
Oba et al. BMC Neurosci  (2016) 17:27 
DOI 10.1186/s12868-016-0255-x

METHODOLOGY ARTICLE

Empirical Bayesian significance measure 
of neuronal spike response
Shigeyuki Oba1*, Ken Nakae1, Yuji Ikegaya2, Shunsuke Aki1, Junichiro Yoshimoto3 and Shin Ishii1

Abstract 

Background:  Functional connectivity analyses of multiple neurons provide a powerful bottom-up approach to 
reveal functions of local neuronal circuits by using simultaneous recording of neuronal activity. A statistical methodol-
ogy, generalized linear modeling (GLM) of the spike response function, is one of the most promising methodologies 
to reduce false link discoveries arising from pseudo-correlation based on common inputs. Although recent advance-
ment of fluorescent imaging techniques has increased the number of simultaneously recoded neurons up to the 
hundreds or thousands, the amount of information per pair of neurons has not correspondingly increased, partly 
because of the instruments’ limitations, and partly because the number of neuron pairs increase in a quadratic man-
ner. Consequently, the estimation of GLM suffers from large statistical uncertainty caused by the shortage in effective 
information.

Results:  In this study, we propose a new combination of GLM and empirical Bayesian testing for the estimation of 
spike response functions that enables both conservative false discovery control and powerful functional connectivity 
detection. We compared our proposed method’s performance with those of sparse estimation of GLM and classical 
Granger causality testing. Our method achieved high detection performance of functional connectivity with con-
servative estimation of false discovery rate and q values in case of information shortage due to short observation 
time. We also showed that empirical Bayesian testing on arbitrary statistics in place of likelihood-ratio statistics reduce 
the computational cost without decreasing the detection performance. When our proposed method was applied to 
a functional multi-neuron calcium imaging dataset from the rat hippocampal region, we found significant functional 
connections that are possibly mediated by AMPA and NMDA receptors.

Conclusions:  The proposed empirical Bayesian testing framework with GLM is promising especially when the 
amount of information per a neuron pair is small because of growing size of observed network.
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Background
Connectomics, which seeks to identify the connectivity 
structure between all pairs of neurons not only in local 
circuits but over the entire brain, is a crucial research 
direction [1], because the brain’s functions are believed 
to emerge within the connectivity structure of its con-
stituent elements, the neurons. Toward such a direc-
tion, functional connectivity analyses provide a powerful 
bottom-up tool to investigate the neurophysiology of 

the relationships of multiple neurons [2–4]. Moreover, a 
decoding study has quantified information amount that 
is encoded into functional connectivity of retinal gan-
glion cells [5]. When we focus on information processing 
principles of local neuronal circuits, we need a sophis-
ticated approach to unify top-down simulations and 
bottom-up experimental observations both in terms of 
functional connectivity and anatomical connectivity. The 
reliable detection of functional connectivity is thus vital 
to identify the functions of local and global networks in 
the brain. Similar attempts have focused on the func-
tional connectivity of the higher-order view of the brain: 
dynamic causal modeling of the brain regions [6], for 
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example. Such research is sometimes called macro-con-
nectomics. Although our functional connectivity analy-
sis method can be applied to such macro-connectome 
problems, in this study we focus on functional connectiv-
ity between neurons, one of the elementary levels of the 
brain’s hierarchy.

By definition, a pair of neurons is called functionally 
connected if the physiological activities of these neu-
rons interact with each other. Granger causality provides 
a theoretical definition to a directed causal relationship 
that can be estimated from time course observations 
like spike trains from neuronal circuits [7]. In contrast, 
structural connectivity implies anatomical observation of 
synaptic structures between the neurons found by elec-
tron microscopy or the imaging of synaptic markers [8]. 
Functional connectivity and structural connectivity have 
different theoretical implications. Structural connectivity 
does not necessarily imply functional connectivity; since 
most synapses are silent or inactive in  vivo, few active 
synapses establish functional connectivity [9, 10]. Func-
tional connectivity does not necessarily require structural 
connectivity; since the observation cannot be complete, 
functional connectivity may be produced by indirect cau-
sality bypassed by unobservable neurons and glial cells 
and mediated by various transmission channels like elec-
tronic coupling and metabolic factors. Some studies have 
shown indirect evidence of relationships between func-
tional and structural connections [8]. Because one major 
objective of the physiology of neuronal circuits is to deter-
mine their functions, functional connectivity analysis can 
be more important than its structural counterpart.

In order to estimate functional connectivity among 
many neurons, we require sufficient data of electrical 
activity of the neurons. Recent functional multi-neuron 
calcium imaging technique enabled us to observe hun-
dreds or thousands of neurons’ activities simultaneously 
[11]. However, there are following two trade-offs between 
information amounts that can affect the quality of func-
tional connectivity estimation. The first is a trade-off 
due to limited observation speed of a scanning micros-
copy; we can observe the larger number of neurons by 
the wider field of sight with the larger spatial resolution, 
leading to the lower temporal resolution. The second is a 
trade off due to unavoidable photobleaching; higher sig-
nal to noise ratio requires stronger light emission, lead-
ing to stronger photobleaching of fluorescent dyes that 
shorten the observation time length. Thus, these two 
trade-offs limit information amount per neuron even 
when the number of simultaneously recorded neurons 
is large. Moreover, information amount per a pair of 
neurons is decreasing with growing number of neurons 
because the number of pairs of neurons is quadratic to 

the number of neurons. We call this situation an infor-
mation shortage for functional connectivity estimation.

