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Abstract

Background: While there have been many technological advances in studying the neurobiological and clinical basis of tobacco
use disorder and nicotine addiction, there have been relatively minor advances in technologies for monitoring, characterizing,
and intervening to prevent smoking in real time. Better understanding of real-time smoking behavior can be helpful in numerous
applications without the burden and recall bias associated with self-report.

Objective: The goal of this study was to test the validity of using a smartwatch to advance the study of temporal patterns and
characteristics of smoking in a controlled laboratory setting prior to its implementation in situ. Specifically, the aim was to compare
smoking characteristics recorded by Automated Smoking PerceptIon and REcording (ASPIRE) on a smartwatch with the pocket
Clinical Research Support System (CReSS) topography device, using video observation as the gold standard.

Methods: Adult smokers (N=27) engaged in a video-recorded laboratory smoking task using the pocket CReSS while also
wearing a Polar M600 smartwatch. In-house software, ASPIRE, was used to record accelerometer data to identify the duration
of puffs and interpuff intervals (IPIs). The recorded sessions from CReSS and ASPIRE were manually annotated to assess smoking
topography. Agreement between CReSS-recorded and ASPIRE-recorded smoking behavior was compared.

Results: ASPIRE produced more consistent number of puffs and IPI durations relative to CReSS, when comparing both methods
to visual puff count. In addition, CReSS recordings reported many implausible measurements in the order of milliseconds. After

filtering implausible data recorded from CReSS, ASPIRE and CReSS produced consistent results for puff duration (R2=.79) and

IPIs (R2=.73).

Conclusions: Agreement between ASPIRE and other indicators of smoking characteristics was high, suggesting that the use
of ASPIRE is a viable method of passively characterizing smoking behavior. Moreover, ASPIRE was more accurate than CReSS
for measuring puffs and IPIs. Results from this study provide the foundation for future utilization of ASPIRE to passively and
accurately monitor and quantify smoking behavior in situ.

(JMIR Form Res 2021;5(2):e20464) doi: 10.2196/20464
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Introduction

Tobacco use disorder (TUD) is the leading preventable cause
of death worldwide (including the United States) [1], and the
costs associated with its treatment and prevention remain a
major economic burden on society [2]. Therefore, a better
understanding of the behavioral elements and mechanisms that
maintain smoking behavior is critically important for preventing
future smoking-related illnesses. While there have been
substantial technological advances in studying the
neurobiological and clinical bases of TUD and nicotine
addiction, there have been relatively minor advances in
technologies for monitoring, characterizing, and intervening on
smoking behavior. Therefore, there is a critical need for
leveraging emerging technologies that may help provide
personalized strategies for smoking cessation.

Traditional approaches to the study of human behavior primarily
rely upon self-reporting or laboratory observations. Despite
strengths found in self-report and laboratory-based research,
those techniques, by design, are prone to limitations in external
validity and are subject to human error. To more fully and
accurately characterize and understand factors influencing
people’s behavior, enabling technologies must be developed to
allow nonintrusive and longitudinal observation of human
behavior in natural settings. There are numerous advantages in
passive and accurate characterization of smoking in real time
with temporal precision [3] and without recall biases. Real-time
quantification of smoking duration before and during a cessation
attempt can help to develop a more personalized and effective
cessation protocol. Wearable devices are well-positioned to
passively assess a person's behavior in the aforementioned
context.

Wearable devices are equipped with a rich array of sensors
(accelerometer, gyroscope, magnetometer, barometer, GPS,
heart rate, electrocardiogram, oximeter) and may serve as a
powerful platform for nonintrusively capturing and studying
human behavior. In addition, the availability of mobile and
wearable devices is an international phenomenon, and their use
is not confined to any particular socioeconomic class. Therefore,
the use of these devices for sensing, recording, and identifying
human activities has the potential to passively observe health
behaviors and be deployed internationally without confinement
by any socioeconomic, political, or geographical barriers.

