAC classification (Table 1). In addition, they described
two epithelial subtypes of PDAC that correlated with the classical and basal subtypes from Moffit et al.,
with the basal subtype having a poorer prognosis than the classical (Table 2). Moreover, they identified
two stromal subtypes, an “immune-rich” group characterised by high immune and interleukin levels,
and an “ECM-rich” group, associated with extracellular matrix pathways. The ECM-rich subtype
appeared to have decreased survival compared with the immune-rich one. Finally, they found an
association of the epithelial and stromal subtypes in which the basal epithelium subtype and the
ECM-rich stroma were linked.

In 2020, Dijk et al. [37] conducted an unsupervised consensus clustering and identified four
molecular subtypes: “secretory”, “epithelial”, “compound pancreatic” and “mesenchymal” (Table 1).
The secretory subtype showed enrichment in endocrine and exocrine pathways of the pancreas.
Tumours of the epithelial subtype were characterised by up-regulation of the MYC oncogene and high
expression of mitochondrial components and ribosome signature. The mesenchymal subtype had
high levels of K-RAS transcription and was enriched in pathways related to EMT, stromal signalling
and TGF-β. The compound pancreatic subtype presented similar characteristics to the mesenchymal
subtype but, in addition, was enriched in endocrine functions. The secretory and mesenchymal
subtypes presented worse prognosis than the epithelial and compound pancreatic ones. Dijk et al.
found an interconnection between these subtypes and those described by Collison, Bailey and Moffit
(Table 2). For example, the secretory subtype correlated significantly with Collison’s exocrine-like,
Bailey’s ADEX, and Moffit’s basal subtypes. The epithelial subtype shared characteristics with the
Collison’s and Moffit’s classical subtypes, but also with the Bailey´s pancreatic progenitor and squamous



J. Clin. Med. 2020, 9, 4128 7 of 21

subtypes. The compound pancreatic group was similar to Collison’s exocrine, Bailey’s ADEX and
Moffit’s classical. Lastly, the mesenchymal subtype correlated with Collison’s quasi-mesenchymal,
Bailey’s squamous and Moffit’s basal.

Chan-Seng-Yue et al. [38] performed whole genome sequencing and both bulk and single-cell
RNAseq analyses on laser capture microdissected tumours from more than 200 late-stage patients.
They identified three major subtypes: “classical”, “basal-like” and “hybrid” (Table 1). Although the
classical and basal-like subtypes were fairly overlapped with the previous classifications by Moffit,
Bailey and Collison (Table 2), they found that these subtypes could be subdivided into A and B subclasses
with differences in their response to chemotherapy, aggressiveness and disease stage. For example,
basal-like A tumours are highly chemoresistant and feature a high squamous signature enriched in
metastatic tumours, while basal-like B tumours correspond to a low squamous signature present in
resectable tumours. Importantly, they found that classical and basal-like programs co-exist within
a tumour and demonstrated that molecular subtypes are linked to a specific copy number aberrations
in genes such as mutant K-RAS (basal-like subtype) and GATA6 (classical subtype).

Finally, Nicolle et al. [39] proposed a molecular gradient classification to stablish a PDAC
transcriptomic signature that could better represent the existence of intermediate cellular phenotypes
between classical and basal-like subtypes (Table 1). In this study, they graded Patient-Derived Xenografts
(PDXs) according to different molecular levels of differentiation and confirmed that the higher expression
of genes linked to the classical PDAC subtype (GATA6) was correlated with increased differentiation of
PDX samples, while lower expression of genes was linked to the basal-like subtype. They also found
that the higher the differentiation of the tumour, the better the prognosis and response to chemotherapy.

Interestingly, although partial overlap amongst the different signatures and molecular subtypes
can be found in these studies, recent works using single-cell transcriptomics demonstrated that several
subtypes can co-exist within a tumour [38,40], further underlining the high level of heterogeneity
present in PDAC tumours. Undoubtedly, more efforts in this direction are required to further dissect
the complexity of these tumours, as well as to decipher the interplay of the different subpopulations
during disease progression.

4. Metabolic Reprogramming in PDAC

At the histological level, one of the most notable characteristics of PDAC is its dense stroma,
being up to 90% of the tumour volume. Its main features are extensive fibrosis, lack of vascularisation,
hypoxia and immune infiltration. Hypoxia is associated with increased cancer cell proliferation,
survival, EMT, invasiveness and metastasis [41].

