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Abstract: Hepatocellular carcinoma (HCC) is the most common hepatobiliary malignancy with
limited therapeutic options. On the other hand, melatonin is an indoleamine that modulates a variety
of potential therapeutic effects. In addition to its important role in the regulation of sleep–wake
rhythms, several previous studies linked the biologic effects of melatonin to various substantial
endocrine, neural, immune and antioxidant functions, among others. Furthermore, the effects of
melatonin could be influenced through receptor dependent and receptor independent manner. Among
the other numerous physiological and therapeutic effects of melatonin, controlling the survival and
differentiation of mesenchymal stem cells (MSCs) has been recently discussed. Given its controversial
interaction, several previous reports revealed the therapeutic potential of MSCs in controlling the
hepatocellular carcinoma (HCC). Taken together, the intention of the present review is to highlight
the effects of melatonin and mesenchymal stem cells as a key for functional integrity for liver cancer
treatment. We hope to provide solid piece of information that may be helpful in designing novel
drug targets to control HCC.
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1. Introduction

The last few years have witnessed extraordinary increase in the reports of liver cancers
worldwide [1,2]. In 2018, around 841,000 cases and 782,000 deaths were recorded due to these
types of cancer [1,2]. Furthermore, this type of cancer has been considered the 5th cancer type between
the male, the 7th between female and the 4th fatal between other cancers [1,2]. Therefore, it is not
surprising to state that liver cancer has been considered one of the tumors with the fastest rising
incidence and highest mortality in recent years [3,4]. Among others, hepatocellular carcinoma (HCC)
has been considered the most common type of liver cancers.

HCC is mostly linked to miscellaneous predisposing etiologies including viral hepatitis or exposure
to toxins such as aflatoxin [5–7]. Given its global distribution, most HCC cases are estimated to occur in
Asia and sub-Saharan Africa [6,8]. Several factors are considered inclining agents for developing HCC
such as hemochromatosis and alpha 1-antitrypsin deficiency and metabolic syndrome [2]. Taken into
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account, the prognosis of HCC mainly depends on several factors including the degree of tumor spread,
size of tumor and the general healthy status, among others [6]. Despite the great progress achieved in
understanding of HCC, resistance of apoptosis treatment is still challenged by apoptosis resistance [9].
Some recent studies showed that inhibitor of apoptosis proteins (IAPs) have been involved in resistance
to apoptosis in HCC through inhibition of caspases activation [10,11]. Indeed, it seems mandatory
searching effective novel therapeutic agents that can improve the treatment courses of HCC and future
prognosis of such cases.

To our knowledge, melatonin has been identified as a natural antioxidant with numerous
immunoenhancing properties, while mesenchymal stem cells has shown a potential promising strategy
either in preventing or arresting neoplastic growth [12,13]. The intention of the following sections is
to give an overview about mesenchymal stem cells (MSCs) and highlight several physiological and
biologic effects of melatonin followed by discussing the potential promising effects of the combined
use of melatonin and MSCs in treatment of HCC.

2. Mesenchymal Stem Cells (MSCs)

2.1. An Overview of Mesenchymal Stem Cells (MSCs)

Mesenchymal stem cells (MSCs) are multipotent cells capable for differentiation into cartilage,
bone, muscle, tendon, ligament, fat and hepatocyte. MSCs population is one of the major stem cell
populations in the adult bone marrow [14]. They represent only 0.01% to 0.001% of all mononuclear
cells in the bone marrow [14], making the identification of a native MSC niche is difficult [15]. Several
locations for in vivo MSC niche within the bone marrow have been proposed including the periosteal
niche, the pericytic niche and the perivascular niche [16]. Surface marker expression studies referred
to the perivascular niche as the true “home” for MSCs, allowing the easier access of MScs progeny to
the circulation [17]. The recent years gave more attention towards pluripotent mesenchymal stem cells,
which are found in bone marrow stem cells (BMSCs) and adipose tissue (AD-MSC) [18]. In this regard,
MSCs have been proposed as promising sources for restoring tissue and organ function [19]. However,
several potential health hazards for their clinical application were reported, including shortage in their
availability, their sensitivity to toxic environments, senescence and tumorigenicity [19]. In addition,
MSCs- based treatment has shown regeneration of organ function via the production of cytokines and
other several anti-inflammatory mechanisms [20].