In recent years, there have been several reports of utilizing
commercially available smartwatches in studying human
activities. These include generic activities such as step counts,
sleep detection, and rest periods, while others include more
specific activities such as eating [4], drinking [5], managing
diabetes [6,7], or smoking [8]. Previous work has established
the use of wristworn devices in observing and interpreting
smoking behavior in laboratory settings [9-13] and in situ [8,14].
Some of these devices use proprietary sensors [5,15-17], while
others use off-the-shelf devices such as smartwatches
[8,9,14,18,19]. The use of smartwatches in continuous
monitoring of human activities and behavior is compelling for
several reasons including their availability, decreasing cost,
popularity, and the convenience and completeness of data

collection. The data connectivity that is afforded by
smartwatches adds a critical component to their appeal, allowing
for real-time observation and interpretation of activities that
can lead to immediate deployment of the appropriate
intervention. Artificial intelligence (AI)-assisted detection of
smoking with smartwatch technology [8-10,14,18-20] can
reduce the burden of self-reporting by the user and automate
notification of the team of research scientists and the caregivers.
Despite their potential, the accuracy and resolution of data
collected by smartwatches have not been comprehensively
explored in comparison to traditional smoking behavior
assessments. More specifically, while it has been shown that
detection of smoking a cigarette is possible with a smartwatch
[8,9,14,18,21,22], the use of smartwatches in better exploring
more detailed smoking characteristics of human subjects remains
unanswered. Smoking characteristics (eg, number of puffs, the
length of smoking session, duration of puffs) vary across
smokers, are associated with overall toxicant exposure [23],
and are subject to modification with smoking cessation
pharmacotherapy [24]. Therefore, accurate quantification of
smoking characteristics using a smartwatch in naturalistic
settings is advantageous in order to estimate smokers’ toxicant
exposure in daily life.

Observation of smoking using smartwatches has several
compelling aspects. First, smartwatches have sufficient storage
capacity to record and store sensor data for a duration longer
than 24 hours. The recording duration can be extended into
months by the addition of micro-SD storage media to the
companion phone. Second, the collected data will require no
additional action (other than periodic charging of the device)
by the user or the participant of a study, qualifying this method
of data acquisition to be highly unobtrusive. Third, unlike
self-reporting approaches, continuous recording of sensor data
can provide a comprehensive report of a person’s activities in
natural settings prior to and after the event of interest. For
instance, proper interpretation of the sensor data can provide a
detailed view of related human activities such as drinking,
eating, sleeping, exercising, and smoking all in one experiment.
The collection of such a detailed ensemble of activities is nearly
infeasible through self-reporting when observed in situ. Fourth,
the real-time connectivity of smartwatches allows for real-time
observation of human behavior, which can be used in numerous
ways to study or augment human behavior. For example, the
adherence of a subject to study protocols can be viewed and
confirmed, and if necessary, notifications and reminders can be
sent to the participants. Real-time and continuous connectivity
with participants allows for the initiation of the appropriate
actions, paving the way for personalized intervention or
cessation approaches.

In this report, we present an evaluation and comparison of the
quality of smoking data collected by smartwatches, Clinical
Research Support System (CReSS), and video recordings of
participants in a laboratory setting. In particular, we compared
and contrasted the accuracy of observing interpuff intervals
(IPIs) and puff duration (PD) using the Automated Smoking
PerceptIon and REcording (ASPIRE) smartwatch application
and the CReSS device. We resorted to human annotation of
visual recordings of smoking sessions when possible to resolve
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substantial disagreements between the ASPIRE and CReSS
approaches. We also explored the additional capabilities of the
ASPIRE-based method and comment on the significant
advantages that it affords and its novel future utilities.

Methods

CReSS Device
The CReSS Pocket (Borgwaldt KC Inc, Richmond, VA) is
widely used for studying smoking in a laboratory setting [25-28]
and is considered the gold standard of data collection in the
field of smoking research. Though the CReSS device provides
objective measures of smoking topography and is amenable to
use in a laboratory setting, it is relatively expensive (US ~$5500)
and interferes with the natural smoking experience. These issues
limit its utility for characterizing ad lib smoking in a smoker’s
natural environment, while interfering with normal smoking
patterns in a laboratory.