The lack of vascularisation not only causes hypoxia in the tumour, but also causes metabolic stress
due to nutrient deprivation. As a result, tumour cells undergo the so-called “metabolic reprogramming”,
an updated hallmark of cancer [32,42]. Cancer cells increase nutrient acquisition along with enhanced
flow through anabolic pathways. This leads to increased glycolysis and glucose transport, high glutamine
consumption, lipid and amino acid biosynthesis and maintenance of redox homeostasis. In addition,
recycling of cellular components also occurs through autophagy, which degrades macromolecular
complexes and organelles into individual metabolites [41,43–45].

4.1. Warburg Phenotype

The major example of metabolic reprogramming is higher glucose consumption. The role of
glucose metabolism in cancer was well defined by Otto Warburg back in the late 1920s, leading to be
considered one of the hallmarks of cancer [46]. Glycolytic flow is precisely controlled to fulfil rapid
proliferative and synthetic needs. Unlike normal cells, tumour cells have high levels of glycolysis,
even in the presence of oxygen and reduced mitochondrial function, leading to a state called “aerobic
glycolysis”, also called the “Warburg effect”. On the other hand, the “reverse Warburg effect”
describes a two-compartment model in which cancer cells induce aerobic glycolysis in the stromal
cells, whose glycolysis end-products are transferred to the cancer cells to feed mitochondrial oxidative
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phosphorylation (OXPHOS). This allows tumours to respond to variations in nutrient availability and
to optimise cell proliferation and growth [47]. Interestingly, this two-compartment model can also
be applied considering the functional heterogeneity of cancer cells in PDAC: glycolytic differentiated
tumour cells could provide substrates to oxidative cancer stem cells (CSCs) [48].

A hypothesis for metabolic rewiring towards enhanced glycolysis over the reduction of
mitochondrial oxidation as a source of ATP in PDAC is the presence of a dense desmoplastic
stroma, which basically impedes neovascularisation. This creates a hypoxic microenvironment in
which oxygen and nutrients are limited [49]. This state creates a positive feedback loop by which, on the
one hand, pancreatic cancer cells feel a selective pressure under the hypoxic and nutrient shortage
where only the most aggressive populations will remain. On the other hand, under such stress-driven
situations, pancreatic cancer cells are forced to modify their metabolism in order to cope with their
bioenergetic demands for PDAC progression, expansion and dissemination through the blood vessels
towards less scarce environments [50]. Indeed, a recent study demonstrated that glycolysis and hypoxia
signatures correlate in PDAC and that Prolyl 4-Hydroxylase subunit Alpha 1 (P4HA1), a critical enzyme
involved in collagen synthesis, controls glycolysis through HIF1α stabilisation [51]. Moreover, gene
expression arrays of metastatic PDAC revealed a glycolysis-based signature characterised by increased
expression of many glycolytic enzymes [52], highlighting the importance of glycolytic metabolism in
PDAC progression. In fact, Liu et al. recently demonstrated that the EMT-related gene SNAIL was
able to induce a migratory phenotype in PDAC cell lines by promoting mesenchymal-related genes
expression along with enhanced glucose uptake and lactate production [53].

Overall, the glycolytic state is characterised by an increased expression of glycolytic enzymes
and glucose and lactate transporters, such as Glucose Transporter 1 (GLUT1), and Monocarboxylate
Transporters 1 and 4 (MCT1, MCT4) [54,55]. Specifically, the overexpression of these membrane
transporters leads to an enhanced glucose scavenging from the hypovascularised tumour
microenvironment, which results in increased glucose availability in the cancer cell as well as a better
balance of the glucose pathway in order to keep glycolysis at high rate. On the one hand, GLUT1 is
an ATP-independent glucose transporter that enables glucose transference from a high-gradient
extracellular compartment to low-gradient cytoplasmic compartment. Its expression dosage has been
reported to be associated with PDAC progression from low- to high-grade pancreatic preneoplastic
lesions when compared to normal pancreas [54]. On the other hand, MCT1 and MCT4 are proton-coupled
symport transporters with higher affinity for lactate efflux. These transporters implicated in glucose
homeostasis are required for cancer cells to neutralise intracellular acidification due to the increased
glycolytic rate and have been reported to be overexpressed in PDAC. Kong et al. showed that inhibition
or knockdown of MCT resulted in an inhibited lactate flux. Interestingly, they also demonstrated that
these transporters are implicated in PDAC cell lines invasiveness, thus highlighting once again the
implications of glucose homeostasis in pancreatic cancer [56].