2.2. Isolation and Characterization of MSCs

To authors’ knowledge, MSCs are mostly isolated from bone barrow, fat and cord tissues [21,22].
However, pluripotent stem cells could be isolated from other numerous tissues and organs, including
adipose tissue, skin, dental tissues, placenta, umbilical cord blood, liver, menstrual blood, dental
tissue, perinatal tissues and ear [23]. Among others, isolation of MSCs from adipose connective
tissue has been considered as an ubiquitous techniques in stem cell-based therapy with minimal
invasive protocol [24]. In addition, the outer surface of the ear has plenty of MSCs expressing
multiple stromal markers besides their ability to differentiate into different lineage including fat,
cartilaginous and osseous tissues [25,26]. It is noteworthy to mention that some modifications have
been carried out for isolation of mulitpotent MSCs, including alterations to culture media supplements
and serum percentage, growth on various substrates such as collagen and fibronectin, and depletion
of hematopoietic cell contaminants by surface marker-based negative selection [27]. These methods
allow enrichment of a fibroblastic spindle-cell population [27]. Although a heterogeneous mixture of
spindle cells, star-shaped cells and large flattened cells is frequently observed, a characteristic pattern of
surface marker co-expression indicates the self-renewal and multipotence capabilities was noticed [28].
Additional surface markers reveal subpopulations of MSC that are differentially committed to various
stromal cell types were also recorded [29]. Taking into account that human and murine MSC generally
are not able to express hematopoietic markers cluster of differentiations (CD) as CD34 and CD45,
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however, subpopulations of cells express a low level of these markers [30]. Human MSC were reported
to be positive for the following surface markers: CD44, CD73, CD90, CD105, CD106 and STRO-1, while
murine MSC express stem cell antigen-1 (Sca-1 or Ly6A) and all these previously mentioned markers
except STRO-1 [31]. Likewise, these markers have been used in combination to get pure MSCs from
bone marrow isolates [32]. Additionally, it was reported that certain multipotent bone marrow stromal
cells did not display these markers in vivo. Consequently, sorted MSCs populations may not contain
all multipotent marrow stromal subtypes [33,34]. The absence of MSCs specific genes and markers
is another hurdle faced in the characterization of these cells. The trypsin-resistant antigen denoted
STRO-1 remains the best choice, since it is absent in peripheral tissues, the hematopoietic compartment
or in mature mesenchymal cells, however, it is expressed on endothelial progenitors [35]. Unfortunately,
the structural and functional characteristics of STRO-1 have yet to be determined combined with
STRO-1 negativity in mice before its use in preclinical studies [36]. It is noteworthy to state that the
pluripotent stem cell-derived MSCs overcome many disadvantages of adult MSCs such as reduced
batch-to-batch variations and stem cell senescence and produced some unique cytokines different from
bone marrow-or cord-derived MSCs [37–39]. Interestingly, GMP-grade MSCs are currently being used
in clinical trials for various viable diseases, including industrial sectors. In this concern, Mayo Clinic
initiated a phase I/II trial to find the side effects and best dose of MSCs infected with oncolytic measles
virus encoding NIS (MV-NIS) and to observe its effect on patients with ovarian cancer. These studies
suggested further future in-depth research about MSCs timing in patients [40,41].

2.3. Recruitment of MSCs

Tissue repair, inflammation and neoplasia represent few of the processes that encourage
engraftment of circulating MSCs [42]. Tumor tropism of MSC can be examined by cell trafficking assays
in vitro and in vivo. A number of modalities, such as intravenous injection, utilizing fluorescence,
magnetic resonance and bioluminescence, can be used to track ex vivo expanded MSC [43]. No previous
studies have deeply explored the migration of endogenous MSC into tumors, but some previous
reports have shown that recruitment of labeled MSC home to tumor stroma following bone marrow
engraftment in sublethally irradiated mice [44].

