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The use of radioactivity in medicine has been developed over a century. The discovery of

radioisotopes and their interactions with living cells and tissue has led to the emergence of

new diagnostic and therapeutic modalities. The CERN-MEDICIS infrastructure, recently

inaugurated at the European Center for Nuclear Research (CERN), provides a wide range

of radioisotopes of interest for diagnosis and treatment in oncology. Our objective is to

draw attention to the progress made in nuclear medicine in collaboration with CERN and

potential future applications, in particular for the treatment of aggressive tumors such as

pancreatic adenocarcinoma, through an extensive review of literature. Fifty seven out of

two hundred and ten articles, published between 1997 and 2020, were selected based

on relevancy. Meetings were held with a multi-disciplinary team, including specialists in

physics, biological engineering, chemistry, oncology and surgery, all actively involved in

the CERN-MEDICIS project. In summary, new diagnostic, and therapeutic modalities

are emerging for the treatment of pancreatic adenocarcinoma. Targeted radiotherapy or

brachytherapy could be combined with existing therapies to improve the quality of life

and survival of these patients. Many studies are still in the pre-clinical stage but open

new paths for patients with poor prognosis.
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INTRODUCTION

Pancreatic cancer represents a significant cause of morbidity and mortality, being the 10th leading
cause of death worldwide. The overall 5-year survival rate is below 5% for patients with confirmed
ductal adenocarcinoma (1). Surgery remains the only curative treatment known.

The treatment strategies for locally advanced tumors may depend on whether the disease is
resectable, borderline resectable, or unresectable (2).

For localized resectable pancreatic adenocarcinoma, current recommendations include surgical
resection followed by 3–6 months adjuvant therapy, for example Fluoropyrimidine or Gemcitabine
with radiotherapy.

Based on the M.D. Anderson criteria, borderline resectability can be defined as a tumor contact
with <180 degrees circumference of the superior mesenteric artery, short-segment involvement
of the common hepatic artery or short-segment occlusion of the superior mesenteric vein or portal
vein (3). In cases of borderline resectability, surgery is recommended, followed by adjuvant therapy.
In locally advanced unresectable disease, where the tumor is in contact with the superior mesenteric
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artery on more than 180 degrees circumference or when
there is another vessel involvement without a feasible surgical
reconstruction, neoadjuvant therapy is recommended (4).

In metastatic disease, current options include chemotherapy
with Folfirinox or Gemcitabine plus Abraxane (5).

At diagnosis, 80% of patients present an unresectable disease.
Amongst the patients undergoing surgical resection, 80% will
develop local recurrence and/or distant metastases and die within
5 years (6). Therefore, it is necessary to identify new treatment
modalities, in particular in locally advanced and/or metastatic
disease, such as targeted radiotherapy or brachytherapy.

This article review aims to bring attention to the progresses
in the field of nuclear medicine, in collaboration with the
European Organization for Nuclear Research (CERN) and the
potential future applications, in particular for the treatment
of aggressive tumors such as pancreatic adenocarcinoma. Fifty
seven out of two hundred and ten articles, published between
1997 and 2020, were selected based on relevancy. The following
kewords were the most searched in Pubmed: brachytherapy,
CERN-MEDICIS, ion beam therapy, neoadjuvant, neurotensin
receptor, pancreatic cancer, radioimmunotherapy, radioisotopes,
and somatostatin receptor.

THE CERN-MEDICIS FACILITY

The CERN was founded in 1954 and has 22 member states.
Its main mission is to probe the fundamental structure of the
universe by studying the constituents of matter, the fundamental
particles, and their interactions. This research activity allowed
the development of medical applications such as the positron
emission tomography (PET) scanner in the early 1990s.

The Isotope mass Separator Online Device (ISOLDE) facility
at CERN is dedicated to the production of radioactive ion
beams for different experiments in the field of nuclear, solid-state
physics and life sciences. The first experiments at ISOLDE started
50 years ago. Now over 1,300 radioactive isotopes of 70 different
elements (Z= 2–88) with half-lives from days to milliseconds are
produced at intensities up to 1011 atoms per microA of proton
beam, using the Proton-Synchrotron Booster (PSB) at CERN (7).