Importantly, the up-regulation of most of these genes is mediated by PDAC driver mutations on
K-RAS and TP53. As reviewed by Bryant et al. [57], oncogenic K-RAS enhances the expression of many
glycolytic enzymes such as GLUT1, Hexokinase 1 and 2 (HK1, HK2) and Lactate Dehydrogenase A
(LDHA), thus increasing glycolytic flux. This metabolic reprogramming towards glycolysis contributes
to an enhanced survival of glycolytic PDAC cell lines in the presence of low levels of glucose.
Moreover, another study based on transcriptome and metabolome analyses showed that mutant
K-RAS in advanced PDAC mouse models is necessary for an enhanced glucose uptake [57]. This study
also revealed that aberrant K-RAS is implicated in glucose metabolism intermediates channelling
into different anabolic pathways, such as the hexosamine biosynthesis pathway (HBP) and pentose
phosphate pathway (PPP), thus proving that glucose metabolism is necessary to fuel anabolic branches
of PDAC metabolism to provide the cancer cells with building blocks for its increased proliferation
demands [58]. Moreover, the enhanced expression of the glycolytic enzymes was demonstrated to be
related to bad PDAC prognosis, invasiveness and metastases onset [59].
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4.2. Lipid Metabolism in PDAC

PDAC tumours are also highly dependent on lipid metabolism [60,61] and, in fact, a high fat diet
was shown to support tumour growth in murine models [60]. On the one hand, fatty acids (FA) can be
provided exogenously by the absorption of extracellular lipids (from diet, liver synthesis or adipose
tissue). For example, cancer-associated adipocytes can provide adipokines and lipids to cancer cells [62],
increasing pancreatic cancer cell aggressiveness [63]. The exogenous FA uptake requires the presence of
the transporter CD36 and FA-binding proteins (FABPs). CD36 can also influence gemcitabine resistance
in PDAC, by regulating anti-apoptosis proteins [64,65]. Unsurprisingly, PDAC patients with high
CD36 expression have lower overall survival and recurrence-free survival rates than patients with low
expression. In this context, CD36 could be considered as an unfavourable prognosis factor and the use
of anti-CD36 strategies in association with conventional chemotherapies could represent a promising
therapeutic approach [64,66].

On the other hand, pancreatic cancer cells can synthesise de novo lipids through the lipogenesis
process, producing more than 90% of the triacylglycerol-FA. This process uses the mitochondrial
citrate produced from the tricarboxylic acid (TCA) cycle fuelled by glucose and/or glutamine as
carbon sources [67]. Lipogenic enzymes are often overexpressed in PDAC cells; for example Fatty
Acid Synthase (FASN) is particularly prominent and associated with poor prognosis [61,68–70].
The pharmacological inhibition of this enzyme reduces stemness features and gemcitabine resistance
in pancreatic cancercells [71]. The produced triacylglycerol molecules are stored in lipid droplets and
a correlation was established between the accumulation of lipid droplets and tumour progression and
aggressiveness [72]. Likewise, an elevated lipid synthesis correlates with CSC properties and survival
in different types of cancer [72]. Thus, cancer cells acquire FA through either lipid uptake or de novo
lipogenesis, and activate intracellular lipolysis to mobilise the FA stocks.

