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Patients with inflammatory bowel disease have an increased risk of developing colorectal

cancer, and this risk is related to disease duration, extent, and cumulative inflammation

burden. Carcinogenesis follows the principles of Darwinian evolution, whereby somatic

cells acquire genomic alterations that provide them with a survival and/or growth

advantage. Colitis represents a unique situation whereby routine surveillance endoscopy

provides a serendipitous opportunity to observe somatic evolution over space and

time in vivo in a human organ. Moreover, somatic evolution in colitis is evolution in

the ‘fast lane’: the repeated rounds of inflammation and mucosal healing that are

characteristic of the disease accelerate the evolutionary process and likely provide a

strong selective pressure for inflammation-adapted phenotypic traits. In this review, we

discuss the evolutionary dynamics of pre-neoplastic clones in colitis with a focus on

how measuring their evolutionary trajectories could deliver a powerful way to predict

future cancer occurrence. Measurements of somatic evolution require an interdisciplinary

approach that combines quantitative measurement of the genotype, phenotype and the

microenvironment of somatic cells–paying particular attention to spatial heterogeneity

across the colon–together with mathematical modeling to interpret these data within

an evolutionary framework. Here we take a practical approach in discussing how and

why the different “evolutionary ingredients” can and should be measured, together with

our viewpoint on subsequent translation into clinical practice. We highlight the open

questions in the evolution of colitis-associated cancer as a stimulus for future work.

Keywords: inflammatory bowel disease (IBD), colorectal cancer, cancer evolution, risk stratification, biomarker

development, surveillance colonoscopy

INFLAMMATORY BOWEL DISEASE AND COLORECTAL
CANCER–THE CLINICAL BACKGROUND

Patients with inflammatory bowel disease (IBD) have an increased risk of developing colorectal
cancer (CRC); this risk is related to disease duration, extent (1), and cumulative inflammation
burden (2, 3). Patients with longstanding, extensive colonic inflammation develop colorectal cancer
at a younger age compared to the general population, and are more likely to suffer from multifocal
neoplasia. For this reason, across the world, patients are enrolled (4, 5) into surveillance programs
that aim to detect early cancers and precursor dysplastic lesions with the hope of possible curative
intervention before a symptomatic cancer develops. Current surveillance programs are plagued by
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oversurveillance and overtreatment of low-risk patients,
as well as interval cancers (that is, symptomatic cancers
detected in between surveillance colonoscopies) in high risk
patients (6). These challenges reflect our poor understanding
of the molecular processes underpinning colorectal
carcinogenesis in IBD. We propose the use of an evolutionary
approach combining genetic, environmental, immune and
microbiome parameters to better stratify IBD patients by
CRC risk.

CANCER EVOLUTION–THE THEORY OF
CARCINOGENESIS

The marked variability of cancers in terms of tissue origin,
histopathological subtype, clinical progression and response to
medical therapy, belies a shared mechanistic origin: namely, that
all cancers are diseases caused by the acquisition of heritable
genomic changes, which provide these mutant cells with a
survival or growth advantage over their neighbors. During
the stages of neoplastic initiation, promotion, progression and
malignant conversion (Figure 1), the tissue microenvironment
generates a (variable) selective pressure that defines those
advantageous phenotypic traits (7, 8). In this respect,
evolutionary principles, long utilized in the understanding a host
of other biological phenomena, from the origin of new species to
the emergence of drug-resistant pathogens, can also be applied
to understand carcinogenesis (9). Measurements of the clonal
composition of a neoplasm, namely the proportion of tumor
cells bearing particular mutations, can be readily quantified and
used to infer dynamics of the evolutionary process, including
when clones emerged and how quickly they spread through the
neoplasm (10).

EVIDENCE FOR LARGE SCALE
TEMPOROSPATIAL CLONAL EVOLUTION
IN IBD

“Field cancerization” was first described over 50 years ago
to explain the presence of large regions of histopathologically
abnormal pre-cancerous cells in the oral mucosa from which
multiple squamous cancers arose (11); that cancerised fields
arise from the clonal expansion(s) of (epi)genetically altered
cells was shown later [see reviews (12, 13)]. Field cancerization
has been described in the premalignant colon, and we have
previously postulated that field cancerization can occur either
as a single large clonal expansion, or via the parallel expansion
of multiple large clones (“clonal mosaicism”) (14). The two
modes may co-occur, with small areas of mosaicism contained
within a large expansion. One study analyzing the genomic
abnormalities in individual crypts within different neoplastic
lesions, demonstrated their monoclonality across most but not
all lesions (15); in some lesions the adjacent phenotypically
normal crypts shared the same driver mutation. Other studies
have revealed field cancerization across large regions of the colon:
Galandiuk et al. (16) undertook a chronological assessment
of mutation status across multiple locations of the colon of

FIGURE 1 | Clonal evolution in the colitic bowel. (A) The normal colon. Wild

type (blue), phenotypically normal epithelial cells within crypts acquire

(Continued)
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FIGURE 1 | mutations occur through chance (DNA replication error at mitosis)

or due to microenvironmental pressures (e.g., mutagens in the diet or

microbiome). Most mutations (pink crypts, arrows) are evolutionary neutral (i.e.,

do not change phenotype), or in fact disadvantageous leading to eventual cell

death, through the disruption of critical cellular mechanisms or the activation of

senescence/apoptosis. Occasionally, a positively selected driver mutation will

be acquired. Through either positive selection or neutral drift, the mutant cell

population can grow and take over the whole population of cells within the

crypt (green crypt). (B) Field cancerization. A crypt wholly populated by

mutated cells may have an increased crypt fission rate and/or lowered crypt

death rate (green crypt). This leads to the expansion of the mutant crypt

through the epithelium (green patch), causing a “field” of crypts bearing the

same base change, heritable epigenetic change or copy number alteration,

which is disposed to subsequent neoplastic transformation. (C) Neoplastic

initiation. IBD generates a selective pressure favoring clones capable of

surviving repeated cycles of inflammation and more rapidly repopulating the

healing mucosa during remission. These selected mutant clones, while

remaining histopathologically unremarkable, continue to evolve and expand at

varying rates (crypts in various shades of green). Expansion remains limited by

environmental constraints (e.g., a reliance on paracrine signaling from the

stroma or a limit to the tolerance of cell crowding). Within this cancerised field,

a frankly dysplastic sub-clone (yellow crypt) eventually arises. (D) Neoplastic

promotion. The dysplastic clone (yellow with black outline) grows at a much

more rapid pace than non-dysplastic crypts, resulting in an accelerated rate of

evolution (crypts with black outline and shades of orange, brown, gray or pink);

this genetic progression may be accompanied by progression in dysplasia

grading. Potential biological mechanisms are diverse and include a loss of

dependence on morphogen gradients and an altered metabolism that is better

adapted to a hypoxic and nutrient-poor environment. (E) Malignant

transformation and progression. Transformation to a malignant phenotype (red

gland) produces a clone that can undergo uncontrolled cell division and is

capable of invasion. Further progression in clone size results in a symptomatic,

clinically detectable cancer. Potential biological mechanisms for this malignant

transformation include a loss of critical DNA repair mechanisms and escape

from immune surveillance. (F) Phylogenetic representation. Through

multi-region sequencing, quantification of genomic divergence, and

mathematical modeling, the phylogenetic relationship between clones can be

understood. Here the evolutionary history of an IBD-CRC and its precursor

lesions is depicted, with branch lengths corresponding to the amount of

genetic change from the bifurcation node of clone branches.

10 patients, and describe one case where at least 3 separate
TP53 mutations arise in non-neoplastic colon, each of which
gives rise to neoplastic lesions several years later, with the
most recently detected TP53 mutant spreading over 3 years
to involve the entire length of the colon. Similarly, Salk et al.
(17, 18) used mutations of hypermutable polyguanine repeats
as surrogate markers of clonal populations, and demonstrate
a greater number of clonal populations in patients with
concomitant high grade dysplasia (HGD) or CRC. Again, some
of the clonal patches from wherein a cancer arose involve
a large surface area of the colon, thereby providing further
evidence for a “pre-cancerised” colonic epithelial field. Finally,
Lai et al. (19) used comparative genomic hybridization to
show that chromosomal instability in phenotypically normal
mucosa increases with proximity to dysplasia and cancer.
While chromosomal instability could be detected in regions
extending more than 160 cm of the colon, the authors
described clear evidence of clonal mosaicism, with copy number
alterations varying greatly even between biopsies less than 2 cm
apart.

COMMON SELECTIVE PRESSURES IN THE
DEVELOPMENT OF INFLAMMATORY
BOWEL DISEASE AND COLORECTAL
CANCER

IBD is now recognized as a disease of multifactorial etiology,
occurring in genetically predisposed individuals, and triggered
by as-yet poorly defined environmental insults that generate an
aberrant immune response toward an altered gut microbiome
(20). One explanation for the increased neoplasia risk in IBD
may be the shared etiological factors implicated in both IBD and
colorectal carcinogenesis.

Shared Environmental Triggers
The rising IBD incidence worldwide over the last four
decades has coincided with profound changes in diet and
the adoption of a “Western” lifestyle. In terms of recognized
environmental risk factors, both IBD and CRC are associated
with sedentary populations that consume a poorly balanced diet,
consisting of low plant fiber intake and excess consumption
of processed red meat (21–23). A whole host of other lifestyle
changes are also potentially implicated in both IBD and CRC,
including the ingestion of emulsifiers (24, 25) that are found
ubiquitously in processed foods, and low vitamin D levels
(26, 27) associated with reduced dietary intake and sunlight
exposure. The underlying mechanisms are diverse and are poorly
understood, and it remains unclear whether the subsequent
metabolome, microbiome and epithelial changes generated by a
“Western” lifestyle simply represent associated but non-causative
downstream effects of overall modern lifestyle habits, if colon
neoplasia itself exerts pro-proliferative changes by modifying the
luminal microenvironment, or vice versa.

One interesting commonality can be gleaned through the
altered fecal metabolomic profile of both IBD and CRC, most
notably the reduction of short chain fatty acids including
butyrate and propionate, which are by-products of the bacterial
fermentation of dietary fiber (28). Butyrate in particular plays a
key role in the maintenance of intestinal homeostasis, namely
as the preferred energy source of colonic epithelial cells (29).
Butyrate exerts an anti-inflammatory impact both directly on
resident innate immune cells (30, 31) and colonocytes (32), and
indirectly through the maintenance of epithelial barrier integrity
(33, 34) and subsequent reduction in bacterial translocation.
Moreover, butyrate has also been shown to have anti-neoplastic
properties in CRC cell lines, through the modulation of canonical
Wnt signaling (35) and inhibition of histone deacetylation (36).
This finding has been corroborated in murine models of IBD-
CRC, where germ-free mice subjected to chemically-induced
inflammation were partially protected from dysplasia and CRC
formation when given high fiber diets with prior gut colonization
by butyrate-producing Butyrivibrio fibrisolvens (37). No benefits
were seen from a high fiber diet alone, B. fibrisolvens colonization
alone, or a high fiber diet combined with colonization by a
mutant strain of B. fibrisolvens incapable of producing significant
quantities of butyrate. In vitro studies have demonstrated the
antagonistic effect of bacterial fecal sulfides, which are related
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to consumption levels of red meat and preservatives (38),
on butyrate metabolism in colonocytes (39). These findings
are corroborated by clinical observations in obesity, in IBD
and in colorectal neoplasia. A high fat and/or low fiber diet
are known to reduce fecal butyrate levels (40). Patients with
active IBD demonstrate lower levels of fecal butyrate (41)
and butyrate-producing bacterial species (42). Similarly, while
healthy individuals had a higher intake of dietary fiber compared
to patients with advanced sporadic colonic neoplasia (43), it
is interesting to note that even the subgroup of patients with
neoplasia and high fiber intake had a lower level of fecal butyrate
and butyrate-producing bacteria compared to matched healthy
controls.

Shared Microbiome Alterations
A driving role for the microbiome in the development of
colitis-associated CRC is less clear, but nevertheless, there are
a number of parallels between the microbiome changes in
CRC and IBD, that extend beyond loss of overall microbiome
diversity and reductions in butyrate-producing Firmicutes such
as Faecalibacterium prausnitzii (44–46). Other notable shared
changes are the increased mucosal abundance of Enterobacter
faecalis and Escherischia coli [in particular adherent-invasive
E. coli (47–49)], as well as Fusobacterium species (50, 51).

Fusobacterium nucleatum expresses unique adhesins that have
been shown to promote CRC (but not non-neoplastic) cell
line proliferation through modulation of Wnt signaling (52);
Fusobacterium load within cancer specimens may even have
adverse prognostic implications for patients with CRC (53).
In practice, current assessments of species diversity may not
fully capture the CRC-relevant microbiome changes in IBD: for
example, Fusobacterium nucleatum is not only isolated more
frequently in patients with IBD, but those isolates from inflamed
IBD tissue show greater invasive potential than isolates from
non-inflamed tissue of the same patient (54). Early evidence
for the association of specific microbiome components with
the earliest genomic changes seen in IBD-CRC comes from
recent epigenetic studies, where Fusobacterium colonization is
associated with pro-carcinogenic methylation changes in the
non-neoplastic colonic mucosa of 86 patients; this association
remained highly significant (OR 16.2, p = 0.01) in a multivariate
analysis that included recognized clinical risk factors such as
age, duration of disease and surrogate markers of inflammation
severity (55). Nevertheless, it is remains unclear whether these
microbiome changes represent a secondary consequence of
disruption in the integrity and function of the epithelial barrier
seen in inflammation and neoplasia (56), or are in fact truly
independent drivers of inflammation and carcinogenesis.

Studies of adherent-invasive E. coli in IL10−/− IBD murine
models demonstrate the potential complexity of the relationship
between inflammation, the microbiome and carcinogenesis:
inflammation does not promote the survival of adherent-
invasive E. coli, but rather disrupts hitherto poorly defined
processes for the natural negative selection of Enterobacteriaceae
such as E. Coli (57). Adherent-invasive E. coli in turn drives
colorectal carcinogenesis independently of inflammation activity.
Interestingly, deletion of the E. coli gene coding for the toxin

colibactin abrogates this increased cancer risk in IL10−/− IBD
mouse models (58), whereas wild type mice colonized with
colibactin-producing E. coli do not have an increased cancer
risk. The carcinogenic effects of colibactin are therefore evident
only in the setting of “exposed” epithelium as seen in IBD.
Enterobacter faecalis on the other hand, while sharing the ability
of adherent-invasive E. Coli to persist within innate immune
cells (59, 60), has been shown to promote carcinogenesis by a
more indirect mechanism. Murine macrophages colonized by E.
faecalis are polarized toward a pro-inflammatory M1 phenotype.
These M1 macrophages in turn produce 4-hydroxynonenal,
an alkenal by-product of prostaglandin breakdown by cyclo-
oxygenase 2 (COX-2) that disrupts mitotic spindle function
in colonic epithelial cells, thereby inducing chromosomal
instability and phenotypic transformation (61). Collectively,
these findings confirm the ability of the microbiome to
exert both direct and indirect carcinogenic effects on colonic
epithelium in the context of compromised mucosal barrier
integrity.

Immune Co-evolution in IBD-Associated
Carcinogenesis Remains Poorly
Understood
Active IBD generates a well-characterized cascade of pro-
carcinogenic inflammatory changes [see (62, 63) for reviews].
These include but are not limited to TNF-α, which promotes
tumor proliferation and invasion through macrophage
recruitment and angiogenesis (64), as well as IL-6 and IL-
22, with their pro-proliferative, anti-apoptotic effects mediated
by epithelial STAT3 signaling (65, 66). As discussed in further
detail in the rest of the review, it is clear that the altered immune
microenvironment of IBD can have a direct (evolutionary
selective) influence on the epithelial cells, by favoring the survival
and expansion of some mutant clones over other mutants or
non-mutant cells. However, the trajectory of epithelium-
microenvironment co-evolution during carcinogenesis, and in
particular the dynamic changes in the resident immune system’s
simultaneous host-protecting and tumor-promoting roles (67),
remains poorly understood.

Current evolutionary approaches in carcinogenesis remain
very “cancer cell” focused. In one revealing study, Galon
et al. have demonstrated that simple measurements of CD3
and CD8 cell infiltration in the tumor core and invasive
margin (68) of sporadic CRCs are superior to clinical TNM
staging (69) and genetic microsatellite instability status (70) in
predicting patient prognosis. The aberrant immune function that
is characteristic of IBD may manifest itself in cancer immune-
epithelium co-evolution: for example, IBD-CRC demonstrates
greater lymphocyte infiltration compared to sporadic CRC, but
with no associated prognostic improvement (71). This may
be explained by impaired lymphocyte cytotoxicity in IBD, as
reflected by reduced cancer cell apoptosis and lower granzyme
B expression in lymphocytes infiltrating IBD-CRC compared to
sporadic CRC.

Changes in the mucosal immune cell composition and
function that may occur prior to malignant transformation
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remain poorly characterized. A competent immune system plays
a clear role in the surveillance for neoplastic growth and
the elimination of entire neoplastic lesions. IBD low grade
dysplasia (LGD) is thought to regress in the majority of patients
(72), regression of sporadic colonic adenomas has also been
demonstrated (73), and a role for immune clearance is feasible in
both scenarios. Indeed, murine studies provide useful insight into
potential immunoediting mechanisms at the earliest stages of
neoplastic formation; for example, the transfer of CD4+ CD25+
Treg cells from wild type mice into APCMin/+ mice reduces
adenoma burden in an IL-10 dependent fashion (74).

A key finding in IBD carcinogenesis is that a significant
proportion of IBD LGD lesions demonstrate a level of aneuploidy
comparable to that of established CRCs (75); even normal
IBD epithelium can bear significant chromosomal copy number
alterations (76). Aneuploidy is associated withmutations in genes
involved in the DNA damage response (77); indeed TP53 is
the classical initiating mutation in IBD-CRC. Aneuploid cells
are normally subjected to negative selection in healthy tissue
because of the significant associated proteotoxic, metabolic and
replicative stressors (78); therefore this finding in IBD suggests
that certain patterns of copy number alterations increase fitness,
such that these added “costs” are outweighed by cell-specific
“benefits” within the context of the colitic microenvironment,
such as less restricted replication and immune evasion. Along
this line of thought, it is noteworthy that pan-cancer analyses
demonstrate that increased tumor aneuploidy is associated
with reduced expression of cytotoxic immune markers, M2
polarization of macrophages, and increased cell cycling and
proliferation (77). The mechanisms for these alterations are
unclear and the authors speculate that aneuploidy may also
impair certain aspects of MHC class I antigen presentation,
thereby promoting immune evasion. Evidence to support this
hypothesis comes from studies of human lung and breast cancer
xenografts in mice, demonstrating how aneuploid cells subvert
lethal epithelial responses triggered by cytoplasmic translocation
of DNA during mis-segregated mitosis (79) despite upregulation
of various inflammatory responses, including the cGAS-STING
pathway, which evolved to combat viral infection by detection
of extranuclear DNA (80). In aneuploid cancers, activation
of the cGAS-STING pathway does not generate the expected
downstream canonical NFκB and type I interferon signaling,
but rather drives the non-canonical NFκB signaling cascade
more typically seen in myeloid-derived cells, which the authors
speculate may represent a form of immune mimicry (79).

MHC class II molecules also play an important role in colonic
neoplastic change. Normally restricted to traditional antigen
presenting cells, MHC class II expression can be induced in
transformed epithelial cells, increasing in frequency during the
adenoma-carcinoma transition, with a corresponding increase
in the density of tumor-infiltrating lymphocytes (81). Moreover,
metastasis is associated with a loss of MHC class II expression
acrossmultiple solid cancers including CRC (81–83). An example
of the role of MHCmolecules in colitis-associated carcinogenesis
is given by a case-control study of patients with ulcerative colitis,
which demonstrates that HLA-DR17 expression (a particular
serotype recognizing HLA molecule) is associated with increased

CRC risk and methylation-induced HLA-DR silencing, while
HLA-DR7 and HLA-DQ5 are associated with reduced CRC risk
(84). The authors speculate that these patientsmay be particularly
sensitive to the oncogenic effects of the altered microbiome in
IBD (84); indeed MHC class II polymorphisms are known to
be associated with susceptibility to infection-mediated cancers
such as Helicobacter pylori associated gastric adenocarcinoma
and HPV-associated cervical squamous cell cancer.

Shared Genetic Predisposition
In practice, the evidence for a shared genetic predisposition
to both IBD and colorectal cancer remains very limited. In
fact, a GWAS study comparing the 181 most common IBD
susceptibility variants with those known to predispose to CRC
in the general population demonstrate only one shared variant
(rs11676348, which lies immediately upstream of CXCR2), that
actually increases UC risk while lowering CRC risk (85). We
note that there have been no GWAS studies within IBD patients
that identify the subset of patients most at risk of developing
dysplasia and cancer, and potentially “classical” GWAS for CRC
risk may have included some IBD CRC cases. Nevertheless, these
overall findings emphasize the greater importance of acquired
(and in particular environmental) factors as the driver for both
conditions, which (unlike genetic predisposition) are modifiable,
and may therefore be targeted to alter the course of tumor
evolution at its earliest stages for cancer prevention.

PATIENTS WITH IBD PROVIDE AN “IDEAL”
HUMAN MODEL FOR THE EVOLUTIONARY
STUDY OF COLORECTAL
CARCINOGENESIS

IBD patients undergoing endoscopic surveillance offer an
ideal human system for an evolutionary approach to studying
the time course of colorectal carcinogenesis over a patient’s
lifetime. First, routinely collected biopsies at colonoscopy, years
before a cancer is detected, form a rich tissue archive that is
amenable to temporospatial evolutionary analysis. Similarly, the
metachronous and synchronous nature of IBD neoplastic lesions
provides another serendipitous opportunity for the assessment
of clonal relationship between lesions separated by time and/or
space. Finally, patients with IBD-CRC routinely undergo a
complete resection of their colon and rectum rather than a
limited segmental resection, thereby allowing for the detailed
mapping of mutant populations in phenotypically normal
colonic epithelium both proximal to and distal from a neoplasm
(75), and facilitating correlation with local microenvironmental
factors.

The Relapsing-Remitting Nature of
Inflammatory Bowel Disease Drives
Epithelial Clonal Evolution
In the following sections, we discuss the significant body
of evidence (14) demonstrating that the recurrent cycles of
ulceration and healing typical of IBD generate evolutionary
pressures that:
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(a) Increase the rates of epithelial stem cell mutations within
crypts through more rapid cell cycling,

(b) Promote the survival of mutant clones that can tolerate
an inflammatory environment during periods of disease
activity, and

(c) Allow the expansion of mutant clones that can more rapidly
repopulate the healing mucosa.

The Intestinal Crypt as the Evolutionary
Unit of the Colon
The adult colon is lined by approximately 10 million crypts,
which are single cell layer invaginations of the colon lining
composed of 1,000–4,000 columnar epithelial cells (86), centered
around an estimated five to seven rapidly cycling LGR5-positive
stem cells at the crypt base (87–90). In mice, stem cells
divide roughly daily (90); their progeny become differentiated
as they migrate from the crypt base to the luminal surface
over a period of 5–7 days (91) before their shedding into
the intestinal lumen. In humans, the dynamics are less well
quantified, but are likely a little slower (88). Any mutations
that persist in the crypt must therefore have first arisen
within a long-lived stem cell. As a result, disparate crypts,
bearing stem cells with potentially differing stochastically
accumulated mutations, can independently evolve in response
to localized microenvironmental pressures; these pressures can
vary significantly across the length of the colon (92). For mutant
clone fixation to occur within the entire crypt, the “founder”
mutant stem cell must first replace all other crypt base stem
cells via symmetric divisions in a process referred to as niche
succession (93). For those mutations that provide no survival
advantage, niche succession through neutral drift within the
human intestinal crypt is a thought to be a slow stochastic
process that is due to low mutation rates and slow stem cell
loss/replacement rates under homeostatic conditions, although
reported rates remain under debate (88, 89). Stem cells bearing
classical driver mutations for CRC subvert this process (89), with
accelerated growth dynamics and likelihood of niche succession
due to increased fitness advantages supplied by oncogenic
mutations. The colonic crypt stem cells from which a future
cancer arises are thought to have already acquired approximately
half the somatic mutational burden of the future tumor prior to
malignant transformation (94).

Lateral mutant clonal spread in the colon is driven by crypt
fission (95) and/or crypt regeneration (96), the processes by
which crypts grow. Crypt fission represents a key homeostatic
mechanism that heals the mucosa in response to ulceration or
other injury (97). Under normal conditions, colonic crypt fission
is a surprisingly infrequent event, with fewer than 1% of all crypts
dividing in a single year (89).

IBD Activity Provides a Survival Advantage
for Mutant Clones That can Survive in a
Hostile Inflammatory Environment
Evidence for the importance of the inflammatory
microenvironmental context in selecting for crypt stem
cells harboring key pro-oncogenic mutations comes from lineage

tracing experiments in recombinant mouse models (98). Under
normal conditions, stem cells bearing TP53 mutations are no
more likely to replace their neighboring wild type stem cells
within the crypt base, while APC and KRAS mutations, which
are more frequently encountered in sporadic CRC (75), offer
a clear survival/growth advantage. However, in the context of
chemically-induced colitis, the relative fitness of TP53 mutant
stem cells increases, as demonstrated by a 58% probability of
mutant niche succession 21 days after colitis induction. This
finding is consistent with studies on human IBD tissue showing
that TP53 mutations and loss of heterozygosity occur at a much
higher frequency in IBD-CRC compared to sporadic CRC, and
are an early event in IBD-driven carcinogenesis that can even be
detected in non-dysplastic mucosa (75, 99, 100). This contrasts
to sporadic colonic neoplasia, where TP53 mutations are
typically reported to be a late event in the adenoma-carcinoma
sequence (101).

TP53 plays a critical role in inducing cell cycle arrest,
senescence or apoptosis in cells with damaged genomes, as
well as in cells exposed to severe metabolic and oxidative
stressors (102) typically generated by severe IBD flares. On
the other hand, colonic epithelial cells in the non-inflamed
colon are not exposed to such a hostile microenvironment
until the final stages of the adenoma-carcinoma transition,
therefore the evolutionary pressure selecting for TP53mutations
arises much later in sporadic CRC (103). Interestingly, TP53
mutations are also able to generate an inflammatory response
in their own right through oncogenic “gain-of-function” effects
(104): human organoid studies and in vivo studies in p53mut/+

mice demonstrate that epithelial cells bearing a p53 mutation
commonly observed in IBD (R273H) can exacerbate their local
inflammatory microenvironment, by prolonging TNFα-induced
NFκB activation, eventually generating flat dysplastic lesions with
secondary cancers typical of those seen in IBD (105). Therefore,
the early TP53 mutations encountered in IBD may in fact act
as independent drivers of IBD carcinogenesis through their
downstream microenvironmental effects.

Oncogenic mutations that provide stem cells with a survival
advantage within a crypt will often accelerate crypt fission as well.
For example, data from murine (106) and human (89) studies
confirm that the classical KRAS mutation seen in sporadic and
to a lesser extent in IBD-associated neoplasia (G12D) increases
crypt fission rates by at least one order of magnitude; murine
studies also confirm accelerated crypt fission rates following p53
mutation (107).

Colorectal Carcinogenesis in IBD Is Driven
by Accelerated Cell Turnover and
“Premature” Colonic Aging
Studies using Ki67, a cellular marker expressed during the active
phases of the cell cycle, demonstrate an expanded proliferative
zone in crypts from both regenerating IBD epithelium and
early dysplasia when compared to normal colonic crypts (108).
The precise stem cell population responsible for regenerating
the human colonic epithelium in IBD is uncertain, with
evidence from murine studies suggesting dynamic contributions
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during the inflammation and regeneration phases. LGR5+
expression drops dramatically during the acute stages of colitis
but increases dramatically during regeneration (109); other
studies confirm that LGR5+ expressing stem cells may be
very sensitive to intestinal injury (110) but nonetheless crucial
to crypt regeneration (111). Inflammation has been shown to
recruit long-lived and hitherto quiescent DCLK1+ tuft cells
(112) from the crypt wall (113) that can acquire stem cell
properties in the absence of LGR5+ stem cells, reconstituting the
entire crypt, including the LGR5+ stem cell niche. Interestingly,
these DCLK1+ cells did not proliferate or initiate neoplastic
progression following conditional APC knockdown without the
addition of an inflammatory stimulus (113).

It is thought that a rapid increase in stem cell numbers
and subsequent clustering within the crypt base may act as
a trigger for the initiation of crypt fission (114, 115). These
observations may explain why active IBD, with an expanded stem
cell proliferative zone, is associated with a crypt fission rate that
is 30- to 70-fold higher than that of uninflamed mucosa (116),
further accelerating cell turnover and clonal expansion.

These shifts in the properties of the stem cell niche in the
context of injury and inflammation are in part driven by stromal
cells that generate the necessary canonical and non-canonical
Wnt signaling molecules necessary for epithelial reconstitution
and subsequent maintenance of homeostasis (96). In mouse
models, these stromal cells responsible for Wnt signaling have
recently been identified as telocytes (117). Induction of acute
colitis in mice by DSS ingestion results in an expansion
of GLI1+ expressing telocytes (118). Of interest, a coding
polymorphism in human GLI1 that generates a variant protein
with reduced transactivation is associated with predisposition to
ulcerative colitis in populations of Northern European descent
(119), further highlighting the role inflammation-modulated
Wnt signaling in IBD pathogenesis. In addition, changes in the
luminal metabolic and microbiome micro-environment induced
by colitis may also play a role in promoting expansion of the
stem cell niche. For example, intestinal intraluminal butyrate
inhibits the proliferation of LGR5+ stem cells in vitro, and is
thought to play a role in confining the stem cell niche to the
crypt base, where differentiated colonocytes on the crypt walls
have consumed the butyrate as their primary energy source (120).
Reductions in butyrate associated with the microbiome dysbiosis
of active IBD may therefore allow stem cells in injured crypts
that are more directly exposed to luminal contents to continue
dividing, thereby contributing to the accelerated cell turnover.

There now exists a substantial body of evidence demonstrating
that the predominant mechanism for carcinogenesis in IBD is
accelerated cell turnover and rapid colonic “aging,” and that IBD-
CRC is not a consequence of direct DNA damage from reactive
oxygen and nitrogen species as traditionally thought (121).
First, trinucleotide context mutational signature analysis (122) of
IBD-CRC demonstrates a preponderance of C>T substitutions
at NpCpG trinucleotides (123) (mutational signature 1) in
keeping with aging driven by rapid cell cycling (124), with no
detection of signatures typical of direct DNA exposure to a
genotoxic environment (signatures 4, 7, 11, 22, 24, and 29).
Second, multiple studies report telomere shortening, another

surrogate marker of accelerated aging, in the colitic mucosa
(18, 125–127). Finally, patients with ulcerative colitis bearing
HGD or cancer demonstrate significant aging-related CpG island
hypermethylation signatures in colitic mucosa far from the site
of the neoplasia; these changes were not seen in UC mucosa of
neoplasia-free patients or healthy controls (128).

The aforementioned finding of colonic aging through rapid
cell cycling, combined with the heterogeneity of somatic
mutations seen in IBD-associated CRCs (123, 129, 130), limits
the extent to which any single animal model can replicate colitis-
associated neoplasia formation (131). AOM-DSS mice remain
the most utilized model, with mice exposed to the carcinogen
azoxymethane (AOM), followed by repeated ingestion of dextran
sulfate sodium (DSS) to induce inflammation. However, whole
exome sequencing of these mouse cancers shows little overlap in
terms ofmutational landscape with humanCRC, in particular the
near absence of the most common IBD-CRC driver mutations
such as TP53, APC, KRAS, and PIK3CA, no shared (132). Indeed,
AOM-DSS mouse CRC are striking for the over-representation
of C>T substitutions, which is more typical of DNA damage
by alkylating agents like azoxymethane (132). Likewise, IL10−/−

mice develop colitis-associated cancers that do not demonstrate
the chromosomal instability (133) that is typically encountered
in most human IBD-CRCs (134); recent studies suggest the need
for additional microbial and immunological stressors to improve
IL10−/− mouse model fidelity (61). In conclusion, the inability
of current mouse models to replicate the diversity and dynamic
shifts of the human microbiome, nor the cumulative effect of
chronic inflammation and aging generated by colitis and time in
patients, implies that assessment of IBD carcinogenesis requires
study of the underlying process in patient-derived samples.

EVOLUTIONARY BIOMARKERS: A NOVEL
APPROACH MERGING BIOLOGY AND
MATHEMATICS

The stochastic nature of evolutionary changes (e.g., mutation
accumulation, clonal expansion and selection) requires adequate
time (years) for carcinogenesis to progress normal cell phenotype
to malignancy in the human body. Using mathematical
models, we can formulate mathematical expressions describing
these evolutionary changes, and use the expressions to relate
these evolutionary parameters to age-dependent epidemiological
cancer incidence curves (135). In addition to the chronological
age of the patient as an initial biomarker of CRC risk, biological
aging of the colitic bowel itself may be considered as a potential
marker of progression to neoplasia due to its prominence in the
pathogenesis of IBD carcinogenesis explained above. The concept
is based on measuring both the extent and speed of genetic
evolution as a proxy of how “close to cancer” the cells have
become (136). Tissue age is difficult to measure in vivo, but can
be estimated with computational methods like Bayesian inference
that have been used in molecular clocks applied to somatic
epigenetic (137) and genomic (138) data from non-dysplastic
Barrett’s esophagus, a precursor of esophageal adenocarcinoma

Frontiers in Immunology | www.frontiersin.org 7 October 2018 | Volume 9 | Article 2368

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Al Bakir et al. From Colitis to Cancer

that is characterized by intestinal metaplasia, driven by chronic
acid- induced inflammation (139).

Partly due to accelerated cell turnover, IBD-CRCs show
genomic diversity, both in terms of the inter-tumor permutations
of genomic alterations leading to cancer formation, as well as
the intra-tumor genomic heterogeneity in established cancers.
IBD-CRCs may share only some of the same driver mutations
(75), and some premalignant colonic adenomas do not have a
detectable driver mutation in any of the 20 most frequent driver
genes (140). For this reason, biomarkers of cancer risk that assay
one molecular alteration or a single pathway will likely never
be sensitive or specific enough to justify routine clinical use in
cancer surveillance recommendations for patients with IBD.

Along with tissue age, other measures of evolvability may
provide a more reliable marker of cancer risk in which the issue
of intra-patient heterogeneity may be circumvented for clinical
management. For example, IBD patients at risk of developing
cancermay demonstrate high diversity in clonal composition that
continues to change over time, while low risk patients may harbor
few, if any, mutant clonal populations with size distributions
that remain stable over time (14). A cornerstone principle of
cancer evolution is that genomic diversity acts as the substrate for
natural selection in the inflamed colonic bowel; the more diverse
the colonic epithelial cell population, the more likely a well-
adapted, “dangerous” clone will be present, outcompete other
clones, and evolve toward a malignant phenotype. This concept
of evolutionary biomarkers, defined in terms of ecological
diversity measures, has been repeatedly demonstrated to be
predictive of neoplastic progression in patients with Barrett’s
esophagus (138, 141, 142).

Rather than seeking a set pathway of necessary changes from
IBD to IBD-CRC, we can quantify measures of evolvability
that are “agnostic” to any specific oncological pathway, by
capturing a range of distinct molecular processes that may be
potentially driving an individual patient’s cancer formation. By
assaying the genomic alteration burden from spatially distributed
biopsies, a wide range of evolutionary measures can be generated.
For example, we could provide evidence of clonal sweeps by
identifying shared genomic alterations across multiple individual
biopsies, implying that they originated from a common founder.
Similarly, clonal mosaicism can be assayed spatially between
biopsies by measuring the genomic “distance” between the
somatic mutations in these biopsies (where genomic distance is
measured by the number of divergent mutations between two
biopsies).

Finally, due to the extensive sampling of the IBD colon
during routine surveillance, all assays can be measured over
time in the same patient, with chronological rates of change
potentially providing another measure of “evolvability.” A simple
measure of growth is the difference between the clone size
at two time points (which in its coarsest resolution, could be
represented by the number of equidistant biopsies bearing that
clone) divided by the difference in time points of endoscopic
screening examinations for precursor lesions in IBD. In this way,
we can utilize the lifelong surveillance of IBD patients to collect
the genomic measurements for more precise calculations of IBD-
specific evolutionary parameters such as initiation (µ), birth

(α), and death (β) rates of mutant clones in individual patients
(Figure 2).

Indeed, temporal studies are vital when defining a “window
of opportunity” for clinical intervention—i.e., when early pre-
cancerous development may be observed/removed and further,
when cancer risk can be reliably predicted (143, 144). Progression
to IBD-CRC is driven by a series of rate-limiting evolutionary
events (such as TP53 mutation and critical copy number
changes as described earlier in the review), while ongoing
accumulation of heterogeneous genomic alterations occurs via
genetic drift in crypts throughout patient lifetime. These salient
rate-limiting events governing IBD evolution, which are not
clearly understood but could also be assayed using a combination
of particular mutations and evolutionary biomarkers, serve as the
boundaries between windows of screening opportunity and may
be reflective of histopathological stage. An evolutionary approach
to IBD surveillance would aim to identify periods during a
patient’s lifetime when highly evolved and aberrant clones would
be detectable during surveillance, and when an early intervention
would be beneficial, in order to tailor surveillance screens
accordingly. This method of monitoring patient-specific rates of
evolutionary change (such as increasing levels of genetic diversity
in clones) can be used to predict the age(s) at which clones
will attain a threshold size and/or diversity (see Figure 2). We
can then use this information to make dynamic, personalized
recommendations for the most efficient next-surveillance-screen
time; this approach of theoretically predicting biomarker value
change in the future has been demonstrated in mathematical
models for Helicobacter pylori driven gastric cancers (145).

Thus far, the modeling done in studies of premalignant
risk stratification in Barrett’s esophagus is typically standard
survival analysis where the evolutionary biomarker (such as level
of genetic diversity) is used as the predictor variable. More
sophisticated models attempt to infer the temporal dynamics
of clonal evolution, and extrapolate inferred trajectories to
predict future disease state [for example, inference of time-
dependent evolution model parameters for clone growth in
Barrett’s esophagus (138)].

Mathematical modeling of carcinogenesis in IBD is in its
infancy. Several types of mathematical modeling approaches may
be useful to incorporatemeasures of the evolutionary process into
temporospatial models of IBD cancer evolution for calibration
and prediction of patient-specific trajectories. Agent-based
models for clone growth of the evolutionary process in silico
can employ simulations of patient-specific parameters (such as
the rate of clonal expansion of a particular clone in a particular
individual, or the patient-specific mutation rate) and explore
the effect of spatial tissue constraints and microenvironmental
changes on disease progression. Such models require extensive
and detailed biological data at the outset for parameterisation,
though, meaning that they may be impractical to apply in
practice. Continuum models of growth may be used to predict
general tissue change that can evaluate the effects of spatial
sampling bias (e.g., quadrant biopsy tissue removal) on detection
of rare subclones, but the increased abstraction of these
modeling formulations necessitates that some biological detail is
neglected.
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FIGURE 2 | Screening and surveillance intervals in IBD using an evolutionary approach. Patients in a population develop IBD at a known age; the aim for prevention is

to provide a baseline endoscopic screen before some of those patients will have developed neoplasia. Hypothetical “windows of opportunities” for surveillance

quantify timescales during which (A) pre-initiated cells gain alterations (early diagnosis), (B) initiated clones expand (promotion) and become more genetically diverse

(early intervention), and (C) preclinical malignant clones evolve (progression) and could be thwarted (early detection). Levels of diversity increase in an evolving inflamed

microenvironment and may act as a biomarker of evolutionary trajectory position. We aim to relate biomarker levels (b) measured during surveillance screens at

specified ages (a) to multistage model parameters via variables in a theoretical function Fbiomarker. As a theoretical example, if the relationship between diversity and

size of premalignant clone (yellow) is known, then we can measure the rate of growth of the clone during surveillance and predict at what age the clone will be a

certain size and likely harbor a detectable phenotype change of preclinical malignancy.

Population level models can also be used to incorporate
epidemiological data (e.g., cancer incidence, premalignant
prevalence) and thus describe cancer evolution in a population
with IBD. An example would be multistage clonal expansion
models, a family of cell-based stochastic models positing that
cancer is caused by the accumulation of rare events that
define the boundaries of the initiation-promotion-progression
stages of carcinogenesis (135). This theoretical framework
integrates time-varying risk factors into the analysis of cancer
epidemiological data (such as incidence and multifocal sizes
of pre-malignant lesions), wherein stages from normal to
malignant transformation are defined by the occurrence of rate-
limiting events (e.g., TP53mutation). Finally, hybrid models can
combine the above techniques that are calibrated to multiple
levels of data [see reference (137) for an example of modeling
Barrett’s esophagus clinical screening using agent-based tissue
sampling in silico combined with cellular parameters calibrated
to esophageal adenocarcinoma population data]. Choosing the
appropriate model (and model type) is non-trivial, and depends
upon the utility that is sought from the model.

By using the equations of the multistage mathematical
model with estimated parameter values, we can then define
such windows by solving for the probabilities (analytically
and numerically) that an individual will most likely harbor a
premalignant or malignant lesion of a screen-detectable size
at endoscopic screening/diagnosis, and then use the outcome
of each screen to benchmark the progress of evolution and

iteratively predict the next window to recommend surveillance
screen times.

At present, such temporospatial information about clonal
evolution needed in these mathematical model predictions is
generally lacking, and so consequently is not used in the design
of IBD surveillance protocols. Candidate molecular markers
that have been associated with progression in IBD (described
earlier in the review) including aneuploidy, methylation assays,
microsatellite instability and mutational panels of key driver
genes in IBD-CRC (such as TP53, APC, KRAS, and CDK2NA).
Of these, only aneuploidy, as measured using flow cytometry,
has been shown to date to carry prognostic potential in IBD
(76, 146, 147). Dynamical information using one or more of
these markers could potentially enhance clinical practice beyond
current ad hoc screening interval recommendations, which are
based on crude clinical features (4, 5).

FROM COLITIS TO CANCER:
TRANSLATIONAL IMPLICATIONS OF
UTILIZING AN EVOLUTIONARY
APPROACH

Pathogenic genomic alterations (e.g., point mutations and
chromosomal copy number alterations) are known to occur in
phenotypically normal epithelium many years before a cancer
forms (16, 75, 146, 148). Enumeration of these mutations may
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aid in risk stratifying patients who will more likely progress to
IBD-CRC for more aggressive surveillance and treatment, while
reducing surveillance requirements for lower risk patients. By
using the aforementioned evolutionary approach, we envisage
a more personalized approach to cancer risk assessment that
combines patient demographic details and endoscopic features
(149) with genomic assays.

At present, a significant proportion of patients with low grade
dysplasia are advised to have a complete resection of their colon
and rectum in light of the high risk of multifocal neoplasia
(150). For these patients, the ability to define the extent of
mutant clonal spread can justify amore limited surgical resection,
with particular focus on the potential for rectal-sparing surgery,
thereby avoiding the need for an ileo-anal pouch or permanent
stoma.

A natural extension of this evolutionary approach to IBD
carcinogenesis is that altering the inflammatory selection
pressure may modify future cancer risk. At present, we are
uncertain as to whether standard IBD anti-inflammatory or
immunosuppressive therapies can halt (or possibly even reverse)
the formation, expansion and/or evolution of mutant clones. 5-
aminosalicylates, an anti-inflammatory class of drugs that form
the first line of therapy for patients with UC, are thought
to reduce the incidence of IBD-associated dysplasia and IBD-
CRC (151). The precise mechanism remains unclear and is
probably multi-faceted; 5-aminosalicylate use has been shown
to reduce inflammation-generated β-catenin signaling in the
mid- and upper crypt (152). β-catenin is a key transcription
factor in the Wnt pathway, with aberrant constitutive Wnt
signaling (through phosphorylation and nuclear translocation
of β-catenin) extending beyond the crypt base stem cell being
a common initiator in colorectal adenoma and carcinoma
formation through the expansion of the crypt stem cell niche.
In sporadic adenomas this is achieved through APC gene
mutation; indeed, similar findings have been noted in APCMin/+

mice, where non-steroidal anti-inflammatory drug (NSAID) use
selectively increased the apoptosis rate in crypt stem cells with
nuclear or phosphorylated β-catenin by over fivefold (153).

In practice, prospective randomized controlled trials that can
assess the specific impact of the different medical therapies on
IBD dysplasia and CRC risk will be challenging to conduct,
and will probably be underpowered due to the required large
patient cohort size (to handle inter-patient variability) and
long follow-up time. Instead, a proxy for cancer-risk reduction
will be the minimization of the cumulative inflammatory
burden of the colitic bowel through the achievement of
deep remission (154). An understanding of the evolutionary
dynamics of carcinogenesis in IBD, and its evaluation in
vivo in the presence and absence of chronic disease activity,
may compensate for any limitations in our understanding of
the precise anti-neoplastic mechanisms of anti-inflammatory
IBD therapies. Indeed, experimental data on the feasibility
of disease-modulating drugs to limit clonal expansion and
progression in human tissue has emerged during the study of
Barrett’s esophagus. In Barrett’s esophagus, NSAID use has been
shown to modulate clonal evolution (155), with a reduction
of both the burden and diversity of functional mutations

affecting key cancer-associated pathways compared to matched
controls (156).

Quantification of immune-epithelial cell co-evolution is an
important area for future research. Both cell populations can be
described quantitatively by complex system models (157, 158)
with marked plasticity, resulting in a near infinite possible set
of permutations (clonal and subclonal populations in the case of
cancer, B cell and mucosal T cell receptor repertoire composition
combined withmicrobiome diversity in IBD), and a susceptibility
to sustained external selection pressures that can “promote” and
“fix” clinically deleterious traits (e.g., loss of response to IBD
therapy). As the “selfish” drive of the individual colon cancer cell
to expand comes at the expense of the multicellular human host,
so the same approach can be used to understand and model the
conditions driving the “selfish” activation and/or expansion of
aberrant immune cell populations.

Much like traditional cancer chemotherapies, current IBD
therapies are the product of a reductionist approach that targets
one or several pathways, which are of varying importance
between patients (hence the variable and incomplete response
rate to IBD therapies), and which have a minor impact on
the long term course of the disease [as demonstrated by the
persisting need for surgery (159) despite advances in medical
therapy]. In cancer, evolutionary adaptive therapies, that aim to
control tumor burden while simultaneously limiting the selection
pressure driving the emergence of resistant mutant clones, offer
a new paradigm in oncological management that already shows
promise in pilot clinical trials (160). Similar treatment paradigms
are needed in IBD patients: fecal microbiota transplantation
shows promise as such an intervention in ulcerative colitis (161),
with its concomitant alterations in microbiome diversity and
composition. Indeed, fecal microbiota transplantation is most
efficacious in patients with more recent diagnoses of ulcerative
colitis (162), possibly because this intervention is performed
prior to the irreversible “fixation” of aberrant adaptive immune
clones in such patients.

CONCLUSION

Inflammatory bowel disease represents an ideal model for
the study of human cancer using an evolutionary approach.
Routine surveillance colonoscopies provide a serendipitous
opportunity to observe somatic evolution over space and
time in vivo. Moreover, somatic evolution is accelerated in
IBD through the relapsing-remitting nature of disease flares.
Direct and detailed temporospatial assays of clonal populations,
together with their co-evolving immune and microbiome
components of the mucosal microenvironment, now feasible
using the latest sequencing technologies, can be leveraged
toward the development of an “evolutionary” biomarker that
can better predict an individual patient’s cancer risk. Finally,
an evolutionary systems approach (163), currently utilized in
the study of carcinogenesis, may offer a novel paradigm for
understanding the concomitant immunological evolution that
is vital for escape from immune surveillance and promotion of
tumor growth.
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