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The aim of the current study was to find the epileptic focus and examine its causal relationship to 
other brain regions in children with new-onset benign childhood epilepsy with centrotemporal spikes 
(BECTS). Resting-state functional magnetic resonance imaging (fMRI) was performed in 66 children 
with BECTS and 37 matched control children. We compared the amplitude of low frequency fluctuation 
(ALFF) signals between the two groups to find the potential epileptogenic zone (EZ), then used Granger 
causality analysis (GCA) to explore the causal effects of EZ on the whole brain. Children with BECTS had 
significantly increased ALFF in the right Broca’s area, and decreased ALFF in bilateral fusiform gyrus. 
The patients also showed increased driving effect from the EZ in Broca’s area to the right prefrontal 
lobe, and decreased effects to the frontal lobe and posterior parts of the language network. The causal 
effect on left Wernicke’s area negatively correlated with verbal IQ (VIQ) score. Our research on new-
onset BECTS patients illustrates a possible compensatory mechanism in the language network at early 
stages of BECTS, and the negative correlation of GCA and VIQ suggest the disturbance of epileptiform 
activity on language. These findings shed light on the mechanisms of and language dysfunction in 
BECTS.

So-called “benign epilepsy with central-temporal spike” (BECTS) is the most common epilepsy syndrome among 
children with epilepsy1. It has been recognized as a self-limited benign epilepsy syndrome2, a categorization 
challenged by recent and accumulating evidence suggesting that children with BECTS may suffer from cogni-
tive co-morbidities including language dysfunction3,4, attention deficit disorder, and memory problems5–7. Using 
resting-state functional magnetic resonance imaging (fMRI), which can depict temporal and spatial characteris-
tics of brain activity8–10, researchers have now proposed a possible underlying mechanism for BECTS that includes 
the disruption of several high-order cognitive functional networks11–18. This includes network re-organizations 
(including intra- and inter-hemisphere shifts) in epilepsy patients that suggest a compensatory shift to right 
homologous brain areas19,20, or a flexible language network comprising dorsal and ventral circuits21–23. However, 
these studies described the involvement of large scale brain networks but did not provide evidence for a direct 
causal relationship between the involved areas, despite the recent intense interest in the dynamic characteristics 
of epilepsy networks10.

Broca’s and Wernicke’s areas play central roles in the language system. Recent resting-state fMRI studies 
revealed that the connection maps of these two key areas include short pathways to cingulate gyrus and inferior 
parietal cortex (BA 40), and long range connections to medial prefrontal lobe (BA11/10), angular gyrus, occipital 
cortex (BAs 17, 18, 19), temporal cortex (BAs 21 and 22), and sub-cortical regions including striatum and thala-
mus24. Wernicke’s area also shows more long-range and right-lateralized connections, demonstrating the role of 
Wernicke’s area in modulating multiple-language information and processing figurative language in contrast to 
processing literal interpretation25–27. Together, this work has begun to parse a possible framework for the language 
network as a whole.
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Functional neuroimaging has produced a more detailed assessment of the language networks and their later-
alization that is consistent with the results provided by the gold standard methods28. Amplitude of low frequency 
fluctuation (ALFF) signals can detect regional spontaneous activity by measuring the magnitude of spontaneous 
blood oxygenation level dependent (BOLD) signals, ultimately reflecting brain activity in a time series. In epi-
lepsy patients ALFF is positively correlated with the number of epileptic discharges, and can thus be used for 
localizing epileptic foci in the mesial temporal lobe, other cortical and subcortical structures associated with cog-
nitive impairment29,30, and possibly regional language networks31. Functional connectivity analyses have revealed 
reduced connectivity between the sensorimotor and language networks in children with BECTS12,32.