FA sustain three requirements of PDAC development and cancer cells in general: cell membrane
formation, biosynthesis of signalling molecules and lipid-derived messengers, and energy production.
First of all, lipid synthesis is an important requirement of highly proliferative cancer cells to sustain
membrane formation [72]. From de novo synthesis, saturated or monounsaturated FA modulate
membrane fluidity and form more dense membrane layers that may reduce the uptake of drugs
and contribute to therapy-resistance [73]. Moreover, lipids are implicated in signal transduction in
two different ways: by building lipid rafts modulating protein recruitments and interactions, as well as
by formation of lipidic signalling molecules. This is the case for phosphatidylinositol-3,4,5-trisphosphate
[PI(3,4,5)P3], able to activate the protein kinase B/AKT and stimulate cell proliferation and survival [73].
Finally, FA represent an important source of energy in non-glycolytic tumours, using the mitochondrial
β-oxidation (fatty acid oxidation, FAO) to produce ATP [72,73]. In that context, Luo et al. demonstrated
that the use of etomoxir, an inhibitor of FAO by blocking the entrance of FA in the mitochondria via
Carnitine Palmitoyl Transferase 1A (CPT1A), can restore the sensitivity of pancreatic CSCs to gemcitabine
by inducing an energy crisis in those cells [74]. These data suggest that CPT1A is an important actor of the
cancer metabolism reprogramming and could represent an attractive therapeutic target, and highlight
how this process is important for the cancer cell to supply ATP under energy stress.

Additionally, PDAC cells are also highly dependent on cholesterol, as it contributes, for example,
to the formation of lipid rafts, thus modulating the recruitment of key oncogenes receptor such as the
Epidermal Growth Factor (EGF)-receptor and regulating survival pathways. Cancer cells can increase
their content through either synthesis (through mevalonate pathway) or endocytosis mediated by
low-density lipoproteins (LDL) and LDL Receptor (LDLR). In PDAC patients, cholesterol biosynthesis
is associated with a more differentiated phenotype (classical subtype), while high LDLR expression
correlates with a higher risk of tumour recurrence. Interestingly, inhibition of cholesterol synthesis
induced a mesenchymal phenotype [75] while blocking cholesterol uptake via the knock-down of
LDLR was able to sensitise PDAC cells to chemotherapy [76,77].

Taken together, all these reports prove the potential of lipid metabolism targeting in order to
sensitise PDAC cells to chemotherapy. However, some antitumourigenic effects of specific FA like
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palmitic and stearic acids were reported, and they would be able to trigger apoptosis and inhibit
proliferation of pancreatic cancer cells [78]. Additionally, more research is required to fully understand
the crosstalk of the different metabolic pathways. As an example, branched-chain amino acids (BCAAs)
were able to sustain pancreatic cancer growth by regulating lipid metabolism [79].

4.3. Amino Acid Metabolism in PDAC

In their nutrient-deprived environment, PDAC cells also face the lack of amino acids (AAs) and
use different processes to counteract this phenomenon and support their metabolic needs. First of all,
several studies demonstrated an association between elevated plasma BCAAs levels and pancreatic
cancer risk [80,81]. As increased consumption of BCAAs may occur about 10 years before PDAC
diagnosis, plasma AAs concentrations can be considered as pre-diagnostic and diagnostic markers [82].
Moreover, the significant differences observed between the different PDAC stages make AAs good
candidates to improve early diagnosis and patient stratification [82]. For example, analysis of AAs
plasma levels in extended cohorts led to identifying three natural BCAAs with significant elevated
concentrations: leucine, isoleucine and valine, metabolised via common pathways [80,83].

The close microenvironment represents another source of AAs to feed PDAC cells. For example,
stromal cells, such as pancreatic stellate cells, secrete alanine, which is assimilated by PDAC cells to
support their glutamine and glucose metabolism [84,85]. In another way, cancer-associated fibroblasts
(CAFs) present an up-regulated BCAAs catabolism and are able to fuel PDAC cells with branched-chain
α-ketoacid (BCKA), thanks to their elevated BCAT1 (Branched chain amino acid transaminase 1)
activity [86]. It was also demonstrated that PDAC cells can directly catabolise extracellular collagen to
produce proline and fuel the TCA cycle under restrictive nutrient conditions [87]. These exchanges
between PDAC cells and extracellular milieu (plasma or closed microenvironment) are dependent on the
expression of transporters such as the L-type Amino Acid Transporter 1 (LAT1) or the Cystine/Glutamate
Exchanger (SLC7A11/xCT). For that reason, the expression of aa transporters is also associated with
low prognosis and chemoresistance [88,89].