The process of MSCs recruitment into tumors follows a similar pattern of recruitment of the
activated inflammatory cells during tissue repair [45]. MSCs show graded responses to leukocyte
and endothelial activating Transforming growth factor-beta (TGFβ-1), interleukin-6 (IL-6), IL-8, IL-37
and neurotrophin 3 (NT-3) [46]. However, under hypoxic conditions, breast cancer cells produce
high amounts of IL-6 which activates and attracts MSCs. It should be stressed that IL-6 also acts in
a paracrine fashion on MSC, resulting in activation of STAT3 and MAPK signaling pathways that
together trigger the survival of the cell and their migratory potential [47]. Furthermore, LL-37 (Leucine
leucine-37), which presents in many tumors, stimulates the migratory activity of MSCs and facilitates
the progression of ovarian tumor via recruitment of MSCs to act as pro-angiogenic factor-expressing
tumor stromal cells [48].

In addition, tumor cells secrete many chemoattractants that promote the migratory activity of MSCs
and MSCs express receptors of the four chemokine subfamilies: CC, CXC, CX(3)C and C [49]. It should
be born in mind that several chemotaxis assays in vitro have shown that Dose-dependent migration
of MSCs could be induced by chemokines like CCL2/MCP1 (monocyte chemoattractant protein-1),
CCL25 (thymus expressed chemokine), CXCL8 (IL8), CXCL12/SDF1α and CXCL13 (BCA1) [50].
In addition, sphingosine 1 phosphate (S1P) exerted a strong chemoattraction on MSCs through matrix
metalloproteinase (MMP)-mediated signaling events and the RhoA/ROCK and MEK1/ERK intracellular
pathways [51].

2.4. Dual Roles of MSCs in Liver Cancer

It is noteworthy to state that the considerable difference of intrahepatic microenvironment from
other organs seems to influence the development of cancer [52]. MSCs constitute an important
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components within the microenvironment of both normal liver and liver with tumors, suggesting their
pleiotropic functionality which is shown in Figure 1. Clearly, MSCs may exert a tumor-promoting or a
tumor-limiting effects depending on the experimental circumstances [13]. Several hypotheses have been
proposed to explore this dualistic behavior of MSCs in cancer [53,54]. One of these theories L is related
to the role played by TLRs in immuno-polarization of MSCs. MSCs express several TLRs combined
with their capabilities to migrate, invade and secrete immune modulating factors [13]. Interestingly,
TLR4-primed MSCs and TLR3-primed MSCs are polarized into two phenotypes; a proinflammatory
MSC1 and the classical immunosuppressive MSC2 phenotype, respectively [55]. In cancer models,
MSC1-based treatment of established tumors in an immune competent animal models impaired the
tumor growth and metastasis [56]. On the contrary, MSC2-treated animals displayed an increase
tumor growth and metastasis [56]. The other theory proposes a developmental phase-dependent MSC
functionality [57]. In this hypothesis, MSCs may promote tumor growth in case of co-injection with
tumor cells, while their administration in established tumors inhibit progression of tumors. This means
that the presence of MSCs during the early stage of tumorigenesis may contribute to angiogenesis [58].
Clearly, the tumor cells and their microenvironment may have an influence on the action of recruited
MSCs [59]. Taken together, both postulations seem concomitantly true and therefore, it is very hard to
make a prediction to the effects of MSCs on the cancerous process [60,61].
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Figure 1. The pleiotropic functionality of mesenchymal stem cells (MSCs) which tumor-limiting and
tumor-promoting effects.