In the current study, we focus on generalized linear 
models (GLMs) of spike response functions (SRFs) and 
their extensions, which are found powerful statistical 
tools to sketch the functional connectivity between mul-
tiple neurons [4, 7, 12–16]. An SRF expresses the increase 
and decrease of the spike generation probability trig-
gered by a pre-synaptic spike input as a function of the 
lag-time between pre-synaptic input and post-synaptic 
output spikes. Based on the GLM framework, SRFs for 
all possible pairs of neurons are estimated simultane-
ously, and the Granger causality test substantially reduces 
false positives caused by indirect causality that cannot be 
distinguished if they are estimated for each local pair of 
neurons. Recently, several studies have presented sparse 
estimation methods that prefer zero connection weights 
for a large part of all neuron pairs to improve the estima-
tion of GLM-based SRFs [12, 13, 15, 16]. On the other 
hand, there have been a few attempts of network struc-
ture inference without focusing on fitting GLM, such as 
information theoretic analysis of Granger causality [17] 
and inference of Dynamic Bayesian Networks [18].

In case of information shortage, two major require-
ments to estimate SRFs, model fitting and detection 
accuracy, are not compatible with each other. Estimation 
of GLM, in case of information shortage, owes its perfor-
mance much to regularization term, in which regulariza-
tion coefficient is tuned for better model fitting. Recent 
sparse estimations of GLM are not exceptions. However, 
the best-tuned coefficient for model fitting does not gen-
erate the best results for detection accuracy; not only 
that there is no guarantee of compatibility, but also that 
there is a severe contradiction. Discrimination accuracy 
by the sparse estimation of SRFs usually depends on 
the arbitrary tuning of a hyperparameter that controls 
the sparseness. The hyperparameter tuning, however, 
involves severe problems that are not well understood. 
Namely, there is no guarantee that the best hyperpa-
rameter to minimize the fitting error in terms of cross-
validation leads to the best discrimination accuracy to 
detect functional connectivity. Actually, the connectivity 
detection performance is not favorable when we tune the 
sparse model so as to maximize the likelihood. Moreo-
ver, no good method exists to control false positives with 
sparse estimation mainly because it is difficult to obtain 
closed-form null distributions of testing statistics.

There have been many studies focusing on model fit-
ting, but few studies focusing on detection accuracy 
except for the likelihood-ratio testing of Granger causal-
ity [7]. However, they did not consider the case of infor-
mation shortage and did not include any regularization 
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factors. The performance of their estimation might be 
sub-optimal, particularly with information shortage.

In this study, we propose a new functional connectiv-
ity analysis method focusing on improving the detec-
tion performance especially in the case of information 
shortage. Our method consists of two major procedures. 
In the first, SRFs are identified by estimating the param-
eters of GLMs with smooth bases to represent SRFs and 
L2 regularization. The second procedure is a Granger 
causality analysis based on empirical Bayesian testing. 
Because our situation for functional connectivity analysis 
is a typical multiple simultaneous testing, false positive 
control is definitely important. Empirical Bayesian test-
ing provides a reliable way to stably control the false posi-
tive proportion.

Our research scope is summarized in Table 1. We focus 
on the case with information shortage in which the num-
ber of neurons is large but the observation length is rela-
tively short. Because the amount of information available 
to estimate SRF is proportional to the number of spikes 
per neuron pair, the statistical uncertainty is large in vari-
ous imaging studies, like calcium imaging. Thus, we pro-
pose a methodology that is essentially different from best 
practice in electrophysiological studies. Namely, we apply 
multiple testing to determine the functional connectivity, 
rather than to estimate SRF, for each pair of neurons. The 
goal is to list a set of candidate connections while con-
trolling false positives, rather than to build a single most 
likely model that maximizes the fitness or expected like-
lihood. Toward this goal, we apply a GLM model with 
non-sparse regularization in contrast to one with sparse 
regularization.

Spike response estimation
Generalized linear model of spike responses
In this section, we introduce a formulation of GLM of 
spike responses according to [7, 12, 16].

Suppose that we have a spike train dataset, 
N(1 : T ) = {Ni(t) : i = 1, . . . ,C; t = 1, . . . ,T }, where 
Ni(t) denotes the number of spikes of the ith neuron 
(i = 1, . . . ,C) in the tth time-bin (t = 1, . . . ,T) with a 

common width over all the bins. We assume the bin 
width is short enough so that the maximum spike num-
ber in a single bin is unity, and thus Ni(t) takes either 
one or zero. We also assume that C neurons may receive 
a common input signal transmitted through L external 
channels: E(1 : T ) = {El(t) ∈ R : l = 1, . . . , L}, where 
El(t) denotes a real-valued signal sent through the lth 
channel.

A stochastic spike response model represents the con-
ditional probability to observe a spike of the ith neuron 
in the tth time bin pi(t) ≡ Pr(Ni(t) = 1|N(1 : t − 1),

E(t),Ri), where conditions N(1 : t − 1), E(t), and Ri 
denote the past spike history up to time t − 1 of all neu-
rons c = 1, . . . ,C including the ith neuron itself, the 
external input at time t, and a set of parameters that 
define the response function of the ith neuron, respec-
tively. According to GLM, the conditional probability is a 
function of total spike response �i(t),

where the total spike response is given as a linear sum-
mation of all external inputs El(t)(l = 1, . . . , L) and the 
past spikes from all neurons N(t −M : t − 1),

Ri0, RE
il, and Ric(s) are respectively a background activ-

ity level of the ith neuron, a response coefficient to 
the lth external input, and the spike response with 
lag-time s to the cth neuron, of the ith neuron. Natu-
ral number M, called a window, is the maximum 
time-lag considered in the history. f(x) is a (possibly non-
linear) link function from total response �i(t) to prob-
ability pi(t), and we concentrate on a case of logistic link 
f (x) = 1/(1+ exp(−x)). A reasonable alternative may 
be f (x) = 1− exp(− exp(x)), called the complementary 

(1)pi(t) = f (�i(t)),

(2)

�i(t) ≡ �i(t;N(t −M : t − 1),E(t),Ri)

= Ri0 +

L∑

l=1

R
E
il
El(t)

+

C∑

c=1

M∑

s=1

Ric(s)Nc(t − s).

