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2 

Abstract 39 
 40 
Genome-wide association studies (GWAS) of human complex traits or diseases often implicate 41 
genetic loci that span hundreds or thousands of genetic variants, many of which have similar 42 
statistical significance. While statistical fine-mapping in individuals of European descent has made 43 
important discoveries, cross-population fine-mapping has the potential to improve power and 44 
resolution by capitalizing on the genomic diversity across ancestries. Here we present SuSiEx, 45 
an accurate and computationally efficient method for cross-population fine-mapping, which builds 46 
on the single-population fine-mapping framework, Sum of Single Effects (SuSiE). SuSiEx 47 
integrates data from an arbitrary number of ancestries, explicitly models population-specific allele 48 
frequencies and LD patterns, accounts for multiple causal variants in a genomic region, and can 49 
be applied to GWAS summary statistics when individual-level data is unavailable. We 50 
comprehensively evaluated SuSiEx using simulations, a range of quantitative traits measured in 51 
both UK Biobank and Taiwan Biobank, and schizophrenia GWAS across East Asian and 52 
European ancestries. In all evaluations, SuSiEx fine-mapped more association signals, produced 53 
smaller credible sets and higher posterior inclusion probability (PIP) for putative causal variants, 54 
and retained population-specific causal variants. 55 
 56 
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 58 
INTRODUCTION 59 
 60 
Genome-wide association studies (GWAS) of human complex traits or diseases often implicate 61 
genetic loci that span hundreds or thousands of genetic variants, many of which have similar 62 
statistical significance. These loci may contain one or a handful of causal variants, while the 63 
associations of other variants are driven by their linkage disequilibrium (LD) with the causal 64 
variant(s). Statistical fine-mapping refines a GWAS locus to a smaller set of likely causal variants 65 
to facilitate interpretation and computational and experimental functional studies. Fine-mapping 66 
studies in samples of European ancestry have made important advances, with some disease-67 
associated loci resolved to single-variant resolution1–3. Since non-causal variants tagging causal 68 
signals have marginally different effects across populations due to differences in LD patterns, 69 
cross-population fine-mapping, which integrates data from multiple populations and capitalizes 70 
on the genomic diversity across ancestries (e.g., smaller LD blocks in African populations), holds 71 
the promise to further improve fine-mapping resolution. 72 
 73 
Cross-population fine-mapping analysis can be broadly classified into three categories, namely 74 
the meta-analysis-based approach, the post hoc combining approach, and Bayesian statistical 75 
methods (Figure 1). The meta-analysis-based approach applies single-population fine-mapping 76 
methods to meta-analyzed GWAS summary statistics and LD matrices, and has been widely used 77 
in the field, including in several seminal studies4,5. This approach, however, assumes no 78 
heterogeneity in effect sizes and LD patterns across populations, which is often not true and may 79 
lead to false positives and miscalibration of the inferred probability of a variant being causal6. The 80 
post hoc combining approach analyzes data from each population independently and integrates 81 
single-population fine-mapping results post hoc. While conducive to identifying population-82 
specific causal variants7, this approach fails to leverage the increased sample size, potential 83 
genetic correlations and LD diversity across populations to facilitate loci discovery and improve 84 
fine-mapping resolution, and may be sensitive to the choice of methods that combine population-85 
specific results. Bayesian methods8,9 provide a principled way to fine-map causal variants across 86 
populations and have been employed in the analyses of several complex traits or diseases8–12. 87 
That said, current cross-population Bayesian fine-mapping methods often suffer from inflated 88 
false positive rates, poor computational scalability, and inability to distinguish multiple causal 89 
signals in the same genomic locus, impeding their applications to emerging biobank-scale 90 
datasets of diverse ancestries.  91 
 92 
Recently, Wang et al. proposed a single-population fine-mapping method, SUm of SIngle Effects 93 
(SuSiE)13, which improved the calibration, computational efficiency and interpretation of statistical 94 
fine-mapping. Here, we extend the SuSiE model to a cross-population fine-mapping method, 95 
SuSiEx, which integrates multiple population-specific GWAS summary statistics and LD panels 96 
to enable more powerful and accurate fine-mapping. We evaluated the calibration, power, 97 
resolution and computational scalability of SuSiEx along with alternative fine-mapping methods 98 
via extensive simulations. We further used SuSiEx to fine-map 25 quantitative traits shared 99 
between the UK Biobank14 and Taiwan Biobank15, and to fine-map schizophrenia genetic risk loci 100 
across European and East Asian ancestries.  101 
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 102 
 103 
RESULTS 104 
 105 
Overview of SuSiEx 106 
SuSiEx extends the single-population fine-mapping model, SuSiE13, by integrating population-107 
specific GWAS summary statistics and LD reference panels from multiple populations. In SuSiE, 108 
the genetic influence on a trait or disease within a genomic locus is modeled as the summation 109 
of several distinct effects, each contributed by a single causal variant, which naturally allows for 110 
the modeling of multiple association signals and assigns each inferred putative causal variant to 111 
a credible set with a posterior inclusion probability (PIP) (Figure 1). Building on this framework, 112 
SuSiEx couples each single effect by assuming that the causal variants are shared across 113 
populations (i.e., we report a single PIP rather than population-specific PIPs for each variant in a 114 
credible set), while allowing them to have varying effect sizes (including null effects) across 115 
ancestries. In addition, SuSiEx allows for a variant to be missing in an ancestry (e.g., due to its 116 
low allele frequency), in which case the ancestry does not contribute to the PIP estimate, 117 
effectively reducing the total sample size. Similar to SuSiE, SuSiEx builds on the Bayesian 118 
variable selection in regression16,17 and applies the iterative Bayesian stepwise selection13 to 119 
model fitting. Further modeling and computational details for SuSiEx are discussed in Methods. 120 
 121 
Compared with the meta-analysis-based fine-mapping approach4,5, SuSiEx explicitly models 122 
population-specific GWAS summary statistics and LD patterns (Figure 1; Extended Data Figure 123 
1a), which is expected to improve the fine-mapping resolution and more accurately control the 124 
false positive rates, while allowing for heterogeneous effect sizes and retaining population-specific 125 
causal variants (Extended Data Figure 1c). Compared with post hoc analysis to combine single-126 
population fine-mapping results7, SuSiEx leverages the sample size, genetic correlation and LD 127 
diversity across ancestries to improve the resolution of fine-mapping, especially for loci that are 128 
under-powered to fine-map in individual datasets (Figure  1; Extended Data Figure 1b). Compared 129 
with other Bayesian cross-population fine-mapping methods such as PAINTOR9,18 and 130 
MsCAIVAR8, SuSiEx infers distinct credible sets for each causal signal (Figure 1), facilitating the 131 
interpretation of fine-mapping results, and is orders of magnitudes more scalable computationally 132 
(discussed later), enabling the analysis of large, complex loci and biobank-scale datasets across 133 
many complex traits and diseases. 134 
 135 
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 136 
Figure 1: Overview of fine-mapping methods. An illustration of the inputs and outputs for 137 
single-population and cross-population fine-mapping methods, the latter of which includes meta-138 
analysis-based approaches, post hoc combining approaches, previously published Bayesian fine-139 
mapping methods as well as SuSiEx. 140 
 141 
 142 
 143 
 144 
SuSiEx outperformed single-population and naive cross-population fine-mapping 145 
methods in simulations 146 
We conducted a series of simulations to systematically evaluate the performance of SuSiEx. 147 
Specifically, we generated simulation data under different numbers of causal variants (ncsl) per 148 
locus, genetic correlations across populations (rg) and SNP heritability (h2) (Methods). To examine 149 
the impact of these genetic parameters on fine-mapping results, we defined a standard simulation 150 
setting with ncsl = 1, rg = 0.7 and h2 = 0.1%, and then varied these parameters to produce a range 151 
of local genetic architectures (Supplementary Tables 1 & 2). Given a set of genetic parameters, 152 
we further assessed the impact of different population (European - EUR; African - AFR; East 153 
Asian - EAS) and discovery sample size combinations (Supplementary Table 3) on fine-mapping 154 
results. Throughout the simulation study, in single-population fine-mapping, we analyzed loci that 155 
reached genome-wide significance in population-specific GWAS (P<5x10-8); in cross-population 156 
fine-mapping, we analyzed loci that reached genome-wide significance in at least one of the 157 
population-specific GWAS or in the cross-population fixed-effect meta-analysis. We assessed the 158 
performance of different fine-mapping methods using an array of metrics: (i) Coverage/Calibration: 159 
the proportion of credible sets that include at least one true causal variant across simulation 160 
replicates; (ii) Power: the number of true causal variants identified (i.e., covered by a credible set); 161 
(iii) Resolution: the size of credible sets and the number of fine-mapped variants with high 162 
confidence (e.g., PIP >95%); (iv) Scalability: the computational cost/feasibility to perform fine-163 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 13, 2023. ; https://doi.org/10.1101/2023.01.07.23284293doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.07.23284293
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