ISOLDE receives about 50% of all PSB protons, from which
85% traverse the ISOLDE target without any interaction (7).

The CERN-MEDICIS (Medical Isotopes Collected from
ISOLDE) facility is a project which started in 2013, aiming
to recover the lost proton beam to produce radioisotopes for
biomedical purposes (8).

A target consists in a small cylinder which contains different
materials according to the chosen isotope production, for
example ceramics or titanium foils. The CERN-MEDICIS target
is placed behind the ISOLDE target, taking advantage of the
remaining proton beam, which produces a variety of new
elements before reaching the beam dump. Figure 1A shows a
Monte Carlo simulation of the ISOLDE and MEDICIS targets.

The target is then transported through rails and handled
by a robotic arm, monitored by remote computers through
cameras. The target is transported to armored bunkers for isotope
extraction. To produce a specific radioisotope, the elements need

to undergo a physical purification by mass spectrometry, then a
chemical purification by using a chelator.

Subsequently, the batches are ready to be shipped to different
institutes and hospitals (9).

GENERAL APPLICATIONS

A wide range of radioisotopes can be produced by CERN-
Medicis, including positron, alpha, Auger, and conversion
electron emitters (10). Various chemical species, such as
lanthanides, halogens, transition metals, and alkaline earth
metals are available.

Table 1 shows an example of isotope production at CERN-
MEDICIS and potential clinical applications.

Lutetium and terbium are two particular lanthanides of
interest, available at CERN-MEDICIS.

Lutetium-177 (177Lu) is a low-energy beta- emitting
lanthanide with a long half-life of 6.65 days. The mean
penetration range of the emitted beta- particles in soft tissue
is short, allowing high energy delivery irradiation to small
volumes, such as micrometastases or residual tumor tissue
(11). Examples of in vivo uses include therapy with 177Lu-
labeled PSMA (Prostate-specific membrane antigen) for the
treatment of metastatic castration-resistant prostate cancer (12)
as well as labeling of somatostatin analogs for the treatment of
neuroendocrine tumors (13).

Terbium can form a stable compound associated with
macrocyclic chelators such as DOTA (14), and has various
isotopes such as 149Tb, 152Tb, 155Tb, and 161Tb.

149Tb is suitable for targeted alpha therapy. It decays with a
half-life of 4.1 h, emitting short-range alpha-particles, gamma-
rays and positrons, thus being suitable for SPECT and PET (15).
149Tb produced at the ISOLDE facility, has been used in vitro
and in vivo in folate receptor targeted alpha-therapy studies (15).
The folate receptor (FR) is expressed in ovarian and lung cancer.
Mice bearing tumor with FR-positive cancer cells were injected
with 149Tb labeled DOTA-folate conjugate (149Tb-cm09). Results
showed significant tumor growth delay and increased survival
time compared to untreated control mice. The mice showed no
signs of acute kidney or liver toxicity.

152Tb and 155Tb are suitable for imaging purposes via PET
and SPECT, respectively. 152Tb decays with a half-life of 17.5 h,
through electron capture, by emitting positrons and gamma-rays.

Figure 1B represents the biodistribution of 152Tb bound to
neurotensin after injection in mice bearing human prostate
cancer cell lines at Lausanne University Hospital (CHUV).

A recent study (16) used 152Tb for the first time in a
human, who had ametastatic neuroendocrine neoplasm. The half
life of 152Tb allowed transportation from the ISOLDE facility
over hundreds of kilometers across Europe. Results showed
successful PET/CT imaging using the somatostatin analog 152Tb-
DOTATOC, allowing the visualization of small metastases.