2.5. Mechanisms of MSC-Dependent Tumor Suppression in Liver Cancer

To author knowledge, MSCs have shown tumor suppressive effects in induced murine HCC that
were linked to down regulation of Wnt signaling target genes [60,62]. There are several suggested
mechanisms lying behind this action. In this concern, TLR signals can stimulate downstream effectors
that may interfere with LPS–TLR4 pathway and the active secretion of Wnt inhibitors, including
Dickkopf-1, combined with MSC-dependent inhibition of NF-kB signaling in cancer cells [13,63].
Additionally, MSCs release microvesicles that exert several actions include inhibition of both cell
cycling and the growth of different established tumors in vivo, besides induction of the apoptosis of
HCC cell lines in vitro, which in turn provides another antioncogenic pathway [62]. However, it should
be borne in mind that the direct effectors are still unclear, but it seems that the secretome of MSCs play
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an crucial role in suppression of tumors [64]. It should be stressed that various molecular mechanisms
seem to be involved in therapeutic MSC actions in vivo and increase their regenerative potential [65].
Among others, direct MSC differentiation into cardiac and endothelial cells and the paracrine activity
mediated by MSC-derived soluble molecules and vesicles are currently considered as major factors
mediating beneficial effects of MSC-based therapies in various viable diseases [65–69]. However, recent
studies showed that paracrine function of MSCs is the main mechanism by which these cells participate
in tissue repair [68]. Importantly, MSCs can promote normal tissue regeneration through enhancement
of angiogenesis, tissue remodeling and activation of endogenous stem cells [70], which endorsed the
paracrine actions rather than cell differentiation. MSCs paracrine functions seem tightly regulated by
Rap1/nuclear factor-kappaB (NF-κB) signaling pathway. It is noteworthy to mention that the absence
of Rap1 of MSCs markedly enhance the secretion profile of these cells and their resistance to any
stressful challenge combined with reduction the production of proinflammatory cytokines [71]. Clearly,
NF-kb signaling pathway play a critical role in HCC and therefore, the anti-inflammatory properties of
MSCs were found remarkable in the earlier stages [72]. Another interesting mechanism of MSCs is
through transfer of mitochondria as reported in several previous studies [73,74]. Mitochondria have
been considered a key player involved in many biologic processes in health and disease, including
in HCC [75–79]. Some proinflammatory cytokines such as Il-6 and TNF-α can induce MSCs skeletal
rearrangement and form tunneling nanotubes (TNT) through which mitochondria mobility occurs
from MSCs to neighbor cells [73,80]. Inflammation-driven mitochondrial transfer of MSC to neighbor
cells including retinal cells and cancer cells were also reported recently [73]. It should be stressed that
the therapeutic effects of MSCs and direction of mitochondrial transfer highly depend on the niche
where MSCs is located, including in case of HCC [73]. It seems that the proinflammatory environment
can enhance MSCs—mitochondrial transfer and MSC—mitochondrial transfer to T cells, which in turn
trigger various immune cells, including CD4+T cells [81].

2.6. Therapeutic Application of MSCs in Liver Cancer

To our knowledge, several preclinical models showed that MSCs can migrate into different types
of tumors and therefore, this notion has inspired many experts in the field about the potential use
of MSCs in anticancer drug/gene delivery [82,83]. In this regards, the genetically modified MSCs
demonstrated a clear inhibition the proliferation of HCC in vitro and in vivo [84]. Delivering oncolytic
viruses such as Measles virus into the tumor cells via MSCs represent another approach to avoid
pre-existing immunity against the virus [85]. These interesting findings seems very promising for
designing novel trials for treating HCC using MSCs as a vector. In accordance with the clinical trials,
MSCs have been extensively investigated in treatment of various types of cancer such as ovarian cancer,
head and neck cancer and prostate cancer [86–88].

Moreover, adoptive immunotherapy which relies on transfer of naturally occurring or genetically
engineered T cells represents another novel shape of cancer therapy [89,90]. This previously mentioned
technique could be carried out using induced pluripotent stem cells (iPSCs) that may provide unlimited
source of highly reactive antigen-specific cytotoxic T-lymphocytes, which in turn target, infiltrate
and eradicate tumors upon their transfer into the patient [91]. Interestingly, bone marrow-derived
MSCs transduced with a lentiviral vector stTRAIL have shown promising results in to treatment of
heat-shocked residual cancer cells that target tumor growth inhibition [92].