Table 1  Conceptual difference between two distinct typical cases of functional neuronal connectivity analyses

Long Short

Typical case Multiple electrodes Calcium imaging

   No. of neurons Small Large

   No. of spikes per a pair of neurons Large Small

Methodology Sparse estimation Multiple testing

   Goal Single most likely model Set of candidate connections

   Criterion Fitness (likelihood) False discovery rate

   Model GLM (sparse) GLM (non-sparse)
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log–log link function. The latter case makes this spike 
response model equivalent to a Poisson spike model at a 
limit of infinitesimal bin-width [12].

We may consider common external input E(t) that 
effectively represents the total effect received by the 
observable neurons from unobserved ones and/or other 
external inputs. If we can directly observe those exter-
nal inputs, the estimation of the spike response model is 
reduced to an auto-regression (AR) problem; by regard-
ing glial activities as observable external inputs to a neu-
ronal network, a GLM-based spike response model for a 
neuron-glia system can be estimated [19]. If we cannot 
observe the external inputs, the estimation is of an AR 
type with a moving average (ARMA), in which we need 
to simultaneously estimate the external inputs and the 
response functions of individual neurons.

Estimation and errors
We may obtain a small but non-zero estimation of 
response functions for some pairs of neurons that in 
fact have no functional connectivity because of the finite 
amount of available data. Such limited data causes sta-
tistical uncertainty preventing a clear-cut determination 
and two types of statistical errors, false negatives and 
false positives.

To deal with such statistical uncertainty in our applica-
tion of functional connectivity analysis, we have several 
options in each of the following two steps that consti-
tute functional connectivity analysis: (a) the estimation 
method of a GLM-based spike response model including 
spike response Ric(s) between neurons i and c, and (b) the 
selection of statistics to test the null hypothesis, where 
the spike response Ric(s) is zero for any time-lag s if the 
null hypothesis is true, and Ric(s) is not zero for some s 
if the alternative hypothesis is true. Our ways of dealing 
with these two issues will be discussed in the following 
subsections.

Application of smooth bases and regularization term
This subsection describes a way to estimate a GLM-based 
spike response model.

We assume that each spike response function, Ric(s), is 
represented as a linear combination of a small number of 
smooth bases:

where Bk(s) and Aick denote the kth basis function that 
is shared by all neurons and the kth basis loading coef-
ficient between neurons c and i, respectively. To reflect 
the consistently positive (negative) character of the facili-
tatory (suppressive) post-synaptic current, EPSC (IPSC), 

(3)
Ric(s) =

K∑

k=1

AickBk(s),

and the consistent profile of EPSC (IPSC) induced by a 
single pre-synaptic spike, each basis function is given by 
the following Gamma density function:

Here, Ga(s;mk , vk) denotes the probability density func-
tion of a Gamma distribution whose mean and variance 
are set at mk = vk = 1

2k
2. The Gamma density function 

as a filter basis was first proposed in [20]. A basis func-
tion with a small index k peaks at a small s value, which 
induces a large but short-delayed EPSC or IPSC, and 
that with a large index is broad with a large mean value, 
which induces a small but long-lasting EPSC or IPSC. 
Number of bases K is arbitrarily determined so that the 
GLM model fits the real spike response well. Smoother 
response function is preferred in the estimation when a 
smaller number K is set, which can improve the estima-
tion by preventing over-fitting to statistical uncertainty 
especially in cases with information shortage.

From Eqs. (2) and (3), the total spike response of the ith 
neuron is given by

When estimating the spike response model param-
eters, the following regularized log-likelihood func-
tion is independently maximized with respect 
to the unknown parameters Ri0, REil, and Aick, 
l = 1, . . . , L, c = 1, . . . ,C , k = 1, . . . ,K , for each neuron i:

where

is log-likelihood at time t, η is a hyperparameter that 
controls the strength of regularization, and Regi is the 
regularization term. We may use the following L2 regu-
larization to encourage non-sparse estimation of the 
parameter Aick:

We alternatively consider the following L1 or group lasso 
regularization for facilitating sparse estimation:

(4)Bk(s) = Ga(s;mk , vk).

(5)

�i(t) = Ri0 +

L∑

l=1

REilEl(t)

+

C∑

c=1

K∑

k=1

M∑

s=1

AickBk(s)Nc(t − s).

(6)Li =

T∑

t=1

Lit − ηRegi,

Lit ≡ Ni(t) log(f (�it))

+ (1− Ni(t)) log(1− f (�i(t)))

(7)L2 : Regi ≡
1

2

C∑

c=1

K∑

k=1

A2
ick .
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The common input term El(t) in our GLM-based spike 
response model (2) is fixed at an estimated value in a pre-
process (“Estimation of external input” section) prior to 
the model estimation. The parameter estimation to maxi-
mize the regularized likelihood function (6) is imple-
mented using a dual augmented Lagrangian method [21].

Estimation of external input
When some common external inputs El(t), l = 1, . . . , L 
were supposed to exist but not given, they were estimated 
using principal component analysis (PCA) [22] of the 
observed time course. Let us imagine a typical case that 
there are some synchronized spikes of many observed 
neurons. In this case, we would detect facilitative con-
nectivity between all neurons that emit the synchronized 
spikes. However, we can reduce the effect of the synchro-
nized spikes to the estimation of functional connectivity 
between the observed neurons if we regard the synchro-
nized spikes as an effect of common external input. We 
can extract the synchronized signal as the first principal 
component of a set of smoothed spike sequences of the 
neurons, or multiple signals as some components if there 
are some distinct sets of neurons that are synchronized. 
Note that we assume these common external inputs as 
a minimum device to reduce the harmful effect to func-
tional connectivity estimation, rather than to infer any 
external reality.