155Tb decays with a half-life of 5.33 days, through electron
capture, while emitting gamma-radiation. Imaging studies have
been performed in nude mice bearing tumor xenografts using
a SPECT/CT scanner after injection of 155Tb-DOTATATE (17),
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FIGURE 1 | (A) Monte-Carlo simulations of the ISOLDE (Left) and MEDICIS (Right) targets irradiated with 1.4GeV proton beam at CERN. (B) Biodistribution of Tb152

bound to the neurotensin NT20.3 at 90min post injection in mice bearing the human prostate cancer HT29 cell lines. Tumor uptake was specific as shown by the

competitive inhibition experiment realized by co injection of cold radio ligand in excess. Aside the tumor the kidney also showed a strong uptake (n = 3).

showing excellent visualization of the tumor xenografts. The
relatively long half-life of 155Tb allowed SPECT imaging several
days after administration.

161Tb decays with a half-life of 6.9 days, emitting
beta- particles and Auger electrons, and is suitable for
pretreatment imaging and dosimetry through PET or
SPECT (18). 161Tb has low photon emission, minimizing
normal tissue irradiation (19), and delivers high doses
to small volumes (20), which is ideal for the treatment
of micrometastases or minimal residual cancer tissue. A
study with 161Tb-labeled antibodies targeting the L1 cell
adhesion molecule (L1CAM) in mice bearing ovarian cancer,
showed high tumor uptake with low level of uptake in
other organs. Moreover, this study showed that anti-L1CAM
radioimmunotherapy is more effective with 161Tb than
with 177Lu (19).

Therefore, Terbium has a high theranostic potential through
its variety of radioisotopes available at the CERN-MEDICIS
facility. This feature could be exploited for the therapy of

aggressive cancers with limited treatment modalities, such as
pancreatic adenocarcinoma.

APPLICATIONS IN PANCREATIC CANCER
THERAPY

Targeted Radiotherapy for Pancreatic
Cancer Treatment
Targeting Neurotensin Receptors in Pancreatic

Adenocarcinoma
In pancreatic adenocarcinoma cells, there is an over-
expression of neurotensin receptors, which can be targeted
with radiolabelled neurotensin analogs (21). In vitro studies
showed a high affinity of the 68Ga-labeled neurotensin analog
(68Ga-DOTA-NT-20.3) for the human pancreatic ductal
adenocarcinoma cell line AsPC-1 (22).

A study using a neurotensin receptor antagonist coupled to
177Lu (177Lu-3BP-227) in 6 patients with metastatic pancreatic
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TABLE 1 | Isotope production at CERN-MEDICIS (non-exhaustive list) (7) and potential applications found in the literature (non-exhaustive list).

Isotope Half-life Medical application Extracted activity (Bq) Example of applications [citation]

212Bi 60.6m Alpha, beta therapy, SPECT 2.5 E9 Osteoblastic osteosarcoma (P) (7)

213Bi 45.6m Alpha, beta therapy 4.2 E8 Metastatic breast cancer therapy (P) (8)

177Lu 6.7 d Beta- therapy 1.7 E8 Metastatic pancreatic adeno-carcinoma therapy (C) (9) and prostate cancer therapy (C) (10)

166Yb 56.7 h Auger therapy 1.1 E10 –

166Ho 25.8 h Beta therapy 6.0 E6 Radioembolisation of neuro-endocrine tumors (C) (11)

149Tb 4.1 h Alpha therapy 2.4 E10 Folate receptor targeted therapy (P) (12)

152Tb 17.5 h PET 2.2 E10 Metastatic neuroendocrine tumor imaging (C) (13)

155Tb 5.33 d SPECT 6.8 E8 Imaging of various tumor xenografts (P) (14)

156Tb 5.35 d PET 1.3 E7 –

161Tb 6.9 d Beta-/Auger therapy 5.4 E6 Ovarian cancer therapy (P) (15)

153Sm 46.8 h Beta therapy 1.0 E9 Skeletal metastases pain palliation (C) (16)

140Nd 3.4 d PET/Auger therapy 4.0 E9 Neuroendocrine tumor imaging (P) (17)

82Sr 25.5 d PET 4.0 E8 –

89Sr 50.5 d Beta therapy 5.4 E8 Skeletal metastases pain palliation (C) (18)