Additionally, indirect sources of AAs also contribute to PDAC development. In general, a whole-body
protein breakdown occurs in the course of the disease, since PDAC cells are able to capture of external
proteins, such as albumin, through the macropinocytosis process, which combines endocytosis and protein
degradation (lysosomal or proteolytic degradation). This extracellular protein catabolism represents an
important source of AAs, including glutamine, that sustains the central carbon metabolism. Indeed,
although glucose is the dominant energy fuel for most cancers in vivo, it has been suggested that ATP
generation relies on glutamine carbons in vitro, leading to glutamine addiction. Furthermore, glutamine
plays other important roles in PDAC cells: (1) in lipid biosynthesis, (2) as a nitrogen donor for AAs and
nucleotide biosynthesis, (3) as a carbon substrate for the anaplerosis of the mitochondrial TCA cycle, (4) in
redox balance by participating in glutathione biosynthesis and generating NADPH [60,90]. PDAC cells
metabolise glutamine through a non-canonical pathway driven by K-RAS or MYC oncogenes in which
transaminases, such as Aspartate Aminotransferase, are essential [91].

5. PDAC Metabolic Signatures

Although initially it was thought that all PDAC tumours carried similar changes in metabolism,
the existence of subtypes with specific metabolic requirements has become apparent lately. This section
summarises and analyses reports that either directly identify metabolic subtypes in PDAC or their
existence can be inferred from the signatures classifying each subtype.

Daemen et al. [92] identified three different metabolic subtypes in PDAC cell lines through
metabolite profiling, further confirmed by transcriptional analysis: “slow-proliferating”, “glycolytic”
and “lipogenic” (Table 3). The slow-proliferating subtype was defined by reduced cellular proliferation
and low levels of AAs and carbohydrates. The glycolytic subtype showed high levels of gene
expression and metabolites from the glycolytic, pentose phosphate and serine pathways. In contrast,
the lipogenic group was characterised by sets of lipogenic genes and metabolites involved in the
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synthesis of cholesterol and lipids and mitochondrial OXPHOS. Interestingly, while glutamine
contributed to TCA metabolites in glycolytic cell lines, the lipogenic ones used glucose to replenish
the TCA cycle, which was accompanied by increased oxygen consumption and mitochondrial
content. Finally, they created a signature defined by the expression ratio of the glycolytic gene ENO2
(neuron-specific enolase) and several lipid genes, further validated in 200 non-pancreatic cancer cell
lines. Interestingly, the authors observed a correlation among their metabolic subtypes and Collison’s
molecular subtypes [31]: Daemen’s lipogenic subtype is associated with the classical subtype, while the
glycolytic one is related to the quasi-mesenchymal subtype (Table 4). Accordingly, and in contrast to
the lipogenic subtype, the glycolytic subtype is very aggressive, grows rapidly, produces metastases
and generally does not respond to regular chemotherapy [92].

Table 3. Metabolic PDAC signatures.

Author Type of Study Type and Number of PDAC
Samples

Dysregulated Pathways,
Metabolites and Mutations Prognosis

Daemen et al. [92] Metabolic
Transcriptional

1. Metabolomic analysis
Cell lines (n = 38)

2. Transcriptional analysis
Cell lines (n = 38)

Slow-proliferating: (↓) amino acids
and carbohydrates levels

Glycolytic: (↑) Metabolites and genes
in glycolytic, pentose phosphate and

serine pathways
Bad

Lipogenic: (↑) Metabolites and genes
in cholesterol and de novo lipid

synthesis
Good

Zhao et al. [34] Transcriptional

1. Microarray datasets of primary
tumour samples (n = 1268)

TCGA (n = 172)
GSE79670 (n = 51)
TCGC PACA-AU

(n = 71)
MTAB-1791 (n = 195)
ICGCarray (n = 178)
GSE71729 (n = 145)
GSE62165 (n = 118)
GSE62452 (n = 69)
GSE57495 (n = 63)
GSE60980 (n = 49)
GSE77858 (n = 46)
GSE55643 (n = 45)
GSE15471 (n = 39)

L1: (↑) Glycolytic and lipogenic genes

L2: (↑) Glycolytic genes Bad

L3: (↑) Protein metabolism and
digestive enzyme activity genes

Lomberk et al. [35] Epigenetic
Transcriptional

1. PDXs (n = 24)
2. Clinical samples
microarray datasets
GSE71729 (n = 145)

ICGC (n = 178)
TCGA (n= 172)