Characterization of Smoking Topography Using a
Smartwatch
Smoking topography has been used to refer to a number of
specific aspects of smoking behavior such as puff volume,
maximum puff velocity, IPI, PD, number of puffs per cigarette,
and total smoking duration.[25] In this study, we adopted a
condensed set of smoking characteristics, namely IPI and PD,
as the topography of smoking. These 2 characteristics (IPI and
PD) can be used to calculate nearly all of the remaining
measures such as the total duration of smoking, puff velocity
(and therefore maximum, minimum, and medial puff velocity),
and number of puffs per smoking session (or a cigarette).
However, the measure of puff volume is the only parameter that
cannot be directly calculated from the accelerometer data.

A smartwatch-based method allows participants to smoke freely
in their natural settings without the need to use an intermediary
device. Our previous work reported the development of an
Android Wear OS-based software (ASPIRE) package that is
capable of recording [9] and automating detection of smoking
gestures (puff) [14]. ASPIRE incorporates a hierarchy of AI
techniques in order to achieve automated detection of smoking
sessions with as high as 97% success in laboratory settings
[9,18] and 90% success in natural settings [14]. Previous work
has established the high accuracy of ASPIRE in detection of
smoking sessions, but its performance in the quantification of
detailed smoking characteristics has not been reported. The
more fine-grained assessment of a smoking session is clearly a
more challenging task and provides useful information that can
be invaluable in efforts to develop personalized cessation plans.

In the current study, participants were provided a smartwatch
(Polar M600) and Android smartphone for the duration of data
collection. Our selection of the smartwatch (Polar M600)

primarily was based on a balance between the cost of the
equipment (limited to US $150), availability of the needed
sensors (accelerometer and gyroscope), programmability using
the common Android Studio framework, battery life that
exceeded 1 day of use, and Wear OS compatibility. The ASPIRE
app listens and collects data from the participant and then sends
the data via a Bluetooth connection to the companion
smartphone app. The smartphone then uploads the data to a
secure server for storage and analysis. The current version of
ASPIRE can be obtained from the corresponding author and
installed on either a phone/watch pair or as a standalone app on
the watch. ASPIRE can be deployed on any smartwatch that is
Wear OS compatible.

Data Collection Protocol
Participants were first outfitted with a Polar M600 to wear on
their left hand. Participants were asked to follow a prompt screen
on a computer in the laboratory that gave them precise
instructions on what behaviors to perform as well as how long
to execute each behavior. An overall view of the experimental
paradigm with associated durations is shown in Figure 1. For
this study, participants were asked to smoke a total of 6 minutes,
in which they were asked to split evenly between their left and
right hands. In addition to smoking, they were also asked to
record over 7 minutes of other movements including 52 seconds
of “packing” their cigarette package. It is important to note that
the experimental protocol defined here was designed to address
a number of questions in a single recording session to optimize
the use of human subjects. Some of the targeted investigations
in this experiment included the difference in smoking gestures
when recorded from left versus right hands, the ability to detect
smoking-related activities from the nonsensor hand (the hand
without the smartwatch), and recording of other gestures such
as packing and opening of a cigarette pack. In addition to
recognition of smoking-related activities, other psychological
and cognitive parameters related to smoking were measured for
other investigations. In this study, we only utilized data related
to quantification of IPI and PD.

The CReSS device was used to record the following measures:
puff volume, average flow, peak flow, time of peak flow, PD,
and IPI. The two measures of interest for this study were PD
and IPI. The PD is the length of time in milliseconds that a
person inhales for a given intake. The IPI is the number of
milliseconds between the end of one puff and the beginning of
the next. CReSS records both a high-level and detailed view of
these measures. A median measure is used for the high-level
view due to the small sample size and existence of outliers that
are inherent to the device. The detailed view contains
information about each one of the measures per puff. In addition
to the data collected by the CReSS and smartwatch devices,
videos of each session were recorded and annotated by 2
independent raters (interrater reliability=1.0).
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Figure 1. Outline of the protocol used for data collection in the laboratory. CReSS: Clinical Research Support System.