71As 65.3 h PET 1.6 E9 –

72As 26.0 d PET 3.0 E9 –

74As 17.8 d PET 9.0 E7 Vascular imaging of solid tumors (P) (19)

77As 38.8 h Beta therapy 1.4 E9 Radioimmunotherapy targeting vascular entothelial cells in solid tumors (P) (19)

61Cu 3.3 h PET 4.0 E9 Fibrosarcoma imaging (P) (20)

64Cu 12.7 h PET 3.6 E9 Imaging of HER2+ breast cancer (C) (21)

44Sc 4 h PET 3.2 E10 Metastatic prostate cancer imaging (C) (22)

47Sc 3.4 d Beta therapy 1.2 E10 Folate receptor targeted therapy (P) (23)

11C 20.3m PET 4.2 E9 Image-guided nodal biopsy in recurrent prostate cancer (C) (24)

(P), preclinical studies; (C), clinical studies.

adenocarcinoma, showed feasibility, improvement of symptoms
and quality of life in all of the patients and partial response in one
of the patients (23).

These studies indicate that radiolabelled neurotensin analogs
are a potential new therapeutic option for the treatment of
unresectable pancreatic adenocarcinoma, which could benefit
from the vast isotope production at CERN-MEDICIS.

Targeting Somatostatin Receptors in Neuroendocrine

Pancreatic Tumors
The somatostatin receptor is expressed on the cell surface of the
majority of neuroendocrine tumors and can be used for imaging
and targeted treatment (24).

DOTA-coupled peptides bound to the positron emitter 68Ga
have been developed for somatostatin receptor imaging, such
as DOTATOC, DOTATATE and DOTANOC, and have higher
receptor affinity than Octreotide (25).

These peptides have been tested for radionuclide therapy
on pancreatic neuroendocrine tumors (pNET). A retrospective
trial with 177Lu-DOTATATE on metastatic grade 1 and 2 pNET
showed to be effective with a median progression free survival of
24 months and an overall survival of 53 months (26).

Somatostatin-receptor-targeted therapy could also be used
for neoadjuvant therapy to render initially inoperable pNET
resectable, using 177Lu-DOTATATE (27) and 90Y-DOTATATE
(28). 90Y is a beta-emitting radionuclide with a radiation

path length of 5mm, suitable for bulky tumors such as
pancreatic tumors.

Somatostatin-receptor-targeted therapy could also be effective
on pancreatic adenocarcinoma as there are somatostatin
receptor subtypes which are highly expressed in exocrine
pancreas adenocarcinoma (29). A preclinical study used
DOTATOC coupled to the alpha-emitter Bismuth-213 (213Bi)
on human pancreatic adenocarcinoma cells. In comparison
with the beta- emitter 177Lu-DOTATOC, 213Bi-DOTATOC
showed higher relative biological effectiveness and consecutively
was more effective in decreasing pancreatic adenocarcinoma
cell survival (30).

Radioimmunotherapy
The anti-mucin monoclonal antibody PAM4, is highly specific
for pancreatic carcinoma. The antigen to PAM4 is MUC5AC, a
secretory mucin expressed in over 85% of pancreatic carcinomas
in their early stages and throughout disease progression,
provinding a promising therapeutic target (31, 32).

TF10 is a humanized, PAM4-based, recombinant bispecific
monoclonal antibody, which can be radiolabelled and used for
pre-targeted radioimmunotherapy (33).

The tumor is first pre-targeted with an antibody construct,
such as TF10, which has affinity for the tumor-associated antigen
and for a radiolabelled hapten which is administered in a later
phase (34). This step-by-step strategy has shown to reduce
toxicity. In a pre-targeted radioimmunotherapy study with
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TF10-90Y-IMP-288, nude mice bearing human pancreatic cancer
xenografts were given TF10 and then received a 90Y peptide
later, which was as effective as radioimmunotherapy with 90Y-
PAM4 but with less toxicity (31). Combinations with gemcitabine
and dose fractionation of the pre-targeted radioimmothrapy
enhanced therapeutic responses (35).

Humanized PAM4 (Clivatuzumab) labeled with 90Y has been
proven to be active in advanced pancreatic cancer in phase I
studies (36), combined with low doses of Gemcitabine which is
a known radiosensitiser (37).

A phase Ib study of administering fractionated
radioimmunotherapy with 90Y-Clivatuzumab in patients
with metastatic pancreatic cancer after a median of three prior
therapies, appeared to be feasible and safe, with or without
Gemcitabine (38). However, the phase III trial didn’t show an
improvement of overall survival (39).

The fibroblast activation protein (FAP) is overexpressed in
cancer-associated fibroblasts, which promotes tumor growth and
progression in epithelial carcinomas such as pancreatic cancer
(40). FAP-specific enzyme inhibitors (FAPI) can be labeled
with 68Ga for imaging or with therapeutic isotopes such as
177Lu (41). A recent study used 64Cu and 225Ac-labeled FAPI
in pancreatic cancer xenograft mouse models, revealing rapid
clearance through the kidneys, high accumulation in the tumors
and significant tumor growth suppression in the mice injected
with 225Ac-FAPI (42).

Integrins are transmembrane glycoproteins that can
contribute to cancer progression and be targeted for
radioimmunotherapy (43). The integrin α6β4 is involved
in tumor invasion and is overexpressed in pancreatic
adenocarcinoma. A study using 90Y-labeled α6β4 integrin
antibody in mice showed reduction in tumor volumes
and decreased cell proliferation compared with the
control group (44).

Therefore, different targets are available for endoradiotherapy
in pancreatic cancer. Further studies are needed to research the
effects on overall survival.

Brachytherapy for Pancreatic Cancer
Treatment
The radioactive isotopes produced by CERN-MEDICIS could
also be directly implanted within the tumor tissue, using
brachytherapy. After radioactive seed placement, the target tissue
is continuously exposed to radiation, which produces localized
tissue injury and high tumor ablation. The tumor volumes
and number of implants required must be evaluated before
implantation to optimize the treatment.

CT-Guided Percutaneous Implantation
A study on CT-guided percutaneous implantation of 125Iodine
seeds directly in pancreatic lesions was performed in patients
with stage III and IV pancreatic carcinoma, without significant
adverse effects and less toxicity than standard radiotherapy (45).

Another study with 125I-seeds brachytherapy in patients with
unresectable pancreatic cancer, showed after 2 months 70% pain
relief in patients, an overall response rate (including complete

and partial remission) of 65.4% and a local control rate of
88.5% (46).

A meta-analysis of 23 studies (47) concluded that 125I-seeds
brachytherapy leads to an overall survival of 9 months in patients
with advanced pancreatic cancer. When combined with other
therapies such as chemotherapy, the overall survival in these
patients reaches a duration of 12 months. Brachytherapy with
125I-seeds implantation in combination with cryoablation was
found to be associated with the longest survival: up to 14 months.

Cryotherapy is performed by inserting a cryoprobe through
peritoneal or retroperitoneal approach. It can also be performed
on liver metastases using additional cryoprobes which are
inserted through the right intercostal space. The cycles of
freezing are performed once all the probes are inserted. 125I
seed implantation is often performed following cryoablation.
Studies comparing cryosurgery in combination with 125I seed
implantation and cryosurgery alone showed higher survival
rates and longer median survival in the patients undergoing
combination treatment (48, 49).

Brachytherapy Through Endoscopy
Endoscopic ultrasonography (EUS)-guided brachytherapy has
shown to be a feasible and safe treatment of unresectable
pancreatic adenocarcinoma using radioactive seeds with isotopes
such as Iridium-192 (192Ir), Palladium-103 (103Pd), or the
most frequently used Iodine-125 (125I) (50). EUS-guided
brachytherapy has the advantages of accurate positioning,
mild injury and a shorter puncture distance than CT-guided
percutaneous implantation.

In a recent retrospective clinical study, patients with stage III
and IV pancreatic head adenocarcinoma underwent endoscopic
brachytherapy through implantation of Iodine-125 seeds (51).
Results showed no serious complications, a partial remission
rate of 80% of the patients with stage III disease and an
improved quality of life through an improved median Karnofsky
performance status score.

Another study evaluated the results of EUS-guided
brachytherapy combined with intratumoral implants for
sustained delivery of 5-Fluorouracil in patients with advanced
pancreatic cancer (52). A mean of 18 Iodine-125 seeds and 36
implants delivering 5-fluorouracil were inserted into the tumors.
No local complications or haematologic toxicity occurred. There
was a partial response in 1 out of 8 patients, a minimal response
in 2 out of 8 patients and a stable disease in 3 out of 8 patients.
50% of the patients presented pain reduction and improved
Karnofsky performance status score.

Brachytherapy Through Minimally Invasive Surgery
Encapsulated radioactive sources, such as Iodine-125 seeds, can
also be placed within the tumor through minimally invasive
surgery. The Da Vinci Surgical System could enable the surgeon
to insert the seeds with great precision, at a safe distance
to prevent unwanted irradiation, with minimal damage or
complications for the patient. Few studies have been carried
out yet to examine the potential benefits of robotic-assisted
brachytherapy. Some studies described brachytherapy through
surgery with the Da Vinci System in pigs after thoracoscopic
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wedge resection (53) and in patients with prostate (54) or
bladder (55) cancer. There hasn’t been any study using
brachytherapy with the Da Vinci System in patients with
pancreatic adenocarcinoma so far.

A study was performed in eight patients with unresectable
pancreatic head tumors, suffering from pain of high intensity
who were candidates for palliative surgery due to jaundice
and/or recurrent ileus (56). They underwent perioperative
high dose rate brachytherapy with 192Iridium implants. During
the surgery, after palliative choledochoenteroanastomosis and
gastrointestinal bypass using a Roux-en-Y loop, a catheter
was implanted through the abdominal wall and the transverse
mesocolon, to prepare the patients for later brachytherapy.
Brachytherapy was initiated at the 6th post-operative day in
fractionated doses of 5Gy, by inserting temporary 192Ir-implants.

The patients who underwent perioperative palliative
brachytherapy described more pain relief. Mean survival time
was 6.7 months in the brachytherapy group, vs. 4.4 months in
the group where no brachytherapy was performed (56).

A study examined the combination of palliative surgery
through biliary and gastric bypass associated with surgical
brachytherapy in patients with unresectable pancreatic head
adenocarcinoma (57). In the group undergoing brachytherapy,
during exploratory laparotomy after Kocher manoeuver, needles
were implanted into the tumor and spaced at parallel intervals
of 10mm, extending at ≥5mm beyond the margins of the mass.
The needles allowed to verify positioning and were retracted if
bile, blood, or pancreatic juice issued from the needle. 125I seeds
were then injected at the location of the needles. A median of 27
seeds per patients were implanted.

No mortality occurred in the perioperative period in both
groups, with or without brachytherapy and there were no
significant differences in morbidity and length of hospital stay. In
the group undergoing brachytherapy, partial response rate was 56
vs. 0% (P < 0.001) and progression was of 24 vs. 85% (P= 0.013).
The median survival time was longer as well, corresponding to 11

months in the brachytherapy group vs. 7 months. In addition,
the patients undergoing brachytherapy described an improved
quality of life.

CT-guided, endoscopic, or surgical brachytherapy is therefore
a valuable option for palliation of symptoms and could be
combined with chemotherapy or external beam radiotherapy to
improve length of survival and local tumor control.

CONCLUSION

This review of literature highlights the progresses in
the field of nuclear medicine for the treatment of
unresectable pancreatic adenocarcinoma. As new targets for
endoradiotherapy and new techniques for brachytherapy
emerge, a collaboration with research facilities such
as the CERN-MEDICIS infracture is needed, which
provide a variety of radioisotopes. Terbium and Lutetium
are two lanthanides of particular interest, with a high
theranostic potential.

These new techniques could be combined to current
therapies, such as chemotherapy and external beam therapy, to
improve results. Further large-scale studies are necessary and
multidisciplinary collaboration is essential for this purpose.
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