While static network models aim to describe the structures of brain networks33,34, dynamic causal modeling in 
fMRI implies causation and effective connectivity (directed effects from one region to another)35. Granger causal-
ity analysis (GCA) is used for inferring the direction of information flow in these brain networks36,37. One study 
on BECTS patients found an increased driving effect from the ROI zone to the right medial frontal cortex and 
posterior cingulate cortex and decreased causal effects to left inferior frontal gyrus16. That study was conducted 
with patients receiving antiepileptic drugs (AED), however, and AED treatment might interfere with local brain 
activity38. To eliminate the potential effects of AED and avoid the possible influence of long term aberrations 
in spikes on network connectivity39, here we conducted an fMRI study on new-onset treatment-naïve children 
within three months of their diagnosis with BECTS. We hypothesized that a comparison of the global ALFF signal 
between patients and healthy controls would find focal functional alterations in the key components of language 
networks and that the driving effect from the affected zone(s) would illustrate information flow alterations (intra- 
and inter-hemisphere) within the language framework.

Results
Neuropsychological testing.  Table 1 shows the demographic, clinical and neuropsychological character-
istics of the patients with BECTS and healthy controls. There was no significant difference between patients and 
control group in FSIQ or PIQ. The VIQ scores in the children with BECTS were slightly lower than the control 
group but this difference was not significant (t = 1.475, p = 0.143).

Between-group analysis of ALFF.  Compared to the healthy control participants, the patients with BECTS 
showed significantly increased ALFF in the right Broca’s area (t = 6.230, p < 0.05, GRF corrected, two tailed) and 
decreased ALFF at the bilateral fusiform gyrus (BA 18; t = −4.363, p < 0.05, GRF corrected, two tailed; Fig. 1).

Voxel-wise GCA.  Seed-to-whole-brain analysis.  We chose to set the affected right Broca’s area as the seed 
zone for the analysis. In the seed-to-whole-brain analysis we identified a number of cortical areas and subcortical 
structures that were driven by the seed region in patients with BECTS (Fig. 2b). The pattern in the healthy con-
trols is demonstrated in Fig. 2a. Compared to healthy controls, the patients showed an increased driving effect 
from the seed area to the caudate and prefrontal cortex (BA11), along with decreased effects on the bilateral lin-
gual gyrus (BA18), right middle temporal gyrus (BA22), left angular gyrus (BA21) and left hippocampus (BA36; 
p < 0.05, GRF corrected, two tailed; Fig. 2c; details in Table 2).These results concur with the existing language 
framework.

Whole-brain-to-seed analysis.  Whole-brain-to-seed analysis showed that there was no abnormal positive or 
negative driving effect from whole brain to seed in the patients with BECTS.

Correlation analysis.  We performed correlation analysis between the VIQ score and the GCA map of the 
patients (Fig. 3). This analysis revealed a negative correlation between VIQ score and the driving flow from right 
Broca’s area to the left Wernicke’s area (t = −0.451, p < 0.05, GRF corrected, two tailed).

Discussion
This study on new-onset treatment-naïve BECT patients found increased local brain activity in the right Broca’s 
area. From that seed area, we then found increased causal effects to the caudate, thalamus, and prefrontal lobe, as 
well as decreased effects to the middle temporal lobe, angular gyrus, lingual gyrus, and hippocampus; all of which 
are within the known language network. We also found a negative correlation between VIQ scores and the driving 

Characteristic Patients Controls t/χ2 P value

Age (years) 9.7 ± 2.1 9.4 ± 2.1 −0.723 0.471a

Sex (female/male) 28/38 17/20 0.120 0.73b

Handedness 60R/4L/2A 34R/3L — —

EEG lateralization 31R/28L/7A — — —

FSIQ 98.4 ± 11.1 100.8 ± 11.8 1.031 0.305a

VIQ 102.2 ± 5.9 104.4 ± 8.8 1.475 0.143a

PIQ 96.4 ± 13.6 98.9 ± 10.4 0.983 0.328a

Table 1.  Demographic and neuropsychological characteristics of BECTS patients and healthy controls. 
The intelligence quotient (IQ) scores in patients and controls were based on the results of 66 and 37 
participants, respectively. R: right sided; L: left sided; A: ambidextrous; FSIQ = full scale IQ; VIQ = verbal IQ; 
PIQ = performance IQ; aTwo-sample t test; bχ2 test.
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effect to right Wernicke’s area. In contrast to some previous reports, we didn’t find any significant difference in IQ 
test between two groups.