3. Melatonin

3.1. Synthesis and Precursors of Melatonin

Melatonin (MLT), N-acetyl-5-methoxytryptamine, is a natural substance that has been recognized in
all major living species including plants, animals, bacteria, other unicellular microorganisms and human
being [44,93]. This natural substance is normally secreted during the dark phase of the daily light–dark
cycle [94]. Given its lipophilic nature, MLT is mainly produced by the pineal gland, then released into
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the circulation and gains access to various fluids, tissues and cellular compartments [95,96]. Other
peripheral organs and tissues rather than pineal gland are also get involved in secretion of melatonin
including retina, Harderian gland, gastrointestinal tract, leukocytes, thymus and bone marrow cells,
however, the chronobiotic properties is retained to the pineal secretions [97]. As result of its amphiphilic
nature, melatonin gets infiltrated inside subcellular compartment, enabling it to cross all biologic
barriers and gets free access to all cellular compartments.

Regarding its synthesis, MLT is synthesized from the amino acid tryptophan, taken up from
blood and converted to serotonin [98]. Serotonin is then acetylated to N-acetylserotonin by
arylalkylamine N-acetyltransferase enzyme. N-acetylserotonin is subsequently converted into MLT by
hydroxyindole-O-methyltransferase (HIOMT) enzyme. Interestingly, the enzymes of MLT biosynthesis
have recently been identified in human lymphocytes and therefore, locally synthesized MLT is
probably modulate the immune system [99]. Among other extra-pineal major production sites of MLT,
the gastrointestinal (GI) tract is of particular interest since it contains several hundred-fold of MLT
exceeding those amounts of the pineal gland [100]. Taketo into consideration, GI MLT may release
into circulation under certain circumstances such as under the influence of high dietary tryptophan
levels [101]. The following section highlights some facts about the physiological and therapeutic
implications of melatonin, particularly against cancer (Figure 2).
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Figure 2. Tumor-limiting effects of melatonin and their suggested mechanisms.

3.2. Signaling Mechanism of Melatonin

To best of author’s knowledge, two mammalian subtypes of G protein-coupled receptor (GPCR)
binds to melatonin receptors; MT1 (Mel1a) and MT2 (Mel1b) [102]. These two mammalian subtypes play
an important role in exerting some of MLT actions [102]. Moreover, MT3, has been identified initially
as third binding site, then it was subsequently characterized as quinone reductase 2 enzyme [103].
It was reported that the decrease in Cyclic adenosine monophosphate (cAMP) production, caused by
MLT via MT1 and MT2 receptor interaction, results in reduction the uptake of linoleic acid by affecting
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special fatty acid transporter [104,105]. Linoleic acid can be oxidized to 13- hydroxyoctadecadienoic
acid by 15-lipoxygenase that serves as an energy source for tumor growth and tumor growth-signaling
molecules. Moreover, inhibition of linoleic acid uptake by MLT has been considered a mechanism of
the antiproliferative effects in case of cancer [106]. Taken into account, MLT also acts through binding
to cytoplasmic proteins like the calcium binding proteins such as calmodulin or tubulin and to nuclear
receptors like RZR/ROR [105,107,108]. Some studies also suggested that modulation of the expression
and function of nuclear receptors (RZR/ROR) could influence the biologic effects of MLT [109,110].
By binding to nuclear receptors, MLT alters the process of transcription of several genes that play a
role in cellular proliferation (i.e., 5-lipoxygenase, p21 or bone sialoprotein) [110,111].