Participants
Participants were recruited via community advertisements,
attended an in-person screening visit to determine eligibility,
and then attended an experimental smoking visit. Participants
gave written informed consent approved by the Medical
University of South Carolina Institutional Review Board and
received financial compensation for study participation.
Inclusion criteria were age ≥18 years, having an expired carbon
monoxide concentration ≥6 ppm (to confirm smoking status),
and being willing and able to comply with protocol
requirements. The participants (N=35; 13 women, 22 men) were
an average age of 43.91 years (SD 12.76 years) with a mean
carbon monoxide level of 26.57 ppm (SD 12.32 ppm). Due to
recording errors, 8 participants had incomplete CReSS (5/35)
or ASPIRE (3/35) data, resulting in a final analytic sample of
27 participants. The primary source of recording errors was
deviation from the study protocol.

Data Annotation Procedure
The first step in the evaluation procedure was to annotate the
data collected from smartwatch, CReSS, and video recordings.
Due to the time and effort required for the video recordings,
only the puff count from each hand was visually enumerated.
The annotation for the smartwatch and CReSS device consisted
of a well-trained researcher marking the timestamp associated
with the beginning and end of each puff. Using this information,
PD and IPI were measured. Each puff is easily identifiable as
first starting with a slight or negligible change in the x dimension
(±1), a moderate decrease in the y dimension (–4), and a sharp
decrease in the z dimension (–8) from a resting position (as
shown in Figure 2). This is then followed by a period of
uninterrupted and equilibrated values of x, y, and z at around 9

m/s2, –5 m/s2, and –3 m/s2, respectively. The end of a smoking
gesture was marked as the return of the x, y, and z values to a
“resting” state. These numbers vary per participant but will
follow the same general pattern.

Figure 2. A sample of Automated Smoking PerceptIon and REcording (ASPIRE)'s recording session illustrated in the upper right corner. The main
and larger figure depicts the portion of the image that corresponds to a smoking session (arrows indicate the start of a puff).

Evaluation and Exclusion of Data
The first step in the evaluation of this work was to annotate the
data collected from the participants’ puffs. The PDs and IPIs
were calculated using these annotations. In the case of ASPIRE,
the known sampling rate of 30 Hz was used to convert the

timesteps into millisecond units. Figure 2 shows an example of
a full set of data (shown in the upper right box) recorded by
ASPIRE and a subsection of the data that contained smoking
(annotated puffs are denoted with arrows). The period of
smoking shown in Figure 2 accounts for approximately 3
minutes of data.
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The second phase of the evaluation consisted of calculating the
Pearson correlation coefficients between the extracted PDs and
IPIs reported by CReSS and ASPIRE. Correlations were first
examined using the reported median data for all subjects and
then followed by analysis of the data for each individual subject.

Due to the switching of the smoking hand without the transfer
of the smartwatch, half of the smoking session was not recorded
by the smartwatch. Therefore, using the video recordings of the
smoking sessions, we limited our comparison exercise to the
portion of the smoking sessions that was recorded by both
CReSS and ASPIRE. In addition, in some instances, CReSS
reported implausible measures, inclusion of which would
provide an inaccurate comparison of the 3 methods. For instance,
CReSS reported puffs with a duration of 5 milliseconds or IPIs
of >1 minute at the beginning of each smoking session. The
long IPI at the beginning of the smoking session is the time the
device was turned on to the time of the first puff and was
therefore removed from our analysis. The implausibly short
puffs reported by CReSS can be explained by a participant
performing rapid and multiple puffs such that neither ASPIRE
nor the video recordings could identify them. In such instances,

we report results with and without the included implausible data
since they serve as clear demonstration of some nuances of the
CReSS device.