We found that the patients showed higher ALFF signal in the right Broca’s area and decreased signal at bilat-
eral fusiform gyrus. The classical neuropsychological model implies that language is a rigid and monolithic 
function40, however, more recently neuroimaging studies have broadened our perspective on language system41. 
Current opinion suggests that language processing is underpinned by a flexible cerebral network including areas 
beyond the classical language regions in both hemispheres41,42, and that the language system is based on both 
inter-hemispheric and intra-hemispheric connections43. In accordance with this view, the functional network in 
patients with focal epilepsy might shift from the pathological spike-affected areas to adjacent areas and homo-
logues19. Converging evidence also suggests that chronic epileptic activity can result in a developmental shift of 
language processing from the left to the right hemisphere or event re-route language pathways from traditional 
to non-traditional areas44. The increased ALFF activity that we observed in the right Broca’s area may imply a 
compensatory role for the right Broca’s area at the beginning stages of the disease. This view is supported by find-
ings of right homologue area recruitment during language tasks in focal epilepsy patients22. Research combining 
fMRI and DTI has also noted that the right Broca’s area serves as a hub in the long-distance dorsal pathway along 
the arcuate and superior longitudinal fascicle (AF/SLF) and as a key node in high-order cognitive processing23.

The decreased ALFF signal observed in fusiform gyrus might illustrate a down-regulation of peripheral com-
ponents within the dynamic language processing network. The fusiform gyrus is part of the “visual word form 
area”in occipital lobe45, and together with other components, it plays a supporting role in speech and language 
processing46. In our study the deficit of fusiform gyrus recruitment might illustrate the impact of pathological 
spikes on language system and might underlie the language dysfunction noted in BECTS patients.

GCA analysis has previously been used in epilepsy patients to analyze the EEG and fMRI signal and it ena-
bles us to understand better how seizure activity initiates, propagates, and terminates, providing an overview of 
information flow within the epilepsy network47,48, though there is some controversy over how to improve its accu-
racy49. In our study the driving effect from the right Broca’s area illustrates that the flexible language system may 
be based on both core areas including key language components and peripheral areas such as the fusiform gyrus 
and the para-hippocampal gyrus; these are connected via inferior fronto-occipital fasciculus (IFOF), which serves 
as an important portion of ventral pathway50. One recent theoretical framework proposes that functional interac-
tions between brain regions might change over time, and that the patterns of inter-regional communication may 
determine the degree of functional specialization for a given region51—that is, peripheral areas that are transiently 
engaged during linguistic processing may come to help complete the processing of language tasks52,53. This theory 
explains the involvement of posterior network areas including angular gyrus, fusiform gyrus, occipital lobe and 
mid-temporal gyrus in many high-order cognitive tasks including language54.

The increased ability for Broca’s area to drive frontal lobe coupled with its decreased driving effect on pos-
terior areas may imply elevated information stream density in the frontal-parietal circuit (including frontal 
lobe and Broca’s area) and disrupted connections from core components to peripheral components of the lan-
guage network including the occipital lobe, angular gyrus and others. Similar findings have been observed in 
new-onset BECT patients using the Regional Homogeneity (ReHo) approach55. This also concurs with other 
observations that the frontal lobe fails to deactivate task negative network components in epilepsy patients56. 

Figure 1.  Brain regions showing abnormal ALFF in patients with BECTS. The warm (red) and cold (blue) 
colors represent higher and lower ALFF, respectively, in patients compared with controls (P < 0.05, GRF 
corrected). Color bar represents t values.
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A study on children with focal epilepsy also found that the ventral language network might be more vulnerable 
under epilepsy conditions while the dorsal language network was relatively unaffected57. A study of subcortical 
electrical stimulation on the anterior part of the arcuate fascicle linking the inferior parietal and frontal cortices 
also showed that rostral components can regulate the language system58. The imbalance of the rostral-caudal 
components might be due to the disturbance of temporal segregation of auditory and visual perception and thus 
of speech comprehension and production, which may further underlie the potential language impairment in 
long-term epilepsy24.