We first applied a moving average filter of a certain 
window size to the spike time course Ni(t) of all the 
observed neurons i = 1, . . . ,C to obtain smoothed spike 
density profiles. Next, we calculated L principal compo-
nents with eigenvalue decomposition of C × C covari-
ance matrix for the smoothed spike density profiles of the 
C observed neurons and regarded them as the estimated 
L external inputs. Finally, we fit the GLM model involv-
ing the common external inputs and assessed the fitness 
using Akaike’s information criteria (AIC) [22] to deter-
mine the number of principal components L, where AIC 
is defined as the log-likelihood value minus the number 
of free parameters of the GLM.

If there is no external input, the smoothed spike den-
sity is based on the internal fluctuation stemming from 
the constant term [Ri0 in Eq. (2)] of the observed neu-
rons. Then there is no significant principal component of 
the smoothed spike density profiles. If there are principal 
components of the smoothed spike density profiles, they 

(8)L1 : Regi ≡

C∑

c=1

K∑

k=1

|Aick |,

(9)GL : Regi ≡

C∑

c=1

√√√√
K∑

k=1

A2
ick .

cannot be explained by the bias of the spontaneous activ-
ities of the observed neurons; therefore, they are based 
on the external inputs. Estimation of the external inputs 
by the above method corresponds to estimation of slow 
behaviors of the network and is useful for removing fac-
tors that are not able to be represented by our GLM; it is 
beneficial to our main objectives of estimating the spike 
response functions and their significance measure in a 
stable manner.

Statistical significance
Here, we focus on statistical tests for functional connec-
tivity analyses of GLM-based spike response models. Our 
statistical tests are based on Granger causality, but there 
are several options when applied to GLM-based spike 
response models.

Granger causality and a corresponding test statistic
Granger causality is a criterion to determine the existence 
of a directed causal relationship between two nodes, from 
both of which we observed time sequences. By definition, 
it is said that there is Granger causality from nodes A to 
B if we can significantly better predict the future time 
sequence of node B using the information of the past and 
current time sequences of nodes A and B than only using 
that of node B. In the context of the functional connec-
tivity analysis of our GLM-based spike response models, 
the Granger causality from the cth to the ith neurons can 
be examined by hypothesis testing with null hypothesis 
H

(i,c)
0 : Ric(s) = 0 for all s = 1, . . . ,M against alternative 

hypothesis H (i,c)
1 : Ric(s) �= 0 for some s = 1, . . . ,M.

Kim et  al. [7] proposed a likelihood-ratio test of all 
H

(i,c)
0 , i, c = 1, . . . ,C by a log-likelihood-ratio statistic:

where Lic0  and Li are the log-likelihood of the null and 
alternative hypotheses, respectively. This statistic reflects 
the loss of model fitness by omitting the functional con-
nectivity from neuron c to neuron i; the alternative like-
lihood Li is first calculated for the post-synaptic neuron 
i and the null likelihood Lic0  is calculated by omitting 
the contribution of each of the pre-synaptic neurons 
c = 1, . . . ,C. In their likelihood-ratio test, the alternative 
log-likelihood is given by Eq. (6) without the L2 regulari-
zation, that is, with η = 0, and the null log-likelihood is 
given by Eq. (6) with Ric(s) = 0 for all s = 1, . . . ,M (and 
η = 0). Note that the null log-likelihood depends on the 
pre-synaptic neuron index c, but the alternative log-like-
lihood does not, because the null likelihood has an addi-
tional constraint dependent on the pre-synaptic neuron 
index, which is not involved in the alternative likelihood.

We can calculate the p value of the likelihood-ratio 
test based on the fact that the test statistic LRic obeys a 

(10)LRic = −2(ln Lic0 − ln Li),
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chi-squared distribution with M degree of freedom in a 
large sample limit [23]. Considering the situation of mul-
tiple hypothesis testing, q values were also calculated 
based on the p values for all H (i,c)

0 , i, c = 1, . . . ,C based 
on the standard procedure [24].

Kim et al.’s study [7] followed the standard methodol-
ogy of statistics; especially for a relatively small amount 
of data, however, parameter estimation without any regu-
larization may suffer from failure or instability, producing 
an unreliable calculation of the likelihood-ratio. One pos-
sible way to overcome this difficulty is to introduce regu-
larization to the null and alternative likelihood functions, 
but then the test statistic no longer obeys the asymptotic 
chi-square distribution. Moreover, parameter estimation 
for the null likelihood must be performed for every pair 
of pre- and post-synaptic neurons, which is computation-
ally expensive.

Empirical Bayesian testing
Empirical Bayesian testing uses empirical null samples 
in place of null distributions that are analytically defined 
like the one described in the previous sub-section. In our 
particular application, we do not know the null distri-
bution analytically because of the introduction of regu-
larization and kernel functions to the GLM-based spike 
response models; in this case, empirical Bayesian testing 
is a practical choice.

In our empirical Bayesian testing, a certain number 
of empirical null samples of test statistics are obtained 
by the following surrogation method. We assume sev-
eral surrogate neurons, each of which emits an artifi-
cial spike train, by time-shifting a real neuron’s spike 
train: Nc∗(t) = Nc(t + TS) for some c ∈ 1, . . . ,C. Here, 
we also assume that there is no prominent periodic 
activity in the network and set the time-shift TS to a 
number larger than the time-lag M. Then, the spike 
train of a surrogate neuron c∗ becomes independent 
from that of any real neuron i = 1, . . . ,C, in the time 
lag. After adding a certain number of surrogate neu-
rons to the set of real neurons, we estimate the GLM-
based spike response model. In this estimated spike 
response model, the test statistic between a real neu-
ron A and a surrogate neuron C, which was generated 
by time-shifting the spike train of a real neuron other 
than A, can be regarded as a null test statistic, because 
A and C are independent, with no functional connec-
tivity between them.