Results

Overview of the Collected Data
Each accelerometer data file collected by ASPIRE contained
20 minutes of data, which is consistent with the experimental
protocol. As a first step in our comparison of the 2 methods,
histograms were created for individual PDs and IPIs aggregated
across all subjects (shown in Figure 3 and Figure 4). The blue
bars in these figures correspond to the values produced by the
CReSS device, and the orange bars correspond to the values
produced by ASPIRE. Although the distributions of the PDs
were very similar between the 2 methods, the distributions of
IPI values were different (Figure 4). While the 2 histograms
demonstrate general agreement, they differ notably in reporting
the number of small IPIs. For the CReSS data, there is a spike
in very low values corresponding to an IPI value of 0-1 second.
The median of the IPIs reported by CReSS in this range was
0.33 seconds.

Figure 3. Comparison of individual puff durations collected via the Clinical Research Support System (CReSS; blue) and Automated Smoking PerceptIon
and REcording (ASPIRE; orange).
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Figure 4. Comparison of individual interpuff intervals (IPIs) collected via Clinical Research Support System (CReSS; blue) and Automated Smoking
PerceptIon and REcording (ASPIRE; orange).

Comparison of Overall Statistics
The number of puffs that the CReSS device recorded was
compared to a visual inspection of each participant’s respective
video recordings. In 80% of cases, the visual puff count and the
count reported by CReSS were within ±2. However, in 4
participants, the puff counts differed by as much as ±6. Figure
5A and Figure 5B show the correlations between the overall
visual puff counts for the left hand of each participant compared
to the puff counts reported by ASPIRE and CReSS, respectively.

The R2 value for the visual puff count and counts reported by

ASPIRE was 0.79, whereas the R2 between the visual puff count
and the CReSS reported count was 0.52. The participant that
caused the most deviation in both comparisons was P14 (in red
in Figure 5A and Figure 5B) with reported visual, ASPIRE, and
CReSS counts of 14, 8, and 38, respectively.

The correlations between the CReSS and ASPIRE data for the
median PD and median IPI across all patients are illustrated in

Figure 6A and Figure 6B, respectively. R2 values of 0.7926 and
0.7309 (P<.001) were calculated for the median PDs and median
IPIs, respectively, indicating a high level of correlation between
the data reported by the 2 methods.

Figure 5. Comparison of the visual puff count versus the (A) Automated Smoking PerceptIon and REcording (ASPIRE) puff count and (B) Clinical
Research Support System (CReSS) puff count. In both figures, participant P14 was an outlier and is colored red.
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Figure 6. Comparison of the overall reported median (A) Clinical Research Support System (CReSS) versus Automated Smoking PerceptIon and
REcording (ASPIRE) puff duration and (B) CReSS versus ASPIRE interpuff interval (IPI).

Comparison of Individual Puffs
Due to potential error in smoking topography data acquired by
CReSS, the data are not usually used to perform detailed
statistical analyses or inferences, and instead, the median values
for PD and IPI are used. The developer of CReSS, Borgwaldt,
recently released a method for correction of these errors, but it
still remains widely variable in its success. However, in contrast
to CReSS, detailed recording by ASPIRE allows for the
meaningful study of mean, standard deviation, and other
statistical moments of PD and IPI for each participant. Figure
7 illustrates the smoking topography for a representative
participant (P2) reported by CReSS and ASPIRE. Both methods
reported a total of 10 recorded puffs (illustrated in green bars)
separated by 9 IPI intervals (illustrated in blue bars). Also, both
methods reported similar values for the median PD and IPI.
However, it is clear that the duration of the entire event is highly
discrepant across the 2 methods. Furthermore, visual inspection
of the smoking session reported by CReSS consists of only 8