Overall IQ performance did not differ significantly between the patients and the healthy volunteer. This is in 
accordance with previous findings in children with new-onset BECTS59, and may reflect compensation by the 

Figure 2.  Voxel-wise GCA. (a) Regions showing significant causal effect with the seed in controls. (b) Regions 
showing significant causal effect with the seed in patients. (c) Regions showing abnormal causal effect with the 
seed in patients compared with controls. Color bar represents t values.
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increased Broca-frontal connection observed. The short duration of epilepsy in BECTS patients may also con-
tribute to the negative finding60. The negative correlation between VIQ and the GCA effect on left Wernicke’s area, 
however might illustrate the disturbance of the right Broca’s area. Previous studies have revealed the long-path of 
Wernicke’s area and its right-lateralized connection in the language network24. Researchers hypothesize that these 
connections help Wernicke’s area modulate multiple-language information25–27. The abnormal driving effect from 
right Broca’s area might thus interfere with VIQ performance.

One limitation of the current work is that a cross sectional cannot capture the longitudinal development of the 
delicate balance of the language network, which would likely provide more evidence of the reorganization and 
rebalance of these components over time. We also found no significant differences between patients and healthy 
controls on IQ scores. This could be explained by a compensatory mechanism, or could reflect the relatively lim-
ited number of patients represented in this sample. In the future we would like to enlarge the study size to address 
this question.

This study demonstrates for the first time the imbalance of the language system in the early stages of the 
disease and a possible rebalancing of the language system under these conditions. We found that children 
with new-onset BECTS illustrate an increased driving effect from the right Broca’s area to the frontal lobe and 
sub-cortical areas and decreased effects to the caudal parts of the flexible language network. The overall IQ scores 
did not differ significantly between the patients and healthy controls, but the driving effect from right Broca’s area 
to left Wernicke’s area does seem to interfere with VIQ performance, and these disruption may underlie future 
language dysfunction in these patients. A follow-up longitudinal study may better illustrate the natural history 
of BECTS and its comorbidities, which will deepen our knowledge of brain development under pathological 
conditions.

Brain region MNI BA Peak t value Control BECTS

lingual gyrus(R)− 12, −50, 4 BA18 −3.840 3.471※ −0.252

lingual gyrus(L)− −17, −56, 4 BA18 −4.005 2.634※ −2.849

Midtem gyrus(R)− 67, −42, 6 BA22 −3.63 4.753 0.4882

angular gyrus(L)− −39, −33, 18 BA21 −4.388 2.314※ −4.189

Hippocampus(L)− −23, −12, −25 BA36 −3.186 1.957※ −2.479

Caudate(R)+ 20, 10, −21 NA 3.830 2.546 7.439

Prefrontal(R)+ 25, 48, −2 BA11 3.442 −0.981※ 4.299

Table 2.  Regions showing abnormal causal effect with epileptogenic zone in patients (seed-to-whole-brain). 
BA = Brodmann’s area; L = left side; R = right side; MNI = Montreal Neurological Institute coordinate; Midtem: 
middle temporal gyrus; Prefrotal: pre-frontal lobe; NA: not available; +: increased causal effect from seed; 
−: decreased causal effect from seed; The last two columns show the t value of the corresponding peak voxel 
within the patient and control group, respectively. Values with “※” show that the mean causal effect of the 
corresponding cluster is significantly different from zero.

Figure 3.  Correlation analysis: Negative correlation between GCA of Wernicke’s area and VIQ scores. Color 
bar represents t values.
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Methods
Participants.  66 children suffering from BECTS (28 girls, mean age 9.7 ± 2.1.years, range 5–14 years) and 
37 healthy controls (HC; 17 girls, mean age 9.4 ± 2.2 years, range 5–15 years) were included, all participants were 
attending public school. Patient diagnosis was based on the diagnostic criteria of the ILAE guidelines (ILAE, 
1989). Exclusion criteria included: (i) root mean square head motion > 2 mm translation or 1.5° rotation; (ii) 
other neurological or psychiatric disease (including BECTS-associated co-morbidities such as ADHD and 
migraine); (iii) focal pathological MRI performance. (iv) Wechsler Intelligence Scale for Children China-Revised 
(WISC-CR) test score < 75.