mapping in large genomic loci; (v) Robustness: the proportion of runs in which the fine-mapping 164 
algorithm converges and returns sensible results (defined later). 165 
 166 
As expected, in the standard simulation setting (Figure 2; Supplementary Figures 1 & 2), 167 
compared with single-population fine-mapping even with the same total sample size, integrating 168 
data across populations using SuSiEx led to better power (i.e., more true causal variants being 169 
identified; Figure 2a), had higher resolution (i.e., smaller credible sets and more causal variants 170 
with high PIP; Figure 2b & 2d) and retained population-specific causal variants (Figure 2a & 2b). 171 
Meanwhile, SuSiEx had well controlled coverage at 95%, regardless of the populations from 172 
which data were combined (Figure 2c). The magnitude of improvements in power and resolution 173 
is a result of both the increase in the total sample size and the LD diversity in the discovery 174 
samples (Figure  2; Supplementary Table 4). For example, adding 50K EUR individuals to an 175 
existing EUR sample of 50K individuals increased the number of identified causal variants with 176 
PIP >95% from 18 to 26 and reduced the median size of the credible set from 11 to 8. The yield 177 
of causal variants with PIP >95% was much greater (increased from 18 to 78) and the median 178 
size of the credible set was much smaller (reduced from 11 to 5) if the added 50K individuals were 179 
of AFR instead of EUR ancestry, demonstrating the importance of genetic diversity in cross-180 
population fine-mapping. The inclusion of 50K individuals of EAS ancestry also provided a greater 181 
yield of causal variants with PIP >95% (increased from 18 to 44) and smaller credible sets 182 
(reduced from 11 to 7) relative to adding 50K EUR samples, although the advantages were less 183 
pronounced than when the AFR samples were added, due to the smaller LD blocks in the African 184 
ancestries19,20. 185 
 186 
A widely used approach in recent multi-ancestry genetic studies4 is to apply a single-population 187 
fine-mapping method to meta-analyzed GWAS summary statistics and LD matrices (e.g., using a 188 
sample size weighted approach). Despite of its convenience, this method can be miscalibrated 189 
and does not unleash the full potential of genomic diversity, likely due to its over-simplified 190 
modeling of LD across populations, the presence of population-specific variants, and the strong 191 
assumption on cross-population effect size heterogeneity in fixed-effect meta-analysis6. We 192 
confirmed, using the standard simulation setting, that fine-mapping using meta-analyzed GWAS 193 
and sample size weighted LD suffered substantial loss in both power and coverage 194 
(Supplementary Figures 3 & 4; Supplementary Table 5). In contrast, SuSiEx, through explicit and 195 
flexible modeling of population-specific association statistics and LD, identified many more causal 196 
variants (Supplementary Figure 4a) and was well calibrated (Supplementary Figure 4b).  197 
 198 
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 199 
Figure 2: The performance of SuSiEx in simulations. Simulated data were generated under 200 
the standard parameter setting (Methods). a, The number of identified true causal variants (true 201 
causal variants covered by a credible set) when integrating data from different populations with 202 
different sample sizes for fine-mapping. b, The number of true causal variants mapped to 203 
PIP >95%. c, The coverage of credible sets (the proportion of credible sets that contain a true 204 
causal variant). The dashed line indicates 95% coverage and error bars indicate 95% confidence 205 
intervals. d, Distribution of the size of credible sets. The upper and lower bounds of the box 206 
indicate the 75th and 25th percentiles, respectively. The middle line in the box indicates the 207 
median. In a-d, top labels of each subpanel indicate the total sample size, and the bottom panels 208 
indicate the sample size from each population. In a and b, we defined variants with MAF >0.5% 209 
only in one population as specific to that population, and all other variants as “shared” (i.e., shared 210 
variants across populations). 211 
 212 
 213 
 214 
Another recently proposed strategy uses post hoc analysis to combine single-population fine-215 
mapping results, which has been applied to multiple large-scale biobanks with promising 216 
biological discoveries7. However, this approach does not make use of subthreshold association 217 
signals, and does not leverage LD diversity to improve the resolution of fine-mapping. In 218 
simulations, SuSiEx found more true causal variants especially when the GWAS sample size is 219 
moderate or small, as expected for current non-EUR GWAS (Supplementary Table 5). For 220 
example, when analyzing 50K EUR and 20K AFR individuals under the standard simulation 221 
setting, the post hoc approach identified a smaller number of causal variants compared with 222 
SuSiEx (159 vs. 175). Although the numbers of true causal variants discovered by both 223 
approaches become closer when the GWAS sample sizes become larger, SuSiEx still 224 
outperformed post hoc analysis in resolution. In simulations, SuSiEx always identified more true 225 
causal variants with high PIP (50% or 95%) than post hoc analysis (Supplementary Figure 5 and 226 
Supplementary Table 5). For example, when analyzing 200K EUR and 200K AFR individuals 227 
under the standard simulation setting, the post hoc approach identified a smaller number of causal 228 
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variants with PIP > 95% compared with SuSiEx (140 vs. 161). And the median size of the credible 229 
set was 10 vs. 8 when combining data from 50K EUR and 20K AFR individuals for post hoc and 230 
SuSiEx respectively, and 4 vs. 2 when analyzing 200K EUR and 200K AFR individuals 231 
(Supplementary Table 5). 232 
 233 
SuSiEx outperformed existing Bayesian cross-population fine-mapping methods in 234 
simulations 235 
We further compared SuSiEx with two published Bayesian cross-population fine-mapping 236 
methods, PAINTOR9,18 and MsCAVIAR8, using the standard simulation setting (Supplementary 237 
Table 2). We noted that neither of the two methods is capable of analyzing all common variants 238 
(MAF >1% in EUR, EAS or AFR) in a 1 Mb locus (6,548 variants per locus on average; Figure 3a, 239 
left column). In particular, MsCAVIAR is not computationally scalable and cannot complete 240 
analyzing a genetic locus within 24 hours, while PAINTOR always returned unreasonable results, 241 
in which the sum of PIP across variants in a genomic locus >5 or <0.1. We note that in the 242 
standard simulation setting, the number of true causal variants was set to one in each locus, and 243 
thus a sum of PIP >5 or <0.1 appears “unreasonable” and may indicate severe model fitting issues 244 
such as failure to converge. We then filtered the discovery summary statistics to fewer variants to 245 
enable performance evaluation across methods. Specifically, we created three input datasets with 246 
increasingly stringent selection criteria: “p < 0.05”, “top 500” and “top 150”, corresponding to 247 
marginal P <0.05, the top 500 and the top 150 most associated variants, respectively. With these 248 
filtered input datasets, the “enumerate” mode of PAINTOR, with the number of causal variants 249 
set to one (which matched the simulation parameter, and was thus a favorable setting for 250 
PAINTOR), still returned unreasonable results (sum of PIP >5 or <0.1) for approximately 25% of 251 
the analyses (Figure 3a), while the “MCMC” mode of PAINTOR returned unreasonable results for 252 
almost all the analyses, with zero PIP for every variant (Supplementary Table 6). The “enumerate” 253 
mode of PAINTOR was also highly sensitive to the parameter “maximum number causal SNPs”, 254 
which is typically unknown a priori and difficult to set in practice (Extended Data Figure 2). The 255 
other Bayesian fine-mapping method, MsCAIVAR, was only able to analyze the smallest input 256 
dataset (“top 150”), as larger dataset took more than 24 hours per locus (Figure 3a), although the 257 
results were generally “reasonable” (Extended data Figure 2; Supplementary Table 6). 258 
 259 
 260 
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 261 
Figure 3: Comparison of SuSiEx, PAINTOR and MsCAVIAR in simulations. a, The job 262 
completion summary (scalability and robustness) for Bayesian fine-mapping methods using 263 
different numbers of input variants. PAINTOR was run using the “enumerate” mode with “-264 
enumerate=1” (which matched the simulation parameter). Unfinished: jobs taking longer than 24 265 
hours wall time. Unreasonable: jobs returning unreasonable results, defined as the sum of PIP 266 
across variants in the genomic locus >5 or <0.1 (1 is expected). Successful: jobs completed within 267 
24 hours of wall time and returned reasonable results. b, Number of identified true causal variants 268 
with PIP >50% (x-axis) versus the coverage of credible sets (y-axis) for different input datasets 269 
and fine-mapping methods. Only simulation runs that were completed within 24 hours and 270 
returned reasonable results were included. 271 
 272 
 273 
 274 
 275 
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For each method, we then focused on simulation runs that returned reasonable PIP estimates. 276 
PAINTOR, with the “enumerate” mode and the number of causal variants set to one, had 277 
calibrated results at 95% coverage and identified a similar number of high-PIP causal variants to 278 
SuSiEx in the EUR-only and EUR + EAS fine-mapping (PIP >50%; Figure 3b). MsCAVIAR, 279 
however, identified much fewer causal variants with PIP >50% (Figure 3b). This is because 280 
MsCAVIAR tends to return large credible sets containing almost all the variants in the input 281 
dataset, each having a small PIP (Supplementary Table 7). SuSiEx outperformed PAINTOR and 282 
MsCAVIAR in the number of causal variants identified with PIP >50%, when AFR samples were 283 
included in the discovery GWAS (Figure 3b), suggesting that SuSiEx can leverage genomic 284 
diversity to fine-map more causal variants with high accuracy. For example, when combining 285 
200K EUR and 200K AFR samples, SuSiEx identified 261 unique causal variants with PIP >50% 286 
using the full GWAS summary statistics, comparing with 209 identified by PAINTOR and 7 287 
identified by MsCAIVAR across the four input datasets (Figure 3b; Supplementary Table 7). We 288 
note that the coverage for SuSiEx was well calibrated in most settings but dropped below 95%  289 
when the top 150 most associated variants were used as input, likely due to information loss from 290 
variant filtering. As using the full GWAS summary statistics as input was computationally tractable 291 