Note that there is a non-zero probability to include 
some statistic values from the non-independent (false 
negative) pairs of neurons in the surrogating process, 
which can weaken detection power. However, the risk is 
small because the strength of ordinary response is negli-
gible for a time lag larger than a certain limit and the risk 

can be smaller by setting large enough time-shift for the 
surrogate. More importantly, inclusion of false negatives 
does never violate conservativeness.

In multiple simultaneous hypothesis testing like func-
tional connectivity analysis, q value, which is an estima-
tion of false discovery rate, is often used as an alternative 
significance measure to a p value [24].

When test statistics are available along with empiri-
cal null samples for calculating them, q values can be 
estimated directly from them without calculating the p 
values. In our empirical Bayesian multiple simultaneous 
hypothesis testing, we used this direct method to obtain 
q values for all the multiple hypotheses. This procedure is 
described in the Additional file 1.

Shape‑related statistics
According to empirical Bayesian testing, we can use an 
arbitrary test statistic. We also examined the following 
statistics since they are easier to compute compared to 
likelihood-ratio statistic after estimating the GLM-based 
spike response model, but they still represent the non-
zero character of the spike response function.

We prepared several statistics to characterize the spike 
response function (3) between neurons c and i.

Surface

Peak

Parameter vector norm with a special metric design (MD) 
We evaluate the norm of parameter vector Aic· with a 
special metric design �kk ′.

where �kk ′ is the (k , k ′)-th element of a regularized 
inverse of the following covariance matrix S0 of the 
parameter vectors of null links

Here, Aic· is a K-dimensional parameter vector whose k-
th element is Aick and T denotes a transpose. In the equa-
tion above, the summation was taken over every pair of 
pre- and post-synaptic neurons whose functional con-
nectivity was determined not to exist by the statistical 
test. Thus, the MD incorporates the anisotropic nature of 
the null distribution and evaluates the distance between 
each case and the typical null cases.

SSurfaceic ≡

M∑

s=1

|Ric(s)|

SPeakic ≡ Maxs|Ric(s)|

SMD
ic ≡

√∑

k ,k ′

AickAick ′�kk ′ ,

S0 ∝
∑

(i,c)∈H0

Aic·
TAic·.
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Delay

The last term, Delay, is a bit different, because it is used 
for describing a functional connection detected by a cer-
tain statistical test, rather than for defining a test statistic 
to detect the functional connectivity.

Statistical tests for functional connectivity analysis
In this study, we compared the following statistical tests 
in a scenario of functional connectivity analysis based 
on a GLM-based spike response model. They examine a 
pairwise functional connectivity, that is, whether a direct 
relationship exists from a pre-synaptic neuron c to a 
post-synaptic neuron i.

CHI2 If there is no regularization term, a chi-square 
test can be applied to likelihood-ratio statistic LRic, 
because it asymptotically obeys a chi-square distribution 
with M degree of freedom. Then, we can approximately 
use a chi-square test by setting the regularization hyper-
parameter η to a small positive value to avoid a diver-
gence in the optimization procedure. A p value is simply 
obtained by integrating the chi-square distribution. A q 
value is estimated using the p values of all null hypoth-
eses H (i,c)

0 , based on a standard procedure.
DOF A p value and hence a q value were obtained by 

the same procedure as in CHI2 above, except that the 
degrees of freedom were determined to fit an empiri-
cal null distribution of the likelihood-ratio statistic LRic . 
Here, the empirical null distribution was produced by the 
surrogation method described in “Shape-related statis-
tics” section.

EB Empirical Bayesian testing was applied to the like-
lihood-ratio statistic after the model parameters were 
estimated by the optimization with a larger regulariza-
tion hyperparameter η. By comparing the results of EB 
and CHI2 (or DOF), we can see the contribution of the 
L2 regularization and employing smooth bases.

EB-arbitrary stat Because empirical Bayesian testing 
can be applied to an arbitrary test statistic, the statis-
tics described in “Shape-related statistics” section were 
also examined in its framework. Note that we did not 
apply empirical Bayesian testing for estimation results 
with L1 and group lasso regularization, because the 
empirical null distributions of the statistics in “Shape-
related statistics” section were found to be quite differ-
ent among neurons, which was not the case with the L2 
regularization.

Confidence interval (CI) and MaxZ A 95 % Wald con-
fidence interval is calculated for each estimated value of 
GLM weight wk,

S
Delay
ic ≡ Argmaxs|Ric(s)|

wk ± 1.96σkk ,

where σkk is an asymptotic standard deviation that is 
derived using Hessian of the objective function [15]. 
According to [15], directed connectivity is detected if 
any CI corresponding to the connectivity is significantly 
different from zero. We also consider the Z-score of a 
weight value Zk = |wk |/σkk and that of the response 
function Z(s) =

∑K
k=1 ZkBk(s). We integrate them into 

a MaxZ statistic, a maximum of Z(s), s = 1, . . . ,M cor-
responding to the directed connection, so that a crite-
ria, MaxZ > 1.96, is equivalent to the application of CI 
in [15]. As the straight application of the 95  % CI is no 
longer a valid multiple testing, we utilized our EB-arbi-
trary stat framework in order to include the MaxZ statis-
tic in the following comparison study.