decipherable puffs (green regions). This is due to very short
IPIs of 5 milliseconds that render 2 puffs unseparated in the
figure. On the other hand, the same smoking session reported
by ASPIRE is well organized into the expected shorter puffs
that are separated by longer IPIs. The trend marked as cCReSS
in this figure corresponds to the corrected CReSS data by only
correcting 5 elements (puffs or IPIs out of 20) of the smoking
session. These were corrected by substituting the abnormally
short or long IPIs with the average of the remaining IPIs in the
CReSS data for the participant. The correlation between the
CReSS and ASPIRE reported data improved from 0.05 to 0.80
after correcting for the discrepant data. Figure 8 and Figure 9
demonstrate other examples of similarity between the CReSS
and ASPIRE data after correcting for outliers. These examples

have R2 values in the ranges of 0.77-0.83 for PD and 0.97-0.99
for IPI. These correlation values indicate a similarity reported
by the 2 different methods with statistical significance of
P<.005.

Figure 7. An illustration of smoking topography reported by Clinical Research Support System (CReSS), Automated Smoking PerceptIon and REcording
(ASPIRE), and corrected CReSS (cCReSS). The puff durations and interpuff intervals are illustrated in green and blue, respectively.
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Figure 8. Correlations of individual puff durations collected via the Clinical Research Support System (CReSS) device and Automated Smoking
PerceptIon and REcording (ASPIRE) for participants (A) P15, (B) P17, (C) P19, and (D) P8.
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Figure 9. Correlations of individual interpuff intervals (IPIs) collected via the Clinical Research Support System (CReSS) device and Automated
Smoking PerceptIon and REcording (ASPIRE) for participants (A) P15, (B) P19, (C) P7, and (D) P17.

Discussion

Principal Findings
Findings from this study provide direct evidence that ASPIRE
accurately assesses multiple components of smoking behavior
in controlled laboratory settings. Our study revealed 3 important
findings. First, ASPIRE is highly effective in accurately
detecting when a person initiates smoking and how many puffs
of a cigarette is inhaled. Second, ASPIRE may be used to
accurately characterize the duration of each puff—which may
provide a dose indicator when used in conjunction with puff
count. Finally, ASPIRE can detect time between each puff (IPI),
which may provide a meaningful metric of episodic smoking
compulsivity. These findings suggest that ASPIRE can be tested
in naturalistic settings as a potential means to assess smoking
behavior in daily life.

Smartwatches have the potential to significantly advance the
study of human behavior in situ; however, the reliability of the
information reported by wearable devices has been questioned.
In this study, we investigated and demonstrated the reliability
of the data reported by ASPIRE in the laboratory setting
compared to the CReSS and visual recording of the smoking
sessions. Moreover, though other technologies have been

recently developed to detect smoking behavior at the puff or
session level [8,14,19], this is the first study to demonstrate
characterization of smoking topography (namely PD and IPI)
as performed by ASPIRE.

The ability to passively collect and accurately characterize
multiple components of smoking behavior in the natural
environment is a critical step in monitoring smoking,
characterizing smoking outcomes in outpatient clinical trials,
and developing real-time adaptive interventions or personalizing
smoking cessation interventions. Much of our knowledge about
the mechanisms that elicit smoking behavior is obtained from
observation of behavior in laboratory settings. For example,
research has examined how exposure to smoking stimuli (for
example, image of cigarette lighter) [29], acute stressors or
mood inductions [eg, 30,31], fasting [30], and interventions
[31,32] affect smoking behavior under controlled laboratory
conditions. Upon validation of ASPIRE in naturalistic settings,
ASPIRE can be used to examine whether laboratory-based
findings generalize to real-world settings. In future studies,
ASPIRE-detected smoking may be developed to incorporate
randomly prompted app, text, or smartwatch surveys asking
about precipitants of smoking behavior (eg, stress, craving,
environmental contexts). Alternatively, several passive
technologies can be combined. For example, measures of
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electrodermal activity or heart rate (ie, physiological arousal)
recorded via mobile devices may be collected in addition to
assessing the timing, count, and characteristics of cigarettes
smoked in real-world settings. The combination of these active
and passive measures will significantly improve fidelity for
characterizing the factors that maintain smoking behavior among
individuals and thus facilitate precision medicine and treating
TUD.