We recruited patients from the epilepsy center of the neurology department at West China Hospital of 
Sichuan University. 60 patients were right-handed, 4 patients left-handed and 2 ambidextrous; 34 controls were 
right-handed, 3 left-handed. At the time of inclusion in the study, EEG spike foci were left-sided in 28 patients, 
right-sided in 31 and bilateral in 7, including 4 patients with left-side predominance. The demographic and clin-
ical characteristics are presented in Table 1. Written informed consent was obtained from the parents or guard-
ians of all subjects and the present study was approved by the local Ethics Committee of West China Hospital 
of Sichuan University. All experiments were performed in accordance with relevant guidelines and regulations.

Neuropsychological testing.  The Wechsler Intelligence Scale for Children China-Revised (WISC-CR) test 
was applied to evaluate intelligence and to generate Full Scale, Verbal, and Performance IQ scores (Table 1)61.

Data acquisition.  All resting-state functional MRI data were acquired on a 3 T magnetic resonance imaging 
system (Siemens Trio, Erlangen, Germany) within 3 months of diagnosis. The scan parameters were as follows: 
repetition time/echo time (TR/TE) = 2000/30 ms; flip angle = 90°; 30 axial slices per volume; 5 mm slice thickness 
(no slice gap); matrix = 64 × 64; FOV = 240 × 240 mm2; voxel size = 3.75 × 3.75 × 5 mm3. Each functional scan 
contained 200 image volumes. The participants were instructed not to think about anything in particular and to 
keep their eyes closed during the scan. Head motion was minimized using foam pads. A built-in camera was used 
to monitor subjects and check whether they fell asleep during the scan.

fMRI data processing.  Functional MRI image preprocessing was done on the toolbox for Data Processing & 
Analysis for Brain Imaging (DPABI; http://www.restfmri.net)62, which synthesizes procedures in the Resting State 
fMRI Data Analysis Toolkit (REST; http://www.restfmri.net)63 and Statistical Parametric Mapping (SPM8; www.
fil.ion.ucl.ac.uk/spm). The first 10 images were removed to ensure steady-state longitudinal magnetization, and 
the remaining images were then corrected for temporal differences and head motion. After subject selection, nei-
ther translation nor rotation parameters exceeded ±2 mm or ±1.5°. The functional images were then registered 
into 3D T1 image of each participant at a resolution of 3 × 3 × 3 mm3. We then spatially smoothed the images 
with a 6 mm full-width half-maximum isotropic Gaussian kernel, to regress out nuisance signals (white matter, 
cerebrospinal fluid signals, and 6 head-motion parameters). Finally, linear trends were removed from the time 
courses and temporal band-pass filtering was performed (0.01–0.08 Hz)

ALFF analysis.  ALFF is the averaged square root of activity in the low-frequency band (0.01–0.08 Hz) [18]. 
The ALFF value of each voxel was standardized by dividing the value by the whole-brain mean ALFF value. 
Two-sample T tests were used to compare the differences in ALFF between the patients and control groups. Using 
the Gaussian Random Field theory correction (GRF) built into the REST software, we then applied a corrected 
significance level of voxel level p < 0.05 and cluster level p < 0.05 (GRF corrected, two-tailed).

GCA.  A cluster showing increased ALFF was identified in right Broca’s area, and the peak voxel (with a 3 mm 
radius) in this cluster was used as the seed region for the GCA analysis. The voxel-wise coefficient GCA was 
performed in the whole brain using REST-GCA, a REST software plug-in ref.63. We applied bivariate coefficient 
GCA to investigate the causal relation between the seed zone and each voxel in the entire brain. One-sample T 
tests were performed for the causal effects within each group, with an uncorrected significance level of p < 0.05. 
Two-sample T-tests were then performed on the causal effects between groups using the GRF corrected signif-
icance level of voxel level p < 0.05 and cluster level p < 0.05 (two-tailed). To explore whether the neuroimaging 
measures correlated with the disease features in BECTS children, Pearson’s correlation was performed between 
the causal effect map and VIQ scores at global range.
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