and yielded optimal results for SuSiEx, we do not consider this a limitation for SuSiEx and do not 292 
recommend any prefiltering of variants when using SuSiEx in practice. 293 
 294 
SuSiEx is robust to varying cross-population genetic architectures 295 
We further examined the calibration, power and resolution of SuSiEx by varying key parameters 296 
in the standard simulation setting. The cross-population genetic correlation (rg) can be less than 297 
one for many complex traits and diseases21. SuSiEx accounts for imperfect genetic correlation by 298 
allowing for varying genetic effects across populations. Using simulated data with rg of 0.4, 0.7, 299 
and 1.0, we confirmed that SuSiEx was robust to a range of rg values, with good calibration and 300 
similar power and resolution (Supplementary Figures 6-10; Supplementary Table 8). The local 301 
heritability (h2) and the number of causal variants (ncsl) per locus can differ across the genome for 302 
a given trait or disease1,22–24. We set the heritability per locus to 0.05%, 0.1%, 0.2%, 0.3%, 0.4% 303 
and 0.5%, and for a given per-locus heritability, varied ncsl from 1 to 5 with each genetic effect 304 
drawn from a normal distribution (Methods). As expected, SuSiEx performed better when h2 305 
increased (Supplementary Figures 11-15; Supplementary Table 9) and ncsl decreased 306 
(Supplementary Figures 16-20; Supplementary Table 10), which corresponds to higher per-307 
variant heritability and thus larger statistical power. Nonetheless, SuSiEx was always well 308 
calibrated at 95% coverage (Supplementary Figures 12 & 17), and was able to capture multiple 309 
causal variants in the same locus as ncsl increased.  310 
 311 
We additionally assessed the robustness of SuSiEx under model misspecifications. SuSiEx 312 
assumes that causal variants are shared across populations. While a reasonable assumption for 313 
most genetic associations underlying human complex traits and diseases as supported by recent 314 
studies25–28, SuSiEx allows for different effect sizes (including null effects) of a causal variant 315 
across populations, and thus can accommodate violations of this modeling assumption. We 316 
empirically evaluated the robustness of SuSiEx by simulating variants that had non-zero effect 317 
sizes in one population but were null in other populations. We found that adding null data had little 318 
impact on fine-mapping results (Supplementary Figure 21 and Supplementary Table 11), 319 
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confirming the robustness of SuSiEx to model misspecifications. Lastly, we note that in-sample 320 
LD is preferred in fine-mapping as it matches the correlation pattern between variants in the 321 
discovery GWAS sample. Unfortunately, in-sample LD is not always available, especially in large-322 
scale GWAS comprising multiple cohorts. Using an external LD reference panel from a genetically 323 
close population can be a pragmatic solution despite its limitations6,29–31. Here, we evaluated the 324 
impact of LD mismatch on SuSiEx. Consistent with previous findings, analysis using in-sample 325 
LD produced excellent calibration and power, while using external LD led to coverage and power 326 
loss as the genetic distance between the external reference panel and the discovery sample 327 
increased (Supplementary Figure 4 and Supplementary Table 12). 328 
 329 
SuSiEx increased the power and resolution of fine-mapping in biobank analysis 330 
Encouraged by simulation results, we applied SuSiEx to data from the Pan-UKBB project and the 331 
Taiwan Biobank (TWB). The Pan-UKBB project is a multi-ancestry resource derived from the UK 332 
Biobank (UKBB)14 by analyzing six continental ancestry groups across 7,228 phenotypes. We 333 
included summary statistics of EUR and AFR (NEUR up to 419,807; NAFR up to 6,570, 334 
Supplementary Table 13) ancestries from Pan-UKBB. We additionally included TWB, one of the 335 
largest biomedical databases in East Asia (NEAS = 92,615) with close to 100,000 study 336 
samples15,32. We selected 25 quantitative traits shared between Pan-UKBB and TWB 337 
(Supplementary Table 13), and defined 13,420 genomic loci that reached genome-wide 338 
significance in at least one of the single-population association analysis or the meta-analysis 339 
across the three populations (Methods; Supplementary Table 14). We then performed single-340 
population fine-mapping using SuSiE, and cross-population fine-mapping using SuSiEx, 341 
combining EUR, AFR and EAS data.  342 
 343 
SuSiEx identified 14,400 credible sets across 9,826 loci, while single-population fine-mapping 344 
identified 12,784, 48, and 1,475 credible sets for the EUR, AFR and EAS populations, respectively 345 
(Supplementary Table 14). Aligning credible sets across analyses (Methods) led to 2,953 (20.5%) 346 
credible sets identified by SuSiEx that were not identified by single-population fine-mapping 347 
(Supplementary Table 14). Among the 14,400 credible sets, 1,413 (9.8%) credible sets reached 348 
genome-wide significance in the meta-analysis but not in any population-specific GWAS (as 349 
indexed by the maximum PIP variant), and thus would have been missed if fine-mapping was 350 
only conducted in single populations (Supplementary Table 14; Extended Data Figure 3b as an 351 
example). In addition to identifying and mapping more genetic associations through integrating 352 
data from multiple populations, SuSiEx also improved fine-mapping resolution. Relative to single-353 
population fine-mapping in the EUR population, adding AFR and EAS data increased the average 354 
of the maximum PIP for a variant across all aligned credible sets from 0.44 to 0.47 (P = 3.7x10-6; 355 
two-sided t test), and reduced the average size of credible sets from 29.4 to 27.2 (P = 0.015; two-356 
sided t test; Figure 4a & 4b; Supplementary Table 15; Extended Data Figure 3a as an example). 357 
Additionally, cross-population fine-mapping identified 2,485 putative causal variants with PIP >95% 358 
(Figure 4c; Supplementary Table 16), among which 575 were not discovered by any single-359 
population fine-mapping. For example, SuSiEx identified a credible set containing a single variant 360 
associated with total bilirubin at PIP >99%, a missense variant of TRIM5 (rs11601507). This 361 
credible set failed to reach genome-wide significance in any population and was thus missed in 362 
single-population fine-mapping (Figure 5a and Extended Data Figure 4). Similarly, SuSiEx 363 
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identified a two-variant credible set associated with albumin that failed to reach genome-wide 364 
significance in any population (Figure 5b; Extended Data Figure 5). The lead variant in the credible 365 
set is an intron variant of ALOX5AP with PIP 97.4%. This variant was fine-mapped to be an eQTL 366 
variant regulating the expression of ALOX5AP in whole blood (PIP >99%), artery aorta (PIP = 367 
86.1%) and spleen (PIP = 77.9%) (Figure 5b; Extended Data Figure 5)33. In both examples, 368 
SuSiEx identified putative causal variants and resolved a genetic locus to its gene target that 369 
would have been missed if only single-population fine-mapping was performed.  370 
 371 
Next, we restricted the comparison to loci that were mapped to a single credible set by both single- 372 
and cross-population fine-mapping such that our results were not affected by multiple causal 373 
variants in LD and the algorithm of credible set alignment. In these single-credible-set loci, SuSiEx 374 
continued to outperform single-population fine-mapping in power and resolution, identifying more 375 
credible sets with high confidence (best PIP >95%; Figure 4d), and improving the maximum PIP 376 
of a credible set in general relative to single-population fine-mapping (P = 6.4e-5; two-sided t test; 377 
Figure 4e). In particular, SuSiEx improved the maximum PIP of 30 credible sets from <80% to >95% 378 
(Figure 4e; orange and red dots), among which 9 were improved from <50% to >95% (Figure 4e; 379 
red dots). We note that the maximum PIP for one credible set dropped substantially, from 99% to 380 
21%, in the cross-population fine-mapping (Figure 4e; blue dot). Further investigation of this locus 381 
revealed that the putative causal variant (12-67643414-T-A) is located in a low complexity 382 
genomic region, where the quality of variant calling and imputation may be negatively affected34. 383 
This variant is also represented in fewer than 50% of individuals in gnomAD v2.1.1 genomes35, 384 
and violates Hardy-Weinberg equilibrium. 385 
 386 
Biobank analyses further confirmed that SuSiEx can retain population-specific causal variants 387 
(Extended Data Figure 3c as an example). Despite a dominating EUR sample size, SuSiEx 388 
recaptured 83% of the findings from single-population fine-mapping. A non-trivial proportion of 389 
credible sets from single-population fine-mapping that were not captured by SuSiEx may be 390 
driven by quality issues, defined as (i) the best PIP variant is in the low complexity region (LCR); 391 
(ii) the best PIP variant is in allelic imbalance or violates Hardy Weinberg equilibrium in gnomAD35; 392 
or (iii) the best PIP variant is multi-allelic or colocalizes with indels at the same genomic position, 393 
which might influence imputation quality. For example, 17.5% (29/166) of the putative causal 394 
variants with PIPs dropped by 10-20% in cross-population fine-mapping relative to single-395 
population fine-mapping had quality issues, compared with 41.2% (7/17) of the variants with PIPs 396 
dropped by >40% (Extended Data Figure 6). These results suggest that, through the joint 397 
modeling of multiple populations and datasets, SuSiEx provides the additional benefit of 398 
identifying and removing likely low-quality findings from single-population analyses.  399 
 400 
We used Ensembl Variant Effect Predictor (VEP)36 to annotate each variant into high, moderate 401 
or low functional impact, as well as modifiers. As the inferred PIPs increased, the proportion of 402 
variants with high impact clearly increased (Extended Data Figure 7), suggesting that confidently 403 
fine-mapped variants were enriched among mutations of functional importance. In total, we 404 
identified 2,286 high or moderate impact variants in 95% credible sets located in 1,630 genes. 405 
Among these variants, 425 had a PIP greater than 50% (Supplementary Table 17), and 275 had 406 
a PIP greater than 95% (Supplementary Table 18). There were 28 genes containing at least two 407 
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high/moderate impact SNPs with PIP greater than 95%, while only 23 were detected in the three 408 
single-population fine-mapping analyses. In particular, IQGAP2 and PIEZO1 carried 3 missense 409 
variants associated with multiple blood biomarkers with PIPs >95%.  410 
 411 

 412 
Figure 4: Cross-population fine-mapping analysis in biobanks. a, The distribution of the 413 
maximum PIP from all credible sets. b, The distribution of the size of all credible sets. c, The 414 
number of variants mapped to PIP >95% for all credible sets. d, The number of variants mapped 415 
to PIP >95% in single-credible-set loci. e, The maximum PIP from SuSiEx versus the maximum 416 
value of the maximum PIP in the three single-population fine-mapping using SuSiE. Only genomic 417 
loci with a single credible set aligned across analyses were included. f and g, The marginal per-418 
allele effect size of the maximum PIP variant in EUR vs. EAS and EUR vs. AFR populations. We 419 
included variants in single-credible-set loci with PIP >95% estimated by SuSiEx and minor allele 420 
frequencies >5% in all populations. In a-b, red dots indicate the mean, the middle line in the box 421 
indicates the median, and the upper and lower bounds of the box indicate the 75th and 25th 422 
percentiles, respectively. 423 
 424 
 425 
Lastly, we compared the per-allele effect sizes of high-confidence putative causal variants 426 
(PIP >95% in single- or cross-population fine-mapping) located in single-credible-set loci among 427 
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EUR, AFR and EAS populations (Figure 4f & 4g). As no secondary association was found in these 428 
loci, we used marginal effect sizes in the comparison. Overall, the effect sizes were highly 429 
concordant between EUR and EAS populations (r = 0.82) but less consistent between EUR and 430 
AFR populations (r = 0.21), likely reflecting the larger uncertainties of the effect size estimates in 431 
AFR samples due to the limited GWAS sample size. We suggest the nature and cause of such 432 
inconsistency should be subject to a more thorough investigation with expanded non-European 433 
resources. At the current state, the imperfect genetic correlations across populations suggested 434 
the importance of accounting for variants with varying population-specific effect sizes in fine-435 
mapping models. 436 
 437 

 438 
Figure 5. SuSiEx identified variants missed in single-population fine-mapping. Each sub-439 
figure consists of five panels, which are aligned vertically, with the x-axis representing the 440 
genomic position. The top three panels visualize GWAS association statistics of the European 441 
(Pan-UKBB Europan), African (Pan-UKBB African) and East Asian (Taiwan biobank) populations 442 
following the LocusZoom37 style. The second to bottom panel visualizes the fine-mapping results 443 
from SuSiEx, which integrated GWAS summary statistics from the three populations. The bottom 444 
panel shows gene annotations. For GWAS panels, the left y-axis represents the -log10(p-value) 445 
of each SNP. The gray horizontal dash line represents the genome-wide significance threshold 446 
(5x10-8). The purple rectangle for each locus represents the lead (most associated) variant. 447 
Variants are colored by descending LD with the lead variant (ordered red, orange, green, light 448 
blue, and dark blue dots). For fine-mapping panels, different colors were used to distinguish 449 
different credible sets. The diamond represents the maximum PIP variant of each credible set. a, 450 
Association with total bilirubin on chr11: 5,100,000-5,700,000. b, Association with albumin on 451 
chr13: 31,150,000-31,450,000. 452 
 453 
SuSiEx identified additional putative causal candidates for schizophrenia 454 
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We applied SuSiEx to schizophrenia GWAS summary statistics of EUR (Ncase = 53,251, Ncontrol = 455 
77,127) and EAS (Ncase = 14,004, Ncontrol = 16,757) ancestries from the Psychiatric Genomics 456 
Consortium (PGC), and fine-mapped the same 250 autosomal loci in the recent PGC publication4. 457 
SuSiEx successfully identified 215 credible sets out of 193 loci (not all loci converged to a credible 458 
set, as in all fine-mapping analyses), among which 11 had a SNP with PIP >95% (Figure 6a; 459 
Supplementary Tables 19 & 20). As expected, SuSiEx outperformed published PGC fine-mapping 460 
results, which applied a single-population fine-mapping method, FINEMAP38, to meta-analyzed 461 
GWAS summary statistics and sample size weighted LD4. Specifically, SuSiEx mapped 57% (33 462 
vs. 21) more signals to a single variant with PIP >50% in single-credible-set loci (Figure 6). Most 463 
of the SuSiEx-improved credible sets had a marginally genome-wide significant signal (P-value 464 
between 5E-8 and 1E-15; Figure 6b & 6c). SuSiEx also produced credible sets for three loci that 465 
could not be resolved by FINEMAP in the original analysis. In these loci, FINEMAP inferred five 466 
independent credible sets, each containing a single variant that was not statistically significant in 467 
the GWAS, likely due to inaccurate reference panel39. Furthermore, SuSiEx substantially 468 
increased the resolution of fine-mapping by reducing the average size of credible sets from 87.1 469 
to 60.3 (P = 0.015; paired two-sided t test), and increasing the average of maximum PIP across 470 
credible sets from 0.25 to 0.27 (P = 0.012; paired two-sided t test). 471 
 472 

 473 
Figure 6: Fine-mapping of schizophrenia risk loci across European and East Asian 474 
populations. a, The number of putative causal variants mapped to PIP >50% and >95% by 475 
FINEMAP and SuSiEx in single-credible-set loci. b, The maximum PIP for each credible set within 476 
single-credible-set loci, estimated by SuSiEx and FINEMAP. c, The difference of the maximum 477 
PIP, estimated by SuSiEx and FINEMAP (y-axis), within each single-credible-set locus, plotted 478 
against the -log10(p-value) of the most associated variant in the cross-population meta-analysis. 479 
In b and c, red dots represent credible sets with a maximum PIP >95% estimated by SuSiEx; 480 
orange dots represent credible sets with a maximum PIP >50% estimated by SuSiEx. 481 
 482 
 483 
 484 
DISCUSSION 485 
 486 
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We presented SuSiEx, a cross-population fine-mapping method which links multiple population-487 
specific sum of single effects (SuSiE) models by assuming the sharing of underlying causal 488 
variants. Through flexible and accurate modeling of varying population-specific causal effect sizes 489 
and LD patterns, SuSiEx improves the power and resolution of fine-mapping while producing well-490 
calibrated false positive rates and retaining the ability to identify population-specific causal 491 
variants. We showed, via comprehensive simulation studies, that SuSiEx is highly computationally 492 
efficient, outperforms alternative cross-population fine-mapping methods in calibration, power and 493 
resolution, and is robust to model misspecifications. In particular, as the two state-of-the-art 494 
Bayesian cross-population fine-mapping methods, PAINTOR is sensitive to the predefined (yet 495 
unknown) number of causal variants, while MsCAVIAR is computationally intractable when the 496 
total number of input variants is greater than a few hundreds. Moreover, neither method has the 497 
capacity to analyze summary statistics from a comprehensive set of common variants in loci 498 
greater than 1MB. SuSiEx overcomes these limitations and offers effective and efficient cross-499 
population fine-mapping that can be applied on biobank-scale datasets for the first time. 500 
 501 
SuSiEx is designed to flexibly integrate genomic data from multiple populations, where effect 502 
sizes and/or LD patterns can be different. For two or more GWAS conducted in independent 503 
samples from the same population where effect sizes and LD patterns are highly concordant, we 504 
recommend a fixed-effect meta-analysis to combine these GWAS, which is often more statistically 505 
powerful than modeling these GWAS separately in SuSiEx without imposing any assumptions on 506 
the correlation of SNP effect sizes across samples. A recent study proposed SuSiE-inf40, which 507 
incorporates a term of infinitesimal effects in addition to a small number of single-variant causal 508 
effects, and showed that the new model can produce more calibrated fine-mapping results. While 509 
the calibration of SuSiEx was excellent in simulation studies, expanding the SuSiEx model to 510 
include this feature in the future may improve the fine-mapping of complex traits and diseases 511 
that have a highly polygenic architecture. 512 
 513 
We note that throughout this work we tried to use in-sample LD reference panels for fine-mapping. 514 
Mismatch between the LD of the discovery sample and the reference panel may produce spurious 515 
credible sets and causal signals, especially in genomic loci that harbor strong association signals. 516 
This has been shown in prior work39 and our simulations studies, and is a limitation of all fine-517 
mapping methods. We therefore recommend using in-sample LD for SuSiEx whenever possible, 518 
and applying aggressive filtering of low-quality variants and secondary credible sets in complex 519 
genomic loci if external LD reference panels have to be used. 520 
          521 
There are several limitations of SuSiEx and the present study. First, we restricted our analyses to 522 
SNPs to avoid potential strand flippings and alignment errors when analyzing indels across 523 
biobanks. This may produce false positives if fine-mapped SNP(s) are proxies for causal indels 524 
or structural variations (SV). Second, we did not incorporate functional annotations into SuSiEx. 525 
Adding functional priors to the model may improve fine-mapping resolution when multiple variants 526 
in strong LD have similar statistical significance, and may aid prioritization of follow-up functional 527 
studies. That said, the biology underlying the observed variant-phenotype association may be 528 
complex, and the modeling of functional data may be error-prone and inflate false positive rates. 529 
Extending the Bayesian framework of SuSiEx to leverage functional or other omics data by 530 
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introducing a proper prior to the model can be a promising future direction. Third, our cross-531 
population fine-mapping in biobanks had an encouraging but modest improvement over the 532 
resolution of credible sets identified by European-only analyses, which was largely due to the 533 
limited discovery sample size of the African GWAS. However, we have shown that the largest 534 
improvements of SuSiEx come with the most diverse datasets, and thus expect that SuSiEx will 535 
become increasingly useful as the scale of genomic research in underrepresented populations 536 
continues to expand in global biobanks41 and disease-focused consortia. Lastly, it remains 537 
unclear how SuSiEx would perform in admixed samples, in which the local ancestry (and thus the 538 
causal variants and their effect sizes) may vary from individual to individual. Developing and 539 
evaluating statistical fine-mapping methods in populations with complex genetic ancestries is an 540 
important future direction. 541 
 542 
In summary, SuSiEx provides robust, accurate and scalable fine-mapping that integrates GWAS 543 
summary statistics from diverse populations. Together with the ability to distinguish multiple 544 
causal variants within a genomic region, SuSiEx enables the analysis of large, complex genomic 545 
loci and aids the interpretation of fine-mapping results. Future work that combines SuSiEx with 546 
the rapidly expanding non-European genomic resources may facilitate the discovery of 547 
functionally-important disease-causing variants computationally and experimentally. 548 
 549 
 550 
METHODS 551 
 552 
Cross-population Sum of Single Effect (SuSiEx) model 553 
Model description. We extend the “SUm of SIngle Effects” (SuSiE) regression model to fine-554 
mapping studies across multiple populations: 555 
 556 

𝒚! = 𝑿!𝜷! + 𝝐!,										𝝐!~𝑁(𝟎, 𝜎!"𝑰),										𝑠 = 1,2, … , 𝑆, 557 

𝜷! =5𝒃!#

$

#%&

,										𝒃!# = 𝜸#𝑏!# ,										𝜸#~𝑀𝑢𝑙𝑡(1, 𝝅),										𝑏!# = 𝑁>0, 𝜏!#" A, 558 

 559 
where for an population 𝑠  (e.g., European, Asian or African), 𝒚!  is a vector of standardized 560 
phenotypes (zero mean and unit variance) from 𝑁!  individuals, 𝑿! = [𝒙!&, 𝒙!", … , 𝒙!']  is an 561 
𝑁! ×𝑀  matrix of standardized genotypes (each column 𝒙!(  is mean centered and has unit 562 
variance) in a genomic region that harbors at least one strong association signal, 𝜷! is a vector 563 
of SNP effect sizes, and 𝝐! is a vector of residuals with i.i.d. elements, each following a normal 564 
distribution with zero mean and variance 𝜎!". We assume that 𝜷! is the sum of 𝐿 single-effect 565 
vectors 𝒃!# , 𝑙 = 1,2, … , 𝐿, each has exactly one non-zero element (equals to 𝑏!#). The position of 566 
the non-zero element is determined by the binary vector 𝜸# , which follows a multinomial 567 
distribution. 𝝅 = [𝜋&, 𝜋", … , 𝜋']T  is a vector that gives the prior probability of a SNP being causal, 568 
and 𝜏!#"  is the prior variance on the effect size 𝑏!# of the causal SNP. We note that all populations 569 
share the same underlying causal SNPs (𝜸# does not depend on 𝑠), but the effect sizes of a causal 570 
SNP across populations are allowed to be different (𝑏!# depends on 𝑠). 571 
 572 
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Model fitting. Assuming 𝜎!" and 𝜏!#"  are known, the SuSiEx model can be fitted using a simple 573 
extension of the iterative Bayesian stepwise selection (IBSS) algorithm. Specifically, with an 574 
initialization of the posterior mean effect size of 𝒃!#, denoted as 𝒃H!# (e.g., 𝒃H!# = 0 for all 𝑠 and 𝑙), 575 
the fitting procedure involves iteratively updating 𝒃!#, given estimates of other effects 𝒃!#! , 𝑙) ≠ 𝑙, 576 
until convergence: 577 
 578 

à Compute residuals: 579 

𝒓!" = 𝒚! −%𝑿!𝒃!""
""#"

,										𝑠 = 1,2, … , 𝑆. 580 

à Compute the posterior inclusion probabilities (PIPs): 581 

𝛼"$ = Pr3𝛾"$ = 15𝒓!" , 𝑿!6 =
𝜋$∏ BF(𝒓!" , 𝒙𝑠𝑗)%

!&'

∑ 𝜋$"(
$" ∏ BF(𝒓!" , 𝒙𝑠$")%

!&'
,										𝑗 = 1,2, … ,𝑀, 585 

where BF3𝒓!" , 𝒙𝑠𝑗6 =
)(𝒓#$|𝒙𝑠𝑗)

)(𝒓#$|𝒙𝑠𝑗,/#$&0)
= @

1#%
&

2#$
& 31#%

& exp(
4#$%
&

5

1#%
&

2#$
& 31#%

& ), 582 

𝑏E!"$ = (𝒙!$T 𝒙!$)7'𝒙!$T 𝒓!" = 𝑁!7'𝒙!$T 𝒓!" , 𝑣!$5 = 𝜎!5(𝒙!$T 𝒙!$)7' = 𝜎!5𝑁!7', 𝑧!"$ =583 
𝑏E!"$/𝑣!$. 584 

à Update the posterior distribution for 𝑏!": 586 
𝑏!"|𝛾"$ = 1, 𝒓!" , 𝒙𝑠𝑗~𝑁 M𝜇𝑠𝑙𝑗, 𝜙𝑠𝑙𝑗

2 N , 588 

where 𝜙!#(" = >𝑣𝑠𝑗−2 + 𝜏𝑠𝑙−2A
−1, 𝜇!#( = (𝜙!#(" /𝑣𝑠𝑗2 )𝑏M𝑠𝑙𝑗. 587 

à Compute the posterior mean for 𝒃!": 589 
𝒃Q!" = E[𝒃!"|𝒓!" , 𝑿!] = 𝜶" ∘ 𝝁!" , 590 

Where 𝜶# = [𝛼#&, 𝛼#", … , 𝛼#']T , 𝝁# = [𝜇!#&, 𝜇!#", … , 𝜇!#']T , and ○ is element-wise 591 
multiplication. 592 

 593 

Credible sets. The PIPs 𝜶# can be used to compute a level-𝜌 credible set 𝐶𝑆(𝜶#; 𝜌), which has a 594 
probability no less than 𝜌 of containing at least one causal SNP. Specifically, let (𝑖&, 𝑖", … , 𝑖') 595 
denote the indices that sort 𝛼#(  in decreasing order, i.e., 𝛼#0$ > 𝛼#0% > ⋯ > 𝛼#0& , and let 𝑆1 =596 
∑ 𝛼#0'
1
(%& . Then 𝐶𝑆(𝜶#; 𝜌) ≔ {𝑖&, 𝑖", … , 𝑖1(} , where 𝑘2 = min{𝑘: 𝑆1 ≥ 𝜌} . When 𝐿  exceeds the 597 

number of detectable effects in the data, some 𝜶# become diffuse and the corresponding credible 598 
sets will be large, containing many uncorrelated SNPs. Such credible sets have no inferential 599 
value and can be discarded if they have purity below a threshold (e.g., 0.5), where purity is defined 600 
as the smallest absolute correlation among all pairs of variants within the credible set. 601 
 602 
Using GWAS summary statistics. Let 𝛽b!( = (𝒙!(T 𝒙!()3&𝒙!(T 𝒚! = 𝑁!3&𝒙!(T 𝒚!  denote the marginal 603 
least squares effect size estimate of SNP 𝑗in the ethnic group 𝑠, and 𝑫! = [𝒅!&, 𝒅!", … , 𝒅!'] =604 
𝑿!T𝑿!/𝑁!  denote the LD matrix for ethnic group 𝑠, which can be estimated using an LD reference 605 
panel. Note that 𝒙!(T 𝒓!# = 𝒙!(T 𝒚! − 𝒙!(T ∑ 𝑿!𝒃H!#!#!4# = 𝑁!𝛽b!( −𝑁! ∑ 𝒅!(T 𝒃H!#!#!4# . Therefore, IBSS can 606 
be turned into a summary statistics based algorithm. 607 
 608 
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 609 
The multi-step model fitting approach. To determine the maximum number of single effects L, 610 
we designed a heuristic, multi-step model fitting approach. Specifically, we start with L = 5 and fit 611 
the SuSiEx model. If the model does not converge, we sequentially reduce L by 1 until the 612 
algorithm converges. If the model converges with L = 5 and returns 5 credible sets, suggesting 613 
that more than 5 credible sets may exist, we set L = 10 and rerun the model fitting algorithm. If 614 
the model does not converge with L = 10, we sequentially reduce L by 1 until the algorithm 615 
converges. 616 
 617 
Simulations 618 
Genomic data. We simulated individual-level genotypes of EUR, EAS and AFR populations using 619 
HAPGEN242 with ancestry-matched 1000 Genomes Project (1KG) Phase III43 superpopulation 620 
samples as the reference panel. We grouped CEU, IBS, FIN, GBR and TSI into the EUR 621 
superpopulation, CDX, CHB, CHS, JPT and KHV into the EAS superpopulation, and ESN, MSL, 622 
LWK, GWD and YRI into the AFR superpopulation. To calculate the genetic map (cM) and 623 
recombination rate (cM/Mb) for each superpopulation, we downloaded the maps and rates for 624 
their constituent subpopulations (Data availability), linearly interpolated the genetic map and 625 
recombination rate at each position (Code availability), and averaged the genetic maps and 626 
recombination rates across the subpopulations in each superpopulation. We simulated 400,000 627 
EUR samples, 200,000 EAS samples and 200,000 AFR samples, and confirmed that the allele 628 
frequencies and LD patterns of the simulated genotypes were highly similar to those of the 1KG 629 
reference panels. We randomly selected 100 1MB regions from chromosome 1 (Supplementary 630 
Table 1), and filtered for bi-allelic common (MAF >1%) SNPs in at least one of the three 631 
superpopulations. 632 
 633 
Phenotypic data. We randomly selected ncsl causal variants within each genomic locus. The 634 
allelic effect sizes of each selected causal variant for the EUR, EAS and AFR populations were 635 
generated under a multivariate normal distribution N(0, Σ3✕3), where Σ3✕3 was defined as, Σij = 1, 636 

if i = j, and Σij = rg, if i ≠ j where rg is the genetic correlation between populations. For each locus, 637 
we then generated the phenotype by adding a normally distributed noise term to the genetic 638 
component to produce the given per-locus heritability h2. 639 
 640 
To assess SuSiEx in a wide range of settings, we generated simulation data with varying genetic 641 
correlations (rg), per-locus heritability (h2), and the number of causal variants (ncsl) per locus. We 642 
defined a standard simulation setting using ncsl = 1, rg = 0.7 and h2 = 0.1%. We then varied rg (rg 643 
= 0.4 and 1.0) to reflect different levels of cross-population genetic correlations, varied h2 (h2 = 644 
0.05%, 0.2%, 0.3%, 0.4% and 0.5%) to reflect different per-locus heritability values, and varied 645 
ncsl (ncsl = 2, 3, 4, 5) with h2 = 0.5% to reflect the scenario of multiple causal variants in a genomic 646 
locus. To evaluate the robustness of SuSiEx to model misspecification, we simulated 200K EUR 647 
and 200K AFR samples with no causal variants, and included these null data in cross-population 648 
fine-mapping. For each parameter setting, we replicated the simulation five times for each locus 649 
(Supplementary Table 2), producing 500 simulation runs.  650 
 651 
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Association analysis and LD calculation. We used the linear regression implemented in 652 
PLINK44 to generate GWAS summary statistics, and calculated in-sample LD for each genomic 653 
locus. To evaluate the impact of LD mismatch on fine-mapping results, we additionally calculated 654 
LD matrices using subpopulation samples within the EUR and AFR superpopulations. 655 
 656 
Fine-mapping analysis with SuSiEx, SuSiE, PAINTOR, and MsCAVIAR.  657 
We compared SuSiEx, SuSiE, PAINTOR and MsCAVIAR using the standard simulation setting. 658 
SuSiEx and SuSiE were performed and evaluated on additional settings beyond the standard 659 
simulations. As PAINTOR and MsCAVIAR are not computationally scalable to full GWAS 660 
summary statistics, we restricted the analysis to three filtered sets of variants: “p < 0.05”, “top 500” 661 
and “top 150”, corresponding to marginal p-values <0.05, the top 500 and the top 150 most 662 
associated variants from GWAS, respectively. PAINTOR provides two model fitting options, 663 
“MCMC” and “enumerate”. The “MCMC” mode automatically learns the number of causal variants 664 
in a locus while the “enumerate” mode requires pre-setting the maximum number of causal 665 
variants. We ran PAINTOR using “-mcmc”, “-enumerate=1”, “-enumerate=2” and “-enumerate=3”. 666 
All other parameters were set to default. We set the maximum runtime to 24 hours in our high-667 
performance computing (HPC) system, the maximum memory to 8 GB, and the number of CPUs 668 
to one. For SuSiEx, we used the multi-step model fitting approach described above to determine 669 
the number of causal variants. Credible sets that did not contain any genome-wide significant 670 
variant (marginal P <5E-8) in any single-population GWAS nor cross-population meta-GWAS 671 
were filtered out. We ran MsCAVIAR with the default parameters and set the confidence level of 672 
credible sets as 0.95. 673 
 674 
Biobank analysis 675 
Cohorts. GWAS summary statistics of 25 quantitative traits, available from both the UK Biobank 676 
(UKBB) and Taiwan Biobank (TWB), were used in our biobank fine-mapping analysis 677 
(Supplementary Table 13). European (EUR; NEUR up to 419,807) and African (AFR; NAFR up to 678 
6,570) GWAS summary statistics were obtained from the Pan-ancestry genetic analysis of the 679 
UK Biobank (Pan-UKBB). East Asian GWAS summary statistics were obtained from the Taiwan 680 
Biobank (EAS; NEAS = 92,615). 681 
 682 
Loci definition. We used a 6-way LD clumping-based method to define the genomic loci, using 683 
1KG data as the LD reference for clumping. CEU, GBR, TSI, FIN and IBS were combined as the 684 
reference for the EUR population; ESN, GWD, LWK, MSL and YRI were combined as the 685 
reference for the AFR population; CHB, CHS, CDX, JPT and KHV were combined as the 686 
reference for the EAS population. We extracted all variants with MAF >0.5%, and for each of the 687 
25 traits, performed the LD clumping in the three populations using the corresponding reference 688 
panel and PLINK44. To include loci that reached genome-wide significance (P <5E-8) only in the 689 
meta-analysis, we further performed clumping for the meta-GWAS across the three populations, 690 
using the three reference panels, respectively. For each clumping, we set the p-value threshold 691 
of the leading variant as 5e-8 (--clump-p1) and the threshold of the tagging variant as 0.05 (--692 
clump-p2), and set the LD threshold as 0.1 (--clump-r2) and the distance threshold as 250 kb (--693 
clump-kb). We then took the union of the 6-way LD clumping results and extended the boundary 694 
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of each merged region by 100 kb upstream and downstream. Finally, we merged adjacent loci if 695 
the LD (r2) between the leading variants was larger than 0.6 in any LD reference panel. 696 
 697 
In-sample LD calculation. We used the in-sample LD of the three populations in the fine-698 
mapping analysis. We extracted all variants with MAF >0.5% from each population and calculated 699 
the LD using PLINK44. Multi-allelic variants and indels were excluded to avoid potential strand 700 
flipping and alignment errors.  701 
 702 
Fine-mapping. We applied SuSiEx to the 25 quantitative traits to integrate GWAS summary 703 
statistics derived from the three populations. We filtered out credible sets that did not contain any 704 
genome-wide significant variant (p <5E-8) in any population-specific GWAS or cross-population 705 
meta-GWAS. 706 
 707 
Credible set alignment. To compare the results between single-population and cross-population 708 
fine-mapping, we aligned the inferred credible sets across the four sets of analyses using a 709 
weighted Jaccard similarity index-based method7. Specifically, for a given pair of overlapping 710 
credible sets in a genomic locus, we computed the PIP-weighted Jaccard similarity index, defined 711 
as ∑i 𝑚𝑖𝑛(𝑥i , 𝑦i )/ ∑i 𝑚𝑎𝑥(𝑥i , 𝑦i ), where xi and yi are PIP values (or zero if missing) for the same 712 
variant i from the two credible sets. Pairs of credible sets with a similarity index greater than 0.1 713 
were aligned. If one credible set can be aligned with multiple credible sets, the set with the highest 714 
similarity was selected. 715 
 716 
Cross-population fine-mapping in schizophrenia cohorts.  717 
Schizophrenia GWAS summary statistics of European (EUR; Ncase = 53,251, Ncontrol = 77,127) and 718 
East Asian (EAS; Ncase = 14,004, Ncontrol = 16,757) ancestries were obtained from the recently 719 
published Psychiatric Genomics Consortium (PGC) schizophrenia analysis4. We fine-mapped the 720 
same 255 loci defined in the PGC publication. We calculated LD by applying LD-Store v1.139 to 721 
each cohort and locus, and then calculated an effective sample size weight LD matrix45 across 722 
cohorts for the EUR and EAS populations, respectively (Code availability; LDmergeFM). We 723 
applied SuSiEx to integrate EUR and EAS schizophrenia GWAS summary statistics to perform 724 
cross-population fine-mapping. Credible set level was set to 99%. Credible sets that did not 725 
contain any genome-wide significant variant (marginal P <5E-8) in single-population GWAS or 726 
cross-population meta-GWAS were filtered out. 727 
 728 
DATA AVAILABILITY 729 
Publicly available data are available from the following sites:  730 
1KG Phase 3 reference panels: https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html;  731 
Genetic map for each subpopulation: 732 
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130507_omni_recombination_rat733 
es; 734 
PanUKBB summary statistics: https://pan.ukbb.broadinstitute.org/downloads;  735 
TWB data used in this study contain protected health information and are thus under controlled 736 
access. Application to access such data can be made to the TWB 737 
(https://www.twbiobank.org.tw/new_web_en/);  738 
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PGC schizophrenia GWAS: https://pgc.unc.edu/for-researchers/download-results  739 
 740 
CODE AVAILABILITY 741 
The code used in this study is available from the following websites:  742 
SuSiEx: https://github.com/getian107/SuSiEx;  743 
PAINTOR: https://github.com/gkichaev/PAINTOR_V3.0;  744 
MsCAVIAR: https://github.com/nlapier2/MsCAVIAR;  745 
HAPGEN2: https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/hapgen2.html;  746 
PLINK1.9: https://www.cog-genomics.org/plink;  747 
LDmergeFM: https://github.com/Pintaius/LDmergeFM 748 
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Extended Data Figure 1: Schematic illustration of meta-based, post hoc and SuSiEx
fine-mapping methods. All panels were created following the LocusZoom style17. Variant
positions are shown on the x axis. The gold diamond for each locus represents the lead (most
associated) variant. The association strengths for other variants are colored by descending
degrees of linkage disequilibrium (LD) with the lead variant (ordered red, orange, green, and
blue dots). The purple bars represent the posterior inclusion probability (PIP) inferred by
fine-mapping methods. The light gray boxes represent the credible set estimated by
fine-mapping. a1-a5, Example of a strong causal signal shared across populations. b1-b5,
Example of a weak causal signal shared across populations. c1-c5, Example of a
population-specific causal signal.
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Extended Data Figure 2: Comparison of SuSiEx, PAINTOR and MsCAVIAR in simulations.
a, The job completion summary for the three Bayesian fine-mapping methods using different
parameters and input datasets. Red stands for jobs taking longer than 24 hours. Yellow stands
for jobs returning unreasonable results, defined as the sum of PIP across variants in the
genomic locus >5 or <0.1 (1 is expected). Green stands for jobs that were completed within 24
hours and returned reasonable results. b, Number of identified true causal SNPs with PIP >0.5
(x-axis) versus the coverage of credible sets (y-axis) for different input datasets and
fine-mapping methods. Color represents the combination of discovery populations; size of the
symbols represents the total discovery sample size, and the shape of the symbols represents
different methods and parameters. Only simulation runs that were completed within 24 hours
and returned reasonable results were included.
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Extended Data Figure 3: Examples of the improvement of SuSiEx over single-population
fine-mapping in biobank analysis. Each of the three sub-figures consists of eight panels,
which are aligned vertically, with the x-axis representing the genomic position. The top six
panels visualize GWAS association statistics and single-population fine-mapping results of the
European (Pan-UKBB Europan), African (Pan-UKBB African) and East Asian (Taiwan biobank)
populations. For association statistics, the left y-axis represents the -log10(p-value) of each SNP.
The color stands for the descending degrees of LD with the lead SNP (from red, orange to
blue). The right y-axis represents the recombination rate in the centimorgan per Megabase. The
solid line indicates the population-specific recombination maps obtained from the 1000
Genomes Project. Different colors were used to distinguish different credible sets in the
fine-mapping results. The second to bottom panel visualizes results from SuSiEx. The bottom
panel shows gene annotations if any. a, Association with albumin on chr8:9,170,000-9,190,000,
an example of a strong causal signal shared across populations. b, Association with platelets
count on chr12:104,900,000-105,050,000, an example of a weak causal signal shared across
populations. c, Association with albumin on chr12:13,100,000-13,400,000, an example of
population-specific causal signals.
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Extended Data Figure 4: Association with total bilirubin on chr11: 5,100,000-5,700,000.
Panels are aligned vertically, with the x-axis representing the genomic position. The top six
panels visualize GWAS association statistics and single-population fine-mapping results of the
European (Pan-UKBB Europan), African (Pan-UKBB African) and East Asian (Taiwan biobank)
populations following the LocusZoom37 style. The second to bottom panel visualizes the
fine-mapping results from SuSiEx, which integrated GWAS summary statistics from the three
populations. The bottom panel shows gene annotations. For GWAS panels, the left y-axis
represents the -log10(p-value) of each SNP. The gray horizontal dash line represents the
genome-wide significance threshold (5x10-8). The purple rectangle for each locus represents the
lead (most associated) variant. Variants are colored by descending LD with the lead variant
(ordered red, orange, green, light blue, and dark blue dots). For fine-mapping panels, different
colors were used to distinguish different credible sets. The diamond represents the maximum
PIP variant of each credible set. The left y-axis represents the PIP from fine-mapping and the
right y-axis represents the recombination map obtained from the 1000 Genomes Project (for the
SuSiEx panel, the average recombination rate across three populations was used).
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Extended Data Figure 5: Association with albumin on chr13: 31,150,000-31,450,000.
Panels are aligned vertically, with the x-axis representing the genomic position. The top six
panels visualize GWAS association statistics and single-population fine-mapping results of the
European (Pan-UKBB Europan), African (Pan-UKBB African) and East Asian (Taiwan biobank)
populations following the LocusZoom37 style. The second to bottom panel visualizes the
fine-mapping results from SuSiEx, which integrated GWAS summary statistics from the three
populations. The bottom panel shows gene annotations. For GWAS panels, the left y-axis
represents the -log10(p-value) of each SNP. The gray horizontal dash line represents the
genome-wide significance threshold (5x10-8). The purple rectangle for each locus represents the
lead (most associated) variant. Variants are colored by descending LD with the lead variant
(ordered red, orange, green, light blue, and dark blue dots). For fine-mapping panels, different
colors were used to distinguish different credible sets. The diamond represents the maximum
PIP variant of each credible set. The left y-axis represents the PIP from fine-mapping and the
right y-axis represents the recombination map obtained from the 1000 Genomes Project (for the
SuSiEx panel, the average recombination rate across three populations was used).
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Extended Data Figure 6: Proportion of variants showing quality issues binned by the
drop in PIP from single- to multi-population fine-mapping. Quality issues were defined as (i)
the best PIP variant is in the low complexity region; (ii) the best PIP variant is in allelic
imbalance or violates Hardy Weinberg equilibrium in gnomAD33; or (iii) the best PIP variant is
multi-allelic or colocalizes with indels at the same genomic position, which might influence
imputation quality.
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Extended Data Figure 7: Proportion of variants with high/moderate functional impact in
cross-population biobank fine-mapping analyses. The functional impact of each variant was
annotated using VEP, with the definition and classification of functional impact obtained from
https://useast.ensembl.org/info/genome/variation/prediction/predicted_data.html. The high
impact category includes transcript ablation, splice acceptor variants, splice donor variants, etc;
moderate impact includes missense variants, protein-altering variants, etc; low impact includes
synonymous variants, splice region variants, etc; modifier impact includes introns and intergenic
variants among others.
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