In addition, real-time technology has the potential to greatly
improve assessment of smoking outcomes in smoking cessation
clinical trials [33]. The traditional outcome measure in smoking
cessation clinical trials is biomarker-confirmed abstinence
[34,35]. Typically, this is assessed via participant report of
abstinence for a certain number of days (ie, 7-day abstinence)
and confirmed in laboratory via carbon monoxide or cotinine.
These outcomes are subject to errors in retrospective recall and
intentional misreporting. ASPIRE can provide objective
evidence of smoking while also indicating when the smartwatch
is removed for the purposes of determining adherence with
wearing the smartwatch. Remote technologies also help to
extend the reach of clinical trials. Individuals with the necessary
technology can participate in a smoking cessation trial remotely
(ie, at a different location than the research team) while still
providing rigorous evidence of smoking or abstinence.

Finally, the incorporation of AI and machine learning techniques
to automatically detect and report smoking behavior can assist
in the delivery of personalized and just-in-time interventions.
AI algorithms can incorporate the precise information regarding
the context and timing of cigarettes smoked gained from
ASPIRE to determine when an individual is most likely to
smoke. Interventions can be delivered pre-emptively to prevent
smoking or relapse [eg, 38].

Limitations
A number of limitations must be considered when interpreting
the current findings. First, validation of ASPIRE requires
comparison to a gold standard measure. However, CReSS, as
the gold standard comparator used in this study, suffers its own
limitations. The CReSS device identifies smoke topography
only based on the inhalation patterns and does not incorporate
any information regarding the exhalation activity. Therefore,
the CReSS device may identify a single puff that is composed
of numerous discontinuous puffs as multiple short puffs
separated by short IPIs. For instance, in Figure 4, it was shown

that CReSS recorded a significant number of IPIs of 1 second
or less. While IPIs of this length are theoretically possible, their
appearance in such an abundance reported by CReSS is highly
suspect. The short IPIs reported by CReSS contribute to skewing
the overall statistics presented, which lowered concordance
between the CReSS puffs and ASPIRE-collected puffs. Based
on the review of the visual recordings in this study, we have
confirmed that the ASPIRE approach provides a more consistent
and reproducible report of the smoking topography than the
CReSS device. Furthermore, we have also demonstrated the
consistency of smoking topography reported by smartwatches
and the CReSS device in laboratory settings. Our results
conclude that the PD and IPI reported by both devices exhibit
a substantial degree of correlation after the exclusion of the
outliers reported by the CReSS device.

A second limitation of this study is that the laboratory is an
unnatural smoking environment that may elicit unnatural
smoking behavior from the participants, including the use of
CReSS to smoke. ASPIRE can record and report smoking
behavior in natural settings, though it is possible that the
accuracy of ASPIRE in the laboratory does not generalize to
these settings or to cigarettes not smoked via CReSS. Thus,
future efforts should examine the comparability of cigarettes
smoked with and without CReSS and the applicability of
ASPIRE in studying smoking behavior in natural settings.

Comparison to Prior Work
Although there have been prior reports [8,9,12-14,18] of
identifying smoking sessions using smartwatches, to our
knowledge, there has been no other smoking topography work
with which to compare these results. Our reported results
constitute the first instance of comparing smoking data collected
from smartwatches to smoking data collected from the
industry-standard CReSS device.

Conclusions
In summary, this study provides preliminary evidence of
ASPIRE’s potential to accurately and reliably detect smoking
characteristics passively and in real-time. The ability to observe
smoking behavior in situ holds great promise in advancing
research on the mechanisms that maintain cigarette smoking,
measuring behavior change in the context of clinical trials, and
the development of novel, real-time interventions for smoking
cessation and just-in-time relapse prevention interventions.
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