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Meta-analysis of molecular imaging of serotonin transporters
in major depression
Gregor Gryglewski1, Rupert Lanzenberger1, Georg S Kranz1 and Paul Cumming2

The success of serotonin-selective reuptake inhibitors has lent support to the monoamine theory of major depressive disorder
(MDD). This issue has been addressed in a number of molecular imaging studies by positron emission tomography or single-photon
emission computed tomography of serotonin reuptake sites (5-HTT) in the brain of patients with MDD, with strikingly disparate
conclusions. Our meta-analysis of the 18 such studies, totaling 364 MDD patients free from significant comorbidities or medication
and 372 control subjects, revealed reductions in midbrain 5-HTT (Hedges’ g¼ � 0.49; 95% CI: (� 0.84, � 0.14)) and amygdala
(Hedges’ g¼ � 0.50; 95% CI: (� 0.78, � 0.22)), which no individual study possessed sufficient power to detect. Only small effect
sizes were found in other regions with high binding (thalamus: g¼ � 0.24, striatum: g¼ � 0.32, and brainstem g¼ � 0.22), and no
difference in the frontal or cingulate cortex. Age emerged as an important moderator of 5-HTT availability in MDD, with more
severe reductions in striatal 5-HTT evident with greater age of the study populations (Po0.01). There was a strong relationship
between severity of depression and 5-HTT reductions in the amygdala (P¼ 0.01). Thus, molecular imaging findings indeed reveal
widespread reductions of B10% in 5-HTT availability in MDD, which may predict altered spatial–temporal dynamics of serotonergic
neurotransmission.
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INTRODUCTION
An early formulation of the biogenic amine hypothesis of major
depressive disorder (MDD) held that symptoms arise from a
deficiency of noradrenaline and serotonin in brain, rather as motor
symptoms of Parkinson’s disease reflect loss of striatal dopamine.
However, the evidence for a neurotransmitter abnormality in MDD
remains inconclusive. Low concentrations in cerebrospinal fluid of
the serotonin metabolite 5-hydroxy-indoleacetic acid have been
associated with aggressiveness in males with personality dis-
orders,1 and were predictive of suicide in previous attempters,2

and in a 5-year follow-up study of patients with melancholic
depression.3 The serotonin transporter (5-HTT) in presynaptic
terminals of serotonin fibers, and also in somatodendritic sites
presents an important molecular target for such investigations;
in vitro studies indicate a simple association between the density
of 5-HTT and tissue concentration of serotonin,4 suggesting that
the former can serve as a surrogate marker of the latter, at least
in normal brain. Although autoradiographic analysis of cerebral
cortex from suicide victims revealed no difference in the
concentration of 5-HTT,5 others have reported reduced 5-HTT
messenger RNA in midbrain post mortem.6 However, such
findings may not be generalizable to MDD, as suicide cases may
reflect a clinical subset of patients with greater aggression or
disturbance of impulse control, as distinct from depressive
symptoms per se. In theory, molecular imaging of 5-HTT in vivo
might yield better-defined findings of the putative association
between MDD and serotonergic transmission.7,8

5-HTT ligands for single-photon emission computed tomo-
graphy (SPECT) have tended to have low-specific binding, and are
increasingly supplanted by tracers for positron emission tomo-
graphy (PET), which offers greater specificity and sensitivity.9 As
will be seen below, the composite of SPECT and PET studies to
date have yielded a wide range of 5-HTT findings in MDD, which is
confounded by the variety of end points used, and the potential
for a variety of confounds arising from medication history, gender
differences, age, among other factors. As much is perceived to be
at stake in establishing the nature or extent of serotonergic
abnormalities in MDD, the present lack of consensus is unsatis-
factory. A similar state of affairs occurred for the case of molecular
imaging markers of dopamine in schizophrenia. Recent meta-
analyses have established the effect size of increased capacity
for synthesis of striatal dopamine in patients with schizophrenia,
as measured by PET studies with [18F]-fluoro-L-DOPA and other
substrates for the enzyme DOPA decarboxylase, but failed to
detect important differences in the availability of dopamine
receptors or dopamine transporters.10,11 Small sample size is
generally a precondition for false-positive findings,12 so the
meta-analyses have provided much-needed clarity about the
extent of dopaminergic changes in schizophrenia. We determined
to use similar methods to establish a better case for 5-HTT
changes reported in molecular imaging studies of MDD. To this
end, we searched published literature and considered the
association of depression with factors such as age, gender, and
medication status.

1Functional, Molecular & Translational Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria and 2Department of
Nuclear Medicine, Friederich-Alexanders Universitaet, Erlangen/Nurenberg, Germany. Correspondence: Professor R Lanzenberger, Functional, Molecular & Translational
Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria.
E-mail: rupert.lanzenberger@meduniwien.ac.at
This research was supported by a grant from the Austrian Science Fund (P22981) to R Lanzenberger.
Received 6 February 2014; revised 4 April 2014; accepted 9 April 2014; published online 7 May 2014

Journal of Cerebral Blood Flow & Metabolism (2014) 34, 1096–1103
& 2014 ISCBFM All rights reserved 0271-678X/14

www.jcbfm.com

http://dx.doi.org/10.1038/jcbfm.2014.82
mailto:rupert.lanzenberger@meduniwien.ac.at
http://www.jcbfm.com


MATERIALS AND METHODS
Data Collection
The bibliographic databases Medline, ScienceDirect, Scopus, and PsycINFO
were systematically searched in November 2013 using the terms
‘depression’, ‘MDD’ or ‘major depressive episode’, and ‘PET’, ‘SPECT’ or
‘molecular imaging’. The automated search results were narrowed to
studies reporting means and s.d. values of molecular imaging outcome
measures reflecting cerebral 5-HTT binding in MDD patients and controls.
Studies were excluded if subjects suffered from neurologic, severe somatic,
psychotic, or affective disorders other than MDD and dysthymia. The
remaining psychiatric comorbidities were assessed and became subject to
sensitivity analyses. Current therapy with antidepressant medication was
an exclusion criterion in the absence of a washout period, so as to avoid
bias from residual 5-HTT occupancy, or medication-evoked changes. Next
to the outcome for each region reported, demographic variables (age, sex),
depression severity scores, type of tracer, type of outcome measure and
psychiatric medication history (drug-free interval, number of drug-naı̈ve
subjects) were extracted from studies included in our analyses. Corres-
ponding authors were contacted and asked if they were aware of any
unpublished data on the topic.

Given the high interstudy and interrater variability in scoring depression
severity, analyses involving these scores are strictly exploratory. We
attempted to unify severity scores by considering the 21-item Hamilton
Depression Rating Scale as equivalent to the 17-item scale with omission of
the last four items.13 If available, published equations were used to
translate other depression scores to Hamilton Depression Rating Scale,14

which is not possible for the Beck Depression Inventory. As some studies
reported multiple scores including the Beck Depression Inventory, we
ordered these studies by Beck Depression Inventory scores and assigned
the two studies reporting Beck Depression Inventory exclusively an
‘equivalent’ Hamilton Depression Rating Scale score.

Statistical Analysis
All statistical analyses were performed using the software package R 3.0.1.
Computations specific to meta-analysis were executed as described
below, and implemented in the metafor package, version 1.9-1.15 Studies
providing values for both sexes were treated separately throughout the
meta-analysis.

Individual study effect estimates. SPECT and PET studies of 5-HTT have a
number of possible outcome measures, including the simple ratio of
uptake in a region of interest relative to that in a non-binding reference
region. When dynamic emission sequences are available, specific binding
can be calculated relative to the reference tissue as binding potential
(BPND), a dimensionless quantity proportional to the ratio of the saturation
binding parameters, Bmax/Kd. When the arterial input function is measured,
the equilibrium distribution volume of the tracer in brain (VT; ml/g) is
reported, sometimes corrected for the plasma-free fraction. This diversity
of outcome measures necessitates the calculation of standardized effect
size estimates amenable to combination by meta-analysis. Therefore, we
computed for each report and brain region the standardized mean
difference (Hedges’ g), sensitive to differences in the size of the
study populations,16 and corrected for small positive bias.17 Hedges’ g
expresses the difference in means of two groups in units of pooled s.d.
The corresponding unbiased estimates of the sampling variance were
supplemented by 95% confidence intervals (CI) based on a non-central
t-distribution calculated using the MBESS package, version 3.3.3.18

Summary effect estimates. A separate meta-analysis was conducted
for each brain region appraised in more than three studies. Given our
aim of drawing an unconditional inference about effects of MDD on 5-HTT
expression, we opted against a fixed-effects model.19 In a random-effects
model individual study estimates are weighted inversely proportional to
the sum of their sampling variance (vi) and the between-study variance
(t2). The latter result was computed using restricted maximum likelihood
estimation, which unlike the classic moment-based approach20 accommo-
dates calculation of the summary effect size and t2 from the same data. We
assessed sensitivity of summary effect sizes to changes in t2 using t2-
sensitivity plots. Furthermore, Higgins’ I2 was calculated, which constitutes
an intuitive measure of the variation of study estimates that is due to
between-study heterogeneity.21 Confidence intervals for summary effect
sizes were based on a t-distribution.22 Further sensitivity analyses were
performed using the leave-one-out approach. Publication bias was

investigated by inspecting funnel plots that portray the precision of
individual studies against their effect estimates.

Influence of study population characteristics and imaging procedures.
Sensitivity of estimates to depression severity, tracer, outcome measure,
comorbidities, antidepressant medication history (minimum duration of
drug washout and percentage of drug-naı̈ve patients), and age differences
between groups was each assessed by cumulative meta-analysis, e.g.,
studies were added to the analysis starting with those reporting the
highest depression severity scores, or those using the tracer with highest
signal-to-noise ratio, thus revealing the impact of each study on the
summary effect estimate. The influence of the mean age and sex ratio of
subjects on individual study estimates was appraised using scatter plots.
Whenever a meaningful trend for an interval scaled variable was observed
in cumulative meta-analyses or in scatter plots its inclusion in an
exploratory mixed-effects model was attempted.

RESULTS
Data from 18 published studies comprising 364 depressed
subjects and 372 healthy controls were included (Table 1).

Brainstem
Four studies comprising 91 patients and 63 controls report on
5-HTT in brainstem (Supplementary Figure 1). In spite of the
low heterogeneity of effects (I2¼ 10%), unadjusted confidence
intervals did not exclude zero (summary effect: � 0.22; 95% CI
(unadjusted): (� 0.58, 0.13)). In cumulative meta-analysis, there
was a trend towards stronger 5-HTT reductions in more severely
depressed patient groups.

Midbrain
Fifteen studies characterized midbrain 5-HTT in a total of 313
patients and 321 controls (Figure 1A). Despite the considerable
heterogeneity of individual study estimates (Higgins’ I2¼ 68.7%),
the summary effect estimate (� 0.49; 95% CI: (� 0.84, � 0.14))
clearly indicated lower 5-HTT binding in MDD. This result was
robust to leave-one-out sensitivity analysis. The maximum shift
of 95% CI toward zero was produced by excluding Selvaraj et al23

(� 0.73, � 0.08). Sensitivity to changes in t2 estimates was
negligible. The funnel plot for midbrain 5-HTT studies (Figure 1B)
showed a slight asymmetry that was not supported by a
regression test,24 testing if small studies were missing from our
analysis (P¼ 0.07). The remaining analyses concerning the
population characteristics or imaging procedures did not detect
any meaningful influence of these variables on effect estimates in
the midbrain.

Thalamus
Thirteen studies in 275 patients and 310 controls appraised
thalamus (Figure 1C). Effect estimates were highly heterogeneous
(I2¼ 82%). The summary effect estimate indicated a small
reduction of 5-HTT in patients, while 95% confidence did not
exclude zero (� 0.24; 95% CI: (� 0.72, 0.23)). Leave-one-out
analysis revealed that omitting Cannon et al25 would result in
95% CI almost excluding zero ((� 0.79, 0.06)) and the largest
reduction of heterogeneity (DI2¼ � 8%). Remaining sensitivity
analyses did not return any significant results. None of the
variables assessed showed a meaningful influence on effect size
estimates.

Striatum/Putamen
Ten studies including 204 patients and 214 controls appraised the
striatum (Figure 2A). In this heterogeneous sample of studies
(I2¼ 72%), a reduction for striatal regions was detected (summary
effect: � 0.32; 95% CI: (� 0.79, 0.15)). Leave-one-out analysis
pointed to the high influence of Cannon et al25 the exclusion of
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Figure 1. Reductions of 5-HTT sites in midbrain and thalamus of major depressive disorder (MDD) patients. (A) A forest plot of reports on
5-HTT binding in the midbrain summarizing to an effect size of � 0.49 s.d. (B) The corresponding funnel plot displays study precision as a
function of effect estimate. Its slightly asymmetric appearance in this instance suggests the lack of one or two data points on the lower right,
which implies some publication bias favoring small studies reporting significant decreases of 5-HTT in MDD. (C) A forest plot for imaging
studies appraising thalamic 5-HTT, showing a slight reduction in depressed patients. Note the deviation of data published by Cannon et al,25

the 95% confidence intervals (CI) of which are separated by a substantial gap from the 95% CI of the summary effect of all studies. (D) The
corresponding funnel plot appears symmetrical except for one outlier at the right bottom. D5-HTT, mean difference in serotonin reuptake
transporter level in units of s.d.

Table 1. Key data of selected studies

Study Method Tracer Outcome measure Healthy controls Depressed patients

1st author Year n F Age(y) n F Age(y)

Malison75 1998 SPECT [123I]b-CIT V3’’ 15 8 45.0 15 8 44.0
Ichimiya76 2002 PET [11C]McN5652 BPND 21 0 42.3 7 0 43.0
Meyer77 2004 PET [11C]DASB BPND 20 10 35.0 20 11 35.0
Reivich78 2004 PET [11C]McN5652 DVR 4 3 43.5 4 1 45.0
Newberg79 2005 SPECT [123I]ADAM V3’’ 6 4 36.7 7 4 38.3
Catafau26 2006 SPECT [123I]ADAM SUR 10 3 36.2 10 6 36.0
Herold80 2006 SPECT [123I]ADAM V3’’ 13 8 36.0 21 6 42.0
Parsey81 2006 PET [11C]McN5652 BPP 43 21 38.8 12 8 34.5
Staley82 2006 SPECT [123I]b-CIT V3’’ 32 16 40.1 32 16 40.1
Cannon25 2007 PET [11C]DASB BPND 34 25 33.0 18 12 35.0
Joensuu83 2007 SPECT [123I]b-CIT DVR 19 16 30.6 29 24 28.3
Ruhe51 2009 SPECT [123I]b-CIT BPND 48 31 42.3 45 29 42.3
Reimold84 2011 PET [11C]DASB BPND 20 8 44.2 10 5 48.3
Selvaraj23 2011 PET [11C]DASB BPP 24 0 42.4 12 0 42.1
Newberg85 2012 SPECT [123I]ADAM DVR 10 3 44.8 20 5 41.0
Ho27 2013 SPECT [123I]ADAM SUR 12 4 32.0 40 27 36.5
Miller28 2013 PET [11C]DASB BPP 31 16 32.6 51 28 41.0
Nye86 2013 PET [11C]ZIENT BPND 10 4 21.3 11 4 38.5
Sum: 18 9 PET 372 364

F, number of female participants; PET, positron emission tomography; SPECT, single-photon emission computed tomography. Basic demographic information
for all studies included in the meta-analysis is shown. In the case of studies reporting multiple outcome measures, the one specified in this table was used for
calculations.
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which shifted 95% CI and sharply decreased heterogeneity
(summary effect: � 0.45; 95% CI: (� 0.85, � 0.05); I2¼ 53%).
When only studies investigating the putamen or its subparts were
considered, i.e., with omission of Catafau et al,26 Cannon et al,25

and Ho et al,27 a clear reduction of 5-HTT was observed in MDD
(summary effect: � 0.56; 95% CI: (� 1.05, � 0.08); I2¼ 57%). The
influence of study population mean age on effect estimates
became apparent during sensitivity analyses (Figure 2B), and
was supported by a mixed-effects model (Po0.01; Figure 2C),
especially when correction for within-study age differences was
included (Dage, calculated as the standardized mean difference in
age between groups), which reduced residual heterogeneity to
a nonsignificant level (I2¼ 20.8%; P¼ 0.25).

Amygdala
Five studies of 96 patients and 128 controls appraised amygdala
(Figure 3A). Given the homogeneity of study estimates (I2¼ 0), the
weighting applied in the random-effects model was equal to that
applied in a fixed-effects model, yielding identical summary effect
estimates (� 0.50; 95% CI: (� 0.78, � 0.22)). Leaving out data from
Miller et al28 who investigated the largest sample, shifted the 95%
CI to (� 0.83, � 0.09). Sensitivity to changes in t2 estimates was
negligible. A funnel plot showed that the smaller studies report
smaller effects. Cumulative meta-analysis indicated that studies
reporting higher depression severity found stronger reductions in
5-HTT (Supplementary Figure 2A), and that studies with MDD
patients of mean age greater than controls reported weaker
reductions (Supplementary Figure 2B). Therefore, depression
scores were plotted against effect sizes controlling for within-
study age differences (Dage, Supplementary Figure 2C). A corres-
ponding mixed-effects model including both variables was
significant (b1¼ � 0.05, P¼ 0.01 for the depression score compo-
nent; b2¼ 0.25, P¼ 0.01 for Dage), with the caveat that there were
only five studies on amygdala, using several severity scores.
The remaining variables had little influence on effect estimates.

Frontal Cortex
Four studies with a total of 47 patients and 58 controls appraised
5-HTT in the frontal cortex (Figure 3B). In the presence of high
heterogeneity (I2¼ 65%), there was no clear effect of depression
on 5-HTT (summary effect: � 0.09; 95% CI (unadjusted): (� 0.82,
0.65)). In cumulative meta-analysis, there was a trend toward
stronger 5-HTT reductions in more severely depressed patient
groups.

Cingulate Cortex
Seven studies with a total of 127 patients and 166 controls
appraised 5-HTT in cingulate cortex (Figure 3C). No conclusive
effect of depression on 5-HTT binding was detected (summary
effect: � 0.03; 95% CI: (� 0.65, 0.60); I2¼ 68.4%). There was
high impact of data from Cannon et al25 on heterogeneity
(DI2¼ � 16.2%) and summary effect size (summary effect: � 0.19,
95% CI: (� 0.84, 0.45)). Sensitivity analyses revealed weak
association of depression severity with 5-HTT reduction
(b¼ � 0.18, P¼ 0.06), and a similar association with mean age
(b¼ � 0.08, P¼ 0.06). Since mean age and depression severity
correlated with each other, with the exception of one outlier, the
relationships could not be evaluated separately.

DISCUSSION
The literature search yielded groups of nearly 400 MDD patients
and healthy controls in a total of 18 published studies of 5-HTT in
MDD, indicating mean group sizes of 20 patients and 20 controls
per imaging study. While this group size is typical of molecular
imaging studies, it is unsurprising that detection of small group
differences has been unreliable, given measurement error and
substantial biologic variability in 5-HTT as seen (e.g.,) with
season.29 For the sake of homogeneity, albeit in support of our
findings, a published study on 5-HTT in seasonal affective disorder
was not included in the analyses.30 Considerably more data are

Figure 2. Reductions in striatal 5-HTT with major depressive disorder (MDD) are moderated by age. (A) A forest plot for studies exploring the
striatal 5-HTT in depressed patients, revealing a notable reduction of 5-HTT. (B) Partial regression plot showing the relationship between mean
difference in 5-HTT (D5-HTT) and mean age corrected for standardized between-group age differences (Dage) in the current set of data. Here,
residuals of effect size against age difference are plotted with residuals of mean age. (C) The definition of the meta-regression model links the
mean age of study population to the changes in 5-HTT in the striatum, accounting for Dage. Uniquely in the striatum, age emerged as a factor
explaining a significant part of between-study heterogeneity in effect sizes. The black line in the plot shows the predicted effect size at a given
age with Dage fixed at zero. Corresponding 95% CI for predictions are indicated by the dashed lines.
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available for regions of high 5-HTT abundance, reflecting the
lesser sensitivity of SPECT methods and the inherently lesser
convenience of data acquisition by PET. Indeed, the diversity of
SPECT and PET imaging methods employed in reports on 5-HTT in
the high binding regions, i.e., the mesencephalon, thalamus, and
striatum, may contribute to the high interstudy variability for
these brain regions. Only two of 15 reports on midbrain showed
any increase in 5-HTT levels among MDD patients, giving an
overall effect size of � 0.49, which was robust to leave-one-out
analysis. This effect size is comparable in magnitude with the
increase in utilization of DOPA decarboxylase substrates reported
in the meta-analysis of schizophrenia noted above,10,11 thus
establishing with some considerable certainty the case for
reduced 5-HTT in midbrain of several hundred patients with MDD.

Autoradiography shows that midbrain binding reflects the
composite of 5-HTT in somatodendritic sites of dorsal raphe
neurons31 and serotonin fibers innervating the nearby substantia
nigra.32 These structures are merged in SPECT imaging, but are
resolvable using the most advanced generation of PET scanners,
which should enable the more precise anatomic location of
reduced 5-HTT in MDD. Specificity of present results for midbrain
of MDD patients is suggested by the absence of a clearly
discernible effect in the adjacent brainstem, which was examined
in a small number of SPECT studies with relatively large group size.

High 5-HTT availability is conspicuous in SPECT and PET studies
of thalamus, where serotonin facilitates somatosensory and limbic
signaling.33 We found a decline in thalamic 5-HTT in MDD patients,
but of lesser effect size than in midbrain; this finding proved to be
highly sensitive to exclusion of the report of Cannon et al25 in
which [11C]DASB binding was notably elevated in MDD patients.
Increased [11C]DASB binding was also evident in other regions
examined by Cannon et al,25 suggesting a global scaling in their
MDD patients.

The analysis of changes in 5-HTT availability in the striatum of
MDD patients was informative in several respects. First, the
aforementioned sensitivity of the summary effect size to omission
or inclusion of results from Cannon et al25 was very pronounced
here, substantially increasing the effect size. Available data for
striatal sub-regions did not support a regional analysis, as most
studies were restricted to the investigation of the putamen.
However, the data did indicate increasing effect size for MDD
patients of mean age increasing from 30 to 50 years. Exclusion of
data from Cannon25 was without great effect on this trend, but
rather served to extinguish residual heterogeneity (I2¼ 0.0%).

Interestingly, in a recent [11C]DASB PET study of healthy
subjects, striatal 5-HTT expression has been associated with
scores in tests of logical reasoning, executive function, and level
of education.34 Furthermore, several studies report age�
depression interactions with cognitive function,35 especially
executive functions36,37 and motor speed.38 Structural and func-
tional alterations in the striatum have been consistently found in
MDD,39,40 particularly in elderly MDD patients,41,42 and are found
to correlate with cognitive performance.43–45 The presentation of
marked executive dysfunction in a subgroup of elderly depressed
patients has led researchers to postulate a ‘depression executive
dysfunction syndrome’,46 associated with lesions of the striato-
cortical circuits. Results of this meta-analysis may encourage
imaging studies of the specific role of serotonergic pathology in
the striatum in the context of geriatric depression.

The five reports on 5-HTT binding in amygdala merit special
attention, as they consistently indicate a reduction in MDD
patients. This may be of particular interest, given the association of
the amygdala with processing of aversive or fearful stimuli. In one
human fMRI study, possession of short alleles of the promoter for
5-HTT expression, which predicts low transporter expression,47

was associated with increased BOLD signal in amygdala
upon exposure of fearful visual stimuli,48 whereas in a study of
mice with 5-HTT overexpression, the hemodynamic response in
amygdala during fear conditioning was attenuated.49 Remarkably,
in our recent PET study, high baseline 5-HTT ratios between
amygdala and median raphe nucleus was associated with better
treatment response to selective serotonin reuptake inhibitors.50

The five molecular imaging reports on amygdala also provide
important information about confounds arising from age, and the
impact of severity of depression. There was a trend toward
decreasing effect size in amygdala with the inclusion of studies
with lesser mean depression severity (Supplementary Figure 2A),
whereas there was a blunting of the difference as one proceeds to
include relatively older patient groups (Supplementary Figure 2B);
correcting for this age difference substantially sharpens the
finding of lesser 5-HTT binding in amygdala of more depressed
patients.

The literature search revealed few studies of 5-HTT quantifica-
tion in cerebral cortex. Meta-analysis of four reports on frontal
cortex and seven reports on cingulate cortex did not indicate any
significant reduction in cortical 5-HTT sites in MDD. This may be
relevant to the lack of association of cortical 5-HTT loss in MDMA
users and depression, noted below. However, the sensitivity of PET
is naturally less in the cerebral cortex, where transporters are less
abundant, such that the risk of type II error is more pronounced.
Assuming an optimistic effect size of � 0.5, we calculate that a
study group of at least 64 patients would be required to obtain

Figure 3. Meta-analysis revealed significant reductions of 5-HTT in
amygdala, but no effects in cortical regions. (A) A forest plot of
molecular imaging studies of the amygdala in depressed patients,
showing a significant reduction in 5-HTT levels. Forest plots for
(B) frontal cortex and (C) cingulate cortex show no conclusive effect
of major depression on 5-HTT availability. D5-HTT, mean difference
in serotonin reuptake transporter level in units of s.d.
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sufficient power (b¼ 20%) for detecting a putative reduction in
MDD (a¼ 0.05, two tailed). This requirement was met by the
present meta-analysis for the cingulate cortex, but not for the
frontal cortex. Needless to say, none of the 18 individual studies
has come close to possessing sufficient power; the largest study
(Ruhe et al51) achieved b¼ 34%. We conclude that, barring some
technical improvement imparting precision of the imaging
methods, future studies must entail larger numbers of patients
than have hitherto been commonplace.

An important source of variance in 5-HTT expression may arise
from previous antidepressant treatment of studied patients.
At least 149 out of the 364 MDD patients included in this analysis
are reported to be drug-naı̈ve, whereas the others had been drug
free for washout period ranging from 5 days to over 1 year
(median¼ 7 weeks). We assessed sensitivity to the factors of
percentage of drug-naı̈ve patients and minimal drug-free inter-
vals, which did not reveal any relevant associations with 5-HTT
results. There has been a number of animal studies that have
shown highly variable results for 5-HTT expression after chronic
antidepressant treatment, a topic that may call for a systematic
review in its own right.52–57 These studies can be confounded by
carryover of selective serotonin reuptake inhibitors into the
binding assay, which may contribute to the slight prepon-
derance of studies reporting reduced 5-HTT after several weeks
of antidepressant treatment.58–62 The relevance of these findings
to possible effects of human antidepressant treatment regimens
is challenged most notably by the high drug dosages used in
animals studies. Intriguing data published by Benmansour et al58

reports rapid restoration of 5-HTT binding in rodent brain within
few days after discontinuation of SSRI treatment.

As polymorphisms of SLCA4, the gene coding the serotonin
transporter have been associated with an increase of the risk for
developing MDD63 (an effect which is not undisputed64), genetic
variability likely constitutes another factor potentially contributing
to heterogeneity in studies of 5-HTT in MDD. Molecular imaging
findings of relationships between 5-HTT in depression and
genotype have been reviewed,65 and construed as pointing to
decreased 5-HTT expression in subjects possessing the short
allele of the 5-HTTLPR polymorphism. Yet, later in the same
year of that publication another study failed to support this
conclusion,66 providing another instance of the irresolution
associated with the issue. Epigenetic approaches promise new
insights as evidenced by a recent twin study revealing the
occurrence of increased DNA methylation of the SLCA4 promoter
with depressive symptoms.67

Present findings in the amygdala and striatum stress the critical
importance of proper age matching in molecular imaging studies
of 5-HTT in human brain; even small differences in mean age
between groups have the capacity to obscure real differences.
One PET study reports a global decline in 5-HTT availability of 10%
per decade of normal aging.68 However, reduced 5-HTT binding
relative to age-matched controls is not pathognomonic of
depression; for example, [11C]DASB binding correlated inversely
with severity of OCD symptoms.69 A history of repeated MDMA
use is associated with widespread reductions in 5-HTT in the
human striatum and thalamus70 or throughout the cerebral
cortex.71 However, extensive use of MDMA is not generally
associated with depressive mood per se, but is strongly associated
with increased scores for anxiety and obsessive-compulsive traits,
and with impairment of specific cognitive domains, notably of
verbal memory.72 These observations indicate that reduced 5-HTT
binding is not a sufficient condition for MDD, if obtained by
neurotoxic injury, or in the course of normal aging. That reduced
5-HTT availability in MDD may be an acquired trait is supported
by a PET study of rhesus monkeys with maternal separation
stress during adolescence;73 by extension, psychosocial, and
environmental factors may manifest in changes in 5-HTT binding
sites, which impart a risk for MDD, without simple causation.74

Disentangling the causal relationship between 5-HTT availability
and mood disorders may require molecular imaging studies in
individuals at risk for developing MDD.

In conclusion, it has been widely assumed that MDD must be
associated with a deficit in serotonergic transmission, without
consistent support for this model from molecular imaging studies.
To resolve this uncertainty, we undertook a systematic search of
the literature, which yielded a total of 18 molecular imaging
studies of MDD suitable for our meta-analysis. Analysis of data
obtained in 364 depressed subjects and a similar number of
healthy controls revealed highly significant reductions in 5-HTT
availability in midbrain and amygdala, and lesser reductions in the
striatum, thalamus, and brainstem. No such difference was noted
in the cerebral cortex, where statistical power was inadequate
owing to the lower specific signal. We conclude that individual
molecular imaging studies have been underpowered to detect the
real deficit in serotonergic transporters in unmedicated patients
with MDD, which corresponds to B10%.
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