Basal: (↑) MYC, glucose
metabolism genes

Classical: (↑) PPARs, lipid
metabolism genes

Good

Maurer et al. [36]
Transcriptional
Computational

modelling

1. Primary PDAC tumour samples
(n = 122)

2. Clinical samples
microarray datasets

GSE71729 (UNC)
(n = 125)

ICGC (n = 93)
TCGA (n = 127)

Classical: (↑) lipogenic pathways
(cholesterol, retinol and steroid

hormone biosynthesis)
Good

Karasinska et al. [93] Transcriptional
Mutational

1. Transcriptional datasets
TCGA (PAAD-US)

(n = 61)
ICGC (PACA-CA)

(n = 148)
COMPASS (n = 90)

PanGen/POG (n = 26)
2. Mutational datasets

TCGA (PAAD-US) (n = 60)
ICGC (PACA-CA) (n = 86)

Quiescent: (↓) metabolic activity

Glycolytic: Glycolytic genes. K-RAS
and MYC oncogenes amplification
(↓) expression MPC1 and MPC2

Bad

Cholesterogenic: (↑) Cholesterol
biosynthesis genes Good

Mixed: (↑) Glycolytic and cholesterol
biosynthesis genes

Dijk et al. [37] Transcriptional

1. Primary PDAC tumour
samples (n = 90)

2. Pancreatic cancer PDXs
cohort (n = 14)

3. PDAC Cell lines cohort (n = 51)

Epithelial: (↑) lipogenic pathways Good

For each classification, type of study, type and number of samples, dysregulated pathways, metabolites and
mutations and prognosis are described in each column. Up-regulated and down-regulated pathways are shown as
(↑) and (↓), respectively.
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Table 4. Schematic overview of the correspondence of reported molecular and metabolic subtypes
in PDAC.

Authors Subtypes
Collisson et al. [31] Classical Quasi-mesenchymal

Moffit et al. [33] Classical Basal-like
Bailey et al. [39] Progenitor Squamous

Daemen et al. [91] Lipogenic Glycolytic
Zhao et al. [92] L1 (Glycolytic/lipogenic) L2 (Glycolytic)

Lomberk et al. [35] Classical (PPAR-dep) Basal (MYC/K-RAS dep)
Maurer et al. [36] Classical (lipid metabolism) Basal

Karasinska et al. [34] Cholesterogenic Glycolytic
Dijk et al. [37] Epithelial (lipid metabolism) Mesenchymal

Correlated subtypes are grouped in columns. Colours define the subgroups with the best (green) or worst
(red) prognosis.

As mentioned before, the L1, L2 and L6 PDAC subtypes described by Zhao et al. [34] were
related to metabolism (Table 3), while the L1 tumours up-regulated glycolytic and lipogenic genes
and the L2 subtype enriched glycolysis gene sets and down-regulated lipid metabolism ones. Finally,
L6 up-regulated genes associated with protein metabolism and digestive enzyme activity. We can find
similarities between Zhao’s and Daemen’s classifications: L2 would correspond to Daemen’s glycolytic
subtype, associated with poor prognosis in clinical samples, while L1 would constitute a mixed group
with characteristics of both glycolytic and lipogenic groups (Table 4).

The work by Lomberk et al. [35] analysing the epigenetic landscape of PDAC samples identified
super-enhancers and super-enhancer-associated TFs regulating metabolic nodes (Table 3). Indeed, the
classical subtype is associated with the up-regulation of TFs modulating lipid metabolism (PPAR),
while MYC, a known regulator of PDAC glycolytic phenotype [47], likely controls the basal subtype.

Maurer et al. [36] conducted analyses of gene set variance in different published cohorts (TGCA,
ICGC, UNC and CUMC), applying transcriptional deconvolution to identify the genes specifically
associated with the epithelial compartment (Table 3). Interestingly, they confirmed the correlation
between the classical subtype and lipid metabolism in the diverse datasets, highlighting cholesterol
biosynthesis and retinol metabolism (Table 4).