Results
Experiment 1: Poisson model simulation 
Here, we examined the performance of the functional 
connectivity analysis methods using a dataset generated 
by simulating a network of GLM-based spike response 
models. We designed an artificial neuronal network of 
15 neurons (Fig  1a) consisting of three groups of neu-
rons, G1, G2, and G3, each of which consisted of five 
neurons. This is a recurrent network: G1 → G2 → G3 
→ G1. From G1 to G2, there are ten excitatory connec-
tions among 25 pairs of pre- and post-synaptic neurons. 
Similarly from G2 to G3, there are ten excitatory connec-
tions among 25 pairs, and from G3 to G1, there are ten 
inhibitory connections among 25 pairs. There is no con-
nection between neurons belonging to the same group. 
The activity of each neuron was simply determined by a 
GLM-based spike response model, Eqs. (1) and (2), with 
the complementary log-log link function that simulates 
a Poisson spike model. Each neuron also received an 
external white Poisson input of around 50–150 Hz inde-
pendently from the external input to the other neurons. 
This assumption that the external input was independ-
ent between neurons is slightly different from the one 
assumed by our GLM model, in which the external input 
is shared by the observed neurons. However, as this situ-
ation of independent Poisson inputs is much simpler, our 
GLM-based spike response model can deal with it by just 
removing the estimation procedure of the external input 
(“Estimation of external input” section). The activities of 
all 15 neurons were observed at a sampling frequency of 
200  Hz. With these settings, we obtained from 0.6 to 2 
spikes on average per neuron per 1  s (200 observation 
time-samples).

First, we compared results of the sparse and non-sparse 
estimation methods for GLM. We selected spike train 
data of 2000 and 10,000 samples from the simulated data 
for training and 10,000 samples for validation. The sam-
ple numbers in both cases are considerably shorter than 
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some typical cases; as a reference, Kim et  al. [7] used 
50,000 samples to demonstrate their method. When 
using 50,000 samples, we found our method achieved 
100 % accuracy, although the results are not shown here.

We compared two types of regularization, group lasso 
(gl) and L2 (l2) for GLM, corresponding to sparse and 
non-sparse estimation, respectively. We also used L1 reg-
ularization, but did not show its results because the per-
formance with L1 was comparable to that of group lasso. 
We also compared two link functions, logistic (lr) and 
Poisson (pr); here Poisson stands for the complementary 
log-log link function that simulates Poisson spikes. The 
SRFs were estimated using the training data with various 
hyperparameters that determine the strength of regu-
larization. The estimated SRFs were evaluated with two 
criteria, detection accuracy of the true functional con-
nectivity and fitness to unseen data; detection accuracy is 
shown as a receiver operating characteristic (ROC) curve 
and the area under the curve (AUC) score, whereas fit-
ness is given by the log-likelihood for the 10,000 samples 
for validation. In sparse estimation like with group lasso 
regularization, some statistics like Peak may be exactly 
zero for some connections. Although a naive threshold 
to detect functional connectivity based on such statis-
tics would be zero, setting a non-zero threshold can in 
fact produce better functional connectivity estimations. 
Therefore, we evaluated ROC and AUC by changing the 
threshold value even for sparse estimation methods.

Figure  1 shows the results. In all aspects, logistic and 
Poisson link functions did not show any significant dif-
ferences whereas the difference between sparse and 
non-sparse estimation was fairly large. When the hyper-
parameter was determined to increase the fitness to the 
validation data, the connectivity detection performance 
was poor as shown in the ROC curves (b) and (e). As 
shown in the panels (c) and (f ), the best hyperparam-
eters in terms of the detection accuracy or AUC were 
smaller than those for the largest fitness (marked). The 
AUC could be made larger by arbitrarily setting the 

hyperparameter to a smaller value. With respect to the 
fitness, the best model was achieved by group lasso in 
both sizes of training data, 2000 and 10,000 as shown 
in (d) and (g), respectively. With respect to the detec-
tion accuracy, the best AUC with the L2 regulariza-
tion (AUC=0.88) was better than that with group lasso 
(AUC=0.85) for T = 2000, and the best AUCs were 1.0 
with both L2 and group lasso for T = 10,000 as shown in 
(c) and (f ), respectively. More importantly, L2 regulariza-
tion performed well for a wide range of hyperparameters, 
while group lasso with non-optimal hyperparameters 
performed noticeably worse than the best performance.

We then compared the results obtained by the three 
statistical tests, CHI2, DOF, and EB, described in “Sta-
tistical tests for functional connectivity analysis” section. 
The GLM-based spike response model was estimated to 
maximize the L2 regularized log-likelihood (6). When 
performing the CHI2 and DOF, the regularization 
hyperparameter was set at η = 0.001. When performing 
the EB, we compared two cases EB-LR and EB-regu-
larized-LR, in which the regularization hyperparameter 
was set to η = 0.001 and η = 3.0, respectively. The value 
η = 0.001 was arbitrarily determined to obtain similar 
results to those of η = 0 but with computational stabil-
ity. The value η = 3.0 was also arbitrarily set to a small 
positive value, because there was no predominant way 
to set it for enlarging the detection power. We also used 
smooth bases in the EB-regularized-LR.

Figures  2 and 3 show the results. The upper panels 
show the ROC curves with AUC scores in the title, in 
both of which the higher and the larger are the better 
ones, respectively. In the lower panels, the false discov-
ery proportion (FDP) is shown for each q value thresh-
old on the horizontal axis; FDP is the proportion of false 
positives (detected as functionally connected, but where 
there was in fact no direct connection) in such links that 
were detected as functionally connected because the cor-
responding q values were smaller than the threshold on 
the horizontal axis. The lower panels evaluate the quality 