Another suggested mechanism of action of melatonin is modulation of intracellular calcium
and calmodulin activity [112,113]. Calcium-activated calmodulin is linked to the initiation of the S
and M phases of the cell cycle during the cell cycle-related gene expression regulation and in the
reentry of quiescent cells from G0 back into the cell cycle [114]. Melatonin has shown to increase
calmodulin degradation through a direct binding and redistributing it, thereby inhibiting cell cycle
progression [115,116]. It also serves as a potent modulator of gene transcriptional activity and targets
a considerable number of genes, in central or in peripheral tissues [117]. It was hypothesized that
melatonin mediates the seasonal photoperiodic control via phasing clock genes expression in the pars
tuberalis [118]. In addition, MLT downregulates the expression of integrin and integrin-associated
protein encoding genes in rat retina, while upregulates the cAMP response element binding protein
cAMP response element-binding (CREB) gene in retinal pigmentary cells [119]. Notably, melatonin
has also shown a striking effects on the expression of certain genes related to oncogenesis (e.g., Mybl1,
Mllt3, Rasa1 and Enigma homolog 2) and calcium metabolism (Kcnn4 and Dcakl1) [12,120]. It should be
stressed that the exact mechanisms of melatonin underlying the suppression of these oncogenes are still
unclear, however, some reports linked it to the direct interaction of with Bridging Integrator 1 (BIN1)
that considers as HCC suppressant gene with c-Myc, leading to downregulation of c-Myc associated
with HCC [121]. Interestingly, linked bridging integrator 1 (BIN1) or Myc box-dependent-interacting
protein 1 is also highly expressed in pineal gland [122]. In addition, MLT has a significant effects on
mitochondrial genes expression, like genes encoding cytochrome C oxidase subunits I and II (mt-Co1,
mt-Co3), 16S ribosomal RNA (mt-RNr2), NADH dehydrogenase 1 (mt-Nd1),) and ATP synthase subunit
6 (mt-ATP6; downregulated) [123].

3.3. Antioxidant Effect of Melatonin

Interestingly, it seems that the function of melatonin in phylogeny is related to its antioxidant
activity [124]. Several herbs have been used by Chinese in ancient ages due to its high levels of
melatonin to retard aging and to treat diseases associated with the production of free radicals [114].
Besides its actions as free radical scavenger and its role in membrane stabilization, melatonin acts on
enzymes that generate or metabolize reactive oxygen intermediates, there by further increasing its
protective activity toward free radicals [125,126]. Furthermore, melatonin influences the antioxidant
enzymes gene expression as it increases mRNA levels for both Cu–Zn–SOD and Mn–SOD in the
Harderian gland and brain cortex of rodents [127]. Moreover, melatonin enhances the activity of
glutathione peroxidase (GPx) to remove hydrogen peroxide (H2O2) from cells [128]. Therefore, several
important antioxidative enzymes seem to be stimulated by MLT, protecting cells from oxidative
damage [129]. Meanwhile, recent report indicated that the engineered MSC with overexpression of
GPx can enhance the protection of hepatocytes [130].

3.4. Anticancer Effect of Melatonin

To our knowledge, many natural mechanisms are widely known to protect against
carcinogenesis, and they fall into two main categories, immune and non-immune [131]. Importantly,
immunosurveillance has been proposed as one of the major processes by which cancerous cells are
detected and eliminated [132]. Studies of knockout mice have shown the important role played by the
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immune system in controlling the spontaneous generation of tumors [133]. Understanding the immune
changes in the elderly can provide new insights into the complex relationship between immunity and
cancer [134]. The age-related impairment of the immune system appears around the sixth decade of age
coinciding with a normal decline in plasma MLT concentration [135]. Aging has been associated with
a decrease in immune function and an increased incidence of cancer [136]. In this respect, the decline in
the production of MLT with aging was suggested to play a crucial role in triggering immunosenescence,
especially age-associated neoplastic diseases [137]. antitumor defense assumes a primary role among
the various functions attributed to melatonin in modulation of the immune system. The nighttime
physiological surge of MLT in blood or extracellular fluid has been proposed to serve as a “natural
restraint” for tumor initiation, promotion and/or progressions [138]. The activation of lymphocytes
and monocytes/macrophages by MLT can be one of the major mechanisms in preventing tumor
development besides its crucial immunomodulatory role in the immunocompromised state [139].
Some previous reports have investigated the potential beneficial effects of melatonin in induction of
HCC and HepG-2 cell death) and ovarian cancer in animal models through enhancement the apoptosis
of cancerous cells [140–142].

Moreover, administration of melatonin increases the production of both NK cells and monocytes
(which contain MLT receptors) in bone marrow and spleen within 7–14 days of treatment [143]. Since
both cell types are components of the non-specific immune system, melatonin can be effective in
prevent the growth of cancer [144]. Indeed, melatonin was able to rescue hematopoiesis from the toxic
effect of cancer chemotherapy in several experimental models [145]. This evidence actually poses
the basis for the therapeutic use of MLT as an adjuvant in combination with myelotoxic anticancer
therapeutic protocols [146].

3.5. Regulation Effects of Melatonin on the Immune System

It seems that the level of melatonin secretion in human beings could be influenced along the
different season of the year that reflects the significant role played by MLT on immune system
modulation [147]. In addition, the synthesis of MLT by human lymphocytes support the hypothesis
proposes that MLT has a role in the regulation of immune function [148,149]. Furthermore, melatonin
can enhance the immune response that may be helpful in correction of the immunodeficiencies
secondary to viral diseases or acute stress [150,151]. It should be stressed that melatonin plays an
important role in modulation of hematopoiesis, immune cell production and function [149]. MLT also
stimulates cytokine production, enhanced phagocytosis, increased NK cell activity and skewing of the
immune response toward a helper T cell type 1 profile (Th1) [152]. Likewise, up regulation of cytokine
production and immune function occur as a result of binding of melatonin to its receptors [153]. Both
membrane and nuclear receptors have been identified on leukocytes. Importantly, membrane receptors
were found mainly on CD4 T lymphocytes, but also on CD8 T and B cells and it was reported that
melatonin modulates the proliferative response of stimulated lymphocytes via these receptors [154].
On the other hand, MLT induces cytokine production by mononuclear cells through its influence on the
nuclear MLT receptors [155]. Indeed, treatment with MLT enhanced antigen presentation by splenic
macrophages to T cells together with a concurrent increase in MHC class II expression and synthesis of
the proinflammatory cytokines IL-1, IL-2 and Tumor Necrosis factor (TNF [156].

Additionally, treatment of mice with melatonin resulted in enhancing the expression of Macrophage
colony-stimulating factor (M-CSF), TNF-α, TGF-β and stem cell factor (SCF) in peritoneal macrophages,
while IL-1β, IFN-γ, M-CSF, TNF-α and SCF was increased in spleen cells of mice [157]. The presence
of high levels of melatonin in cultured rat thymocytes and expression of mRNAs encoding for
Arylalkylamine N-acetyltransferase (AANAT) and HIOMT in the rat and human thymus cells support
the hypothesis that MLT is also synthesized by thymocytes [158]. Likewise, the pineal neurohormone
MLT has been widely shown to exert an immunostimulatory and potent inhibitor of apoptosis in
immune cells through its action on Th cells and on T- and B-cell precursors, respectively [156,159].
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4. Potential Beneficial Effect of the Combination between Melatonin and MSCs on
Triggering HCC

Given the above information, several previous works have suggested the potential contribution of
melatonin to overcome HCC through various mechanisms including targeting the expression survivin
and X-linked inhibitor of apoptosis (XIAP) via the cyclooxygenase-2 (COX-2)/phosphatidylinositol
3-kinase pathway (PI3K/Akt) pathway [160]. Furthermore, melatonin has shown to exerts numerous
anticancer effects through enhancement the expression of various pro-apoptotic markers (mainly Bax
and caspase 3) besides induction of apoptosis and inhibition of oxidative stress, inflammation and
angiogenesis [143,161–163]. Given the fact that Mel receptors are expressed in bone marrow-derived
MSCs, melatonin also exerted various receptor-mediated effects on MSCs including enhancement their
survival, motility, engraftment and cell differentiation which seems linked to receptors/matrix enzymes
interaction, and therefore higher homing effects of MSCs followed pre-administration of a combination
of melatonin with MSCs [163–165]. On the other hand, various processes have been postulated in
relation to MSC-dependent tumor suppression. In this regard, MSCs pulsed with tumor-derived
microvesicles showed an enhanced antitumor activity in HCC [166]. Some previous report revealed
the use of melatonin enhanced the potential therapeutic role MSCs in treatment various diseases such
as acute kidney injury, metabolic syndromes including diabetes through various mechanisms that
include through the activation of antioxidative pathways, inhibition of the inflammatory response
and reduction of apoptosis and fibrosis [19,167–170]. More interestingly, few recent reports revealed
the beneficial effects of the combination between melatonin and MSCs on targeting inflammation in
HCC [171–175]. However, it should be stressed that there is a clear shortage in the available data
about the combined use of melatonin and MSCs and their possible synergistic effects in treatment
of HCC. In this concern, some of these reports favor the administration of melatonin before MSCs
transplantation and it seems this method offer many advantages over the single use of either factor [172].
Interestingly, pre-administration of melatonin prior to MSCs transplantation in HCC resulted in series
of actions include, promoted the homing potential of bone marrow-derived MSCs (BMMSCs) and
decrease the carcinogenic effect induced by diethylnitrosamine (DEN) which is known as a potent
liver carcinogen in rats [176]. Moreover, a significant decrease in the following parameters has
been reported, proliferating cell nuclear antigen (PCNA) index, glutathione S-transferase placental
positive foci (GST-P), tumor biomarkers in serum besides reduction of inflammation, angiogenesis
and metastasis in HCC [171,172,176]. On the other hand, this combination resulted in induction of
apoptosis and antioxidant enzymes, tissue matrix and liver repairs in HCC [171]. This was evidenced
by lower level of apoptosis in liver tissues which indicated by marked increase in levels of PCNA
immunoreactivity and decrease in levels of fragmented DNA and expression of p53, caspase 9 and
caspase 3 genes [171,172,176]. Similarly, another study was carried out by Basyony et al. (2019)
revealed that treatment using a combination of melatonin and MSCs were reported to decrease
malondialdehyde (MDA) which is a known marker of oxidative stress and the antioxidant status in
cancer [176]. In addition, in the same study, this combination increases the superoxide dismutase
(SOD), catalase (CAT) and glutathione peroxidase (GPX) combined with attenuation of PCNA, Bcl2 and
programmed death ligand 1 (PD-L1) immunostain markers and down regulate the expression of
inflammation and cell proliferation genes [171,176].

Taken together, the combined use of melatonin and MSCs may provide promising beneficial
effects via triggering the apoptosis resistance and as consequences target HCC Figure 3. It should be
stressed that this action was confirmed in rat models where the combined treatment restored the liver
function and decreased the HCC versus the treatment with either factor alone or in combination with
preconditioning in HCC rats [171,172,176]. Given the lack of available data in this topic, further research
seems mandatory to explore more about the effects of this combination together with investigation
the main mechanisms underlying the reported actions for better understanding the potential use of
targeted stems cell therapy in treatment of HCC.
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 Figure 3. Effects of the combined use of melatonin and MSCs on hepatocellular carcinoma (HCC);
((GSTPS: glutathione S-transferases), (PCNA: proliferating cell nuclear antigen)) [171–176].

5. Conclusions

In conclusion, the present review highlights the main biologic, physiological and therapeutic
effects of melatonin that could be very beneficial for controlling of HCC. Furthermore, an overview
about MSCs was given with explaining their potential roles in controlling of HCC and their recruitments
and suggested actions. It should be stressed that there is a shortage in the available data that explore
the effects of the combined use of melatonin and MSCs-based treatments. The present review suggests
further future research for exploring the possible beneficial effects of the combination of MSCs
and melatonin in treatment of HCC, together with exploring the role of receptors in this possible
underlying activity. We hope that this information may contribute to develop novel drug targets with
anticancer activity.
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