A recent study by Karasinska et al. [93] analysed the expression of genes related to glycolysis
and cholesterol synthesis in clinical samples (Table 3) to establish four metabolic subgroups of PDAC:
“quiescent”, “glycolytic”, “cholesterogenic” and “mixed”. While the quiescent group had poor metabolic
activity, the glycolytic and cholesterogenic subtypes enhanced one of these pathways. The glycolytic
subtype was characterised by the amplification of K-RAS and MYC oncogene and showed the lowest
expression of the mitochondrial pyruvate carriers MPC1 and MPC2. In addition, the glycolytic
group showed poor prognosis, whereas the cholesterogenic one reported the longest median survival.
Lastly, the mixed subtype presented high metabolic activity and enrichment in both the glycolytic
and cholesterol biosynthesis pathways. These metabolic subtypes were also found in nine additional
types of cancer. Karasinska et al. compared their metabolic classification with previous molecular
signatures (Table 4): the quiescent group predominantly belonged to Moffit’s classical subgroup, and it
showed the highest frequency of ADEX and exocrine-like cases, suggesting that the quiescent group
might be involved in the secretion of digestive enzymes; the glycolytic subtype was associated with
the basal, squamous and quasi-mesenchymal subgroups, all related with the worst outcome; finally,
the cholesterogenic group had the lowest proportion of poor prognosis signatures, but the highest in
Bailey’s pancreatic progenitor subtype.

Coming back to the classification of Dijk et al. [37], the epithelial subtype showed an enrichment
in mitochondrial and lipid metabolism pathways such as OXPHOS, terpenoid backbone biosynthesis,
TCA cycle, steroid biosynthesis and FA degradation (Table 3). This suggests a link between Dijk´s
epithelial subtype and Daemen´s and Karasinka´s lipogenic subtypes, all of them correlated to the
classical classification (Table 4).
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As seen for both molecular and metabolic stratification, all these classifications share subtypes that
are consistently present in PDAC. All stratifications comprise a classical subtype with better prognosis
corresponding to the lipogenic metabolic subtype. On the other hand, the quasi-mesenchymal, basal or
squamous subtypes, which are aggressive, metastatic and undifferentiated tumours, are always related
to the glycolytic subtype [32,94]. This strongly suggests an association amongst the genetic signature,
metabolic profile and tumour aggressiveness. Such a connection could reflect the transcriptional
program of a driver mutation such as the ones found in K-RAS, which induces profound changes at the
cellular level, including metabolic reprogramming. However, the heterogeneity found in molecular
and metabolic subtypes does not necessarily correspond to specific mutations, suggesting an extra layer
of complexity provided, for example, by the microenvironment. Thus, defining metabolic subtypes
represents a clear opportunity for patient stratification, considering tumour phenotype independently
of its mutational background, and opens a new avenue for the identification of targeted therapies for
each subgroup.

6. Metabolic Phenotypes and Survival in PDAC

As mentioned above, we can define at least two metabolic phenotypes consistently represented
across the different analyses, regardless of the main focus of the studies (molecular or metabolic
classification): glycolytic and lipogenic subtypes. Interestingly, bioinformatic analyses using TCGA
and GTEx databases indicate that genes from both metabolic pathways are significantly up-regulated
in tumoural vs. normal tissues (Figure 1). Amongst the genes included in this analysis, we can find
representative genes of the metabolic subtypes defined by Daemen et al., Zhao et al. and Karasinska et al.
in their respective stratification studies [34,92,93]: (1) for the glycolytic subtype, these are ENO2 (Daemen,
Zhao, Karasinska) and lactate dehydrogenase 1 (LDH1) (Karasinska); (2) for the lipogenic subtype,
it concerns those involved in the triacylglycerol and cholesterol biosynthesis, such as diacylglycerol
O-acyltransferase 1 (DGAT1), 7-hydrocholesterol reductase (DHCR7), 3-hydroxy-3-methylglutaryl-CoA
synthase 1 (HMGCS1) and mevalonate (diphospho-) decarboxylase (MVD) (Daemen, Karasinska).

Disease-free survival analyses for the representative genes of the metabolic stratification studies
mentioned above revealed that, except for LDH1 and DHCR7, none of the individual genes had
a significant impact on patient survival (Figure 2a,b). Surprisingly, although not significant, a trend for
ENO2 expression associated with better prognosis was observed (Figure 2a). In fact, previous studies
proved that up-regulated ENO2 contributes to the aggressiveness and poor prognosis of the glycolytic
subtype in pancreatic cancer [34,92,93]. Importantly, Daemen et al. proposed a gene expression ratio
based on ENO2 and a lipid signature composed by DGAT1, DHCR7, FDFT1, HMGCS1 and MVD to
distinguish between glycolytic and lipogenic metabolic phenotypes for PDAC and other cancer types.
Considering the survival analyses in Figure 2a, we analysed the relationship between the enrichment
in glycolytic or lipogenic genes and prognosis, using a modified glycolytic/lipogenic gene ratio from
Daemen’s study that includes LDH1 instead of ENO2. In this line, disease-free survival decreased
significantly when the ratio LDH1 and any of the lipogenic genes increased; thus, when tumours
were glycolytic (Figure 2c). Interestingly, the hazard ratio (HR) combining LDH1 and MVD or DGAT1
reached values of up to 3.8, facilitating the distinction between the two metabolic subtypes and
their impact on prognosis. Although further work in this direction is certainly needed, the use of
a simplified signature with the metabolic genes that most contribute to prognosis could streamline
patient stratification based on the phenotypic features of the tumours.
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Figure 1. Genes from the glycolytic and lipogenic pathways up-regulated in PDAC samples. 
Expression of genes from glycolysis (a) triacylglycerol biosynthesis (b) and cholesterol biosynthesis 
(c) were analysed in cancerous (n = 179) and non-cancerous (n = 171) tissues (public gene expression 
information from PDAC vs. non-tumoural or normal pancreas tissues collected in the TCGA and 
GTEx databases) using GEPIA2 webtool (http://gepia2.cancer-pku.cn). The genes highlighted in the 
PDAC stratification studies from Daemen et al., Zhao et al. and Karasinska et al. are shown in orange. 
Significant differences in gene expression between cancerous and non-cancerous tissues was 
calculated by ANOVA test and is represented by an asterisk (* p ≤ 0.05). 
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Figure 1. Genes from the glycolytic and lipogenic pathways up-regulated in PDAC samples. Expression
of genes from glycolysis (a) triacylglycerol biosynthesis (b) and cholesterol biosynthesis (c) were analysed
in cancerous (n = 179) and non-cancerous (n = 171) tissues (public gene expression information from
PDAC vs. non-tumoural or normal pancreas tissues collected in the TCGA and GTEx databases) using
GEPIA2 webtool (http://gepia2.cancer-pku.cn). The genes highlighted in the PDAC stratification studies
from Daemen et al., Zhao et al. and Karasinska et al. are shown in orange. Significant differences in
gene expression between cancerous and non-cancerous tissues was calculated by ANOVA test and is
represented by an asterisk (* p ≤ 0.05).
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Figure 2. Disease-free survival analysis based on the expression of the genes selected for different
metabolic classification systems. (a). LDH1 and ENO2. (b) MVD, HMGCS1, DHCRT and DGAT1.
(c) Ratio LDH1 and MVD, HMGCS1, DHCR7 or DGAT1. Comparison of upper and lower population
quartiles is displayed. Log-rank test, Hazard Ratio (HR) and their corresponding p-values were
calculated based on the COX model. Analyses were performed using the GEPIA2 web tool (http:
//gepia2.cancer-pku.cn) using public gene expression information collected in the TCGA database.
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7. Conclusions

PDAC is a heterogeneous disease that can be classified, according to its metabolic needs, into
glycolytic and lipogenic subtypes with different prognosis. Indeed, the glycolytic subtype would be
more aggressive and resistant to conventional chemotherapy than the lipogenic one. This metabolic
stratification correlates with previous molecular classification systems, as they show subtypes sharing
similar characteristics and prognosis. In this context, classification into metabolic subtypes may be
better placed for clinical use, since it could provide information on the functional phenotype of the
tumour, correlating to aggressiveness, chemoresistance and metastatic abilities independently from its
mutational state. The information collected in this review strongly suggests that patient stratification
based on metabolic features may bear prognostic value and guide therapeutic decisions in the future,
identifying a subgroup of patients with poor prognosis that may be eligible to personalised treatments
designed according to metabolic vulnerabilities.
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