(See figure on previous page.)  
Fig. 1  a Simulated neural network that was used in Experiment 1. Three groups of neurons G1, G2, and G3 construct a recurrent network: G1 → G2 
→ G3 → G1. Gray scale blocks in the matrix denote a direct functional connectivity between source (pre-synaptic) and destination (post-synaptic) 
neurons. b–g Performance comparison between GLMs based on sparse estimation with group lasso (gl) and on L2 regularization (l2). Compari-
son between logistic regression (lr) and Poisson regression (pr) is also performed. The GLM parameters were estimated with various settings of 
hyperparameters and the best hyperparameter value for each case was determined so as to maximize likelihood on a validation dataset. The results 
were evaluated with sensitivity and false positive proportion calculated by using a true directed link set for the simulation. Experiments with short 
(T = 2000) and long (T = 10,000) datasets are shown in the upper (b–d) and lower (e–g) sets of panels, respectively. b, e ROC curves are drawn for 
each case at the best hyperparameter that maximizes likelihood on the validation data. c, f AUC score for each setting of regularization hyperpa-
rameter. Markers denote the values at the best hyperparameter that maximizes likelihood on the validation data. d, g Accuracy of model fitting, 
measured by likelihood on the validation data, for each setting of regularization hyperparameter. Markers denote the values at the best hyperpa-
rameter that optimizes model fitting. We found that the differences were small between logistic and Poisson regression models. ROC curves or AUC 
were not necessarily the largest at the best-tuned values of hyperparameters for each of the four cases. Sparse estimation with the group lasso (gl) 
was more sensitive to the hyperparameter settings than the L2 regularization (l2)
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of the q value estimation. Because a q value is defined as 
the FDP estimation, when the FDP is smaller than the q 
value threshold, the corresponding q value estimation is 
said to be conservative. From the upper panels of Fig. 2, 
the ROC curves and the AUC scores of the proposed 
method (EB-regularized-LR, red lines) consistently out-
performed those of its un-regularized version (EB-LR, 
blue line), and such a benefit of regularization was prom-
inent especially when the observation length T was small. 
In the lower panels of Fig. 2, the conservativeness of the q 
value estimation was compared among EB-LR (blue solid 
lines), CHI2 (blue dotted lines), DOF (blue broken lines), 
and the proposed EB-regularized-LR (red solid lines). If 
a line is close to the diagonal x = y line, the correspond-
ing q value estimation is faithful, and if a line is below the 
diagonal line, the q value estimation is conservative. We 
prefer q value estimation that is faithful but conservative; 
that is, we do not prefer a line that goes over the diagonal 
line. We found that the empirical Bayesian q values (blue 
solid lines) were stably good, while a classic chi-square 
test without DOF adjustment (CHI2; blue dotted lines) 

almost failed to perform false positive control when the 
observation length T was small. When the observation 
length T was large enough, the results depicted by the 
blue lines were consistent with those reported by [7]. In 
the lower panels, the FDP values sometimes went over 
the diagonal line, violating the conservativeness. This 
violation comes from the estimation variance of q val-
ues; a large variance in the q value estimation may arise 
especially when there is significant correlation between 
hypotheses, which is the case in the functional connec-
tivity analysis of neuronal networks.

Figure 3 shows the results of statistical tests employing 
shape-related statistics (“Shape-related statistics” sec-
tion). We did not find any substantial differences either 
in total detection accuracy (upper panels, evaluated in 
terms of ROC) or false positive control (lower panels, 
evaluated in terms of faithfulness and conservativeness of 
the q value estimation) among the statistics of the Peak 
(red lines), the MaxZ (blue lines), the Surface (green 
lines), and the MD (magenta lines). It is noteworthy that 
we numerically confirmed the stable false discovery rate 
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Fig. 2  Results of Experiment 1 in which total error and FDP control were compared using several statistical testing methods. Upper panels show 
receiver operating characteristic (ROC) curves, where horizontal and vertical axes denote the specificity and sensitivity of the statistical test, 
respectively. Red and blue lines show the EB-regularized-LR (with regularization) and EB-LR (without regularization) results, respectively. In the 
title of each column, observation length T and the area under the ROC curve (AUC) scores of the two methods are shown. Lower panels display 
false positive control, where horizontal and vertical axes denote q value threshold and false discovery proportion (FDP) when the q value threshold 
on the horizontal axis was used, respectively. Because the q value threshold is regarded as an estimation of the FDP value, when FDP is located 
under and over the thin black diagonal line of x = y, the corresponding q value estimations are considered conservative and aggressive, respec-
tively. A conservative line is preferable, because by definition, the q value should be a conservative estimation of the FDP value. If the line is close 
to the diagonal line, the q value estimation is faithful. Blue broken, dotted, and solid lines represent the q values estimated by CHI2-LR, DOF-LR, 
and EB-LR for the likelihood-ratio statistics without regularization (in fact, a small regularization was applied to avoid optimization divergence, 
see “Shape-related statistics” section, respectively. The red line (EB-regularized-LR, proposed method) is the likelihood-ratio statistic with larger 
regularization. The six panels from the leftmost to the rightmost columns correspond to the experimental settings of observation lengths 
T = 1000, 2000, 5000, 10,000, 20,000, and 50,000
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control regardless of possibly different null distributions 
of various test statistics. This result may allow us to select 
arbitrary test statistics in the proposed empirical Bayes-
ian testing framework. We may expect good ROC by 
selecting a relevant test statistic that fits particular shapes 
of true spike response functions although the ROCs were 
similar between different statistics in the current case 
partly because we assumed simple spike response func-
tion shape such that caused no contradiction between 
test statistics that we compared here. The ROC curve of 
MaxZ statistic included 95 % CI criteria as a special case 
(see “Statistical tests for functional connectivity analysis” 
section), which is specified as a marker ’o’ on the curve 
(upper panels in Fig 3). We found that the 95 % CI pro-
vided a moderate balance between sensitivity and speci-
ficity in these cases. However, note that the 95 % CI had 
no guarantee of conservativeness that EB could provide 
as q value.

Experiment 2: a network of non‑linear conductance‑based 
neurons
Next, we applied functional connectivity analysis to a 
model mismatch case. A spike train dataset was obtained 
by simulating a recurrent network of non-linear con-
ductance-based neurons. Each neuron was modeled by 
single-compartment Hodgkin–Huxley (HH) equations 
[25], consisting of sodium, potassium, and leak channels. 
Thus, the neuronal activities did not follow GLMs. We, 

however, expect that the proposed false positive control 
procedure works reasonably well because our framework 
mainly depends on the empirical null distribution of test 
statistics built upon a set of surrogate neuron pairs and 
hence does not depend on the GLM’s fitness.

The simulated recurrent network resembled that in 
Experiment 1: three layers, each of which had five HH-
type neurons. The simulation was conducted using the 
NEST simulator [26, 27], and the parameters of the HH 
neurons were set by the default setting of the NEST 
simulator.

The results are shown in Fig. 4, in which similar behav-
iors of the statistical tests can be seen to those in Experi-
ment 1. The q value estimation by chi-square tests, 
CHI2-LR (blue broken lines) and DOF-LR (blue dot-
ted lines), was substantially poor even when observation 
length T was large. When employing non-linear neurons 
like the HH-type ones, GLM could no longer well rep-
resent their non-linear behaviors, and the model of the 
alternative hypotheses would contain bias, which was not 
resolved even after very long observation. Although the 
GLM-based spike response model had bias, the empiri-
cal Bayesian testing with regularized model estimation, 
EB-regularized-LR (red lines), showed reasonably good 
ROC curves and AUC values (upper panels) and faith-
ful estimation of the q values (lower panels), based on an 
empirical null distribution constructed by the surroga-
tion method.
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Fig. 3  Results of Experiment 1 in which total error and false positive control were compared among four test statistics: Peak (red), MaxZ (blue), 
Surface (green), and MD (magenta) (“Shape-related statistics” section). See caption of Fig. 2 for explanation of horizontal and vertical axes of upper 
and lower panels
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Experiment 3: partial observation case
We applied the proposed method to a partial obser-
vation case involving external input. We generated an 
artificial spike train by a simulation of 400,000 time 
samples using the same artificial neural network as the 
ones in Experiments 1 and 2 again. In the simulation, 
we added an artificial external input signal (Fig  5a) to 
all neurons, where connection weight from the exter-
nal input to the neurons were set at random positive 
values.

In order to consider partial observation, we regarded 7 
out of 15 neurons were considered as non-observed neu-
rons, and spike response functions between 8 observed 
neurons, namely those of 8 times 8 pairs of pre- and post-
synaptic neurons, were estimated by our procedure.

The external input was estimated by applying moving 
average filter of window size 20 and PCA. In Fig 5a, we 
show the estimated external input denoted as red line. 
We compared AIC values of seven models with 0,1,..., 
and 6 external inputs, and found that the model with one 
external input was the best (Fig. 5b). The estimated spike 
response functions are shown in Fig  5c, where those 
function shapes corresponding to the 8 times 8 directed 
neuron pairs were divided into the following four cases: 
(0) not connected, (1) directly connected, (2) connected 
via one interneuron, and (3+) connected via two or more 
interneurons. In addition, we also show spike response 
functions corresponding to a pair of a surrogate and any 
observed neurons, that is called a category (surrogate).

The spike response functions were estimated as signifi-
cant (q < 0.3) for a large part of direct connection, red 
lines in case (1) in Fig  5c. On the other hand, the esti-
mated spike response functions of indirect connections, 
cases (2) and (3+), were very weak and difficult to be dis-
tinguished from those of cases (0) and (surrogate). The 
results were identical when the number of principal com-
ponent was set at zero, two, and more (data not shown).

Experiment 4: spike frequency, connection weight, 
and detection accuracy
How do different spike frequency and connection weight 
affect the detection accuracy in case of information 
shortage? Does the proposed framework keep its advan-
tage against sparse estimation methods in these cases?

We generated an artificial spike train of 2000 time sam-
ples by a simulation of a simple network involving three 
neurons, 1, 2, and 3. The network had two directed facil-
itative connections from 2 to 1 and from 2 to 3, whose 
connection weights, or peaks of true spike response 
functions, were 1.0 and w, respectively. Here we com-
pared six values of w in {0, 0.003, 0.001, 0.03, 0.01, 1} . 
All the three neurons had the same background activ-
ity level A, that was Ri0 in equation (2), which controls 
total spike frequency. We compared six values of A in 
{1.0, 1.5, 2.0, 2.5, 3.0, 3.5}. As the network size is small, 
we repeated the same simulation 50 times with different 
random seeds and averaged the performances in order to 
draw stable ROC curves.
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Fig. 4  Results of Experiment 2 in which spike trains ware observed from a recurrent network of 15 non-linear conductance-based (Hodgkin–Huxley 
type) neurons. Notations are identical as in Fig. 2
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We compared two GLM estimation methods with the 
L2 regularization with an arbitrary setting of � = 0.1 
and with the variational Bayesian (VB) estimation [15]. 
VB approximates a hierarchical Bayesian model with an 
automatic relevance determination (ARD) technique 
that determines sparse solution so as to optimize model 
fitting. For test statistics, we compared Peak, as a repre-
sentative of the simplest cases, and MaxZ, as a case that 
is equivalent to the application of 95 % confidence inter-
val [15].

Figure 6 shows the results of Experiment 4. The 36 pan-
els correspond to the 6× 6 variations of simulation set-
ting parameters, w and A. Four ROC curves in each panel 
illustrate detection powers of the connection from 2 to 3 
of weight w by the four methods, L2 with Peak, L2 with 
MaxZ, VB with Peak, and VB with MaxZ. In total, we 
found that L2 prominently outperformed VB in most of 
the cases. We also found that larger A tend to improve 
the detection accuracy as we expected. Interestingly, 
change of connection weight w did not affect much to the 
detection accuracy except for the case showing chance 
level w = 0. Test statistic Peak performed a little bit bet-
ter than MaxZ indicating non-omnipotency of the con-
fidence interval criteria although we could not conclude 
general superiority of Peak statistic, neither.

Note that the prominent performance of L2 against 
those of VB is consistent to the result of Experiment 1. It, 
however, does not stand for the general inferiority of VB. 

Further discussion with general comparison will be found 
in “Alternative options in smoothing and regularization” 
section.

Analysis of calcium imaging data
We applied functional connectivity analysis with GLM-
based spike response models to a real calcium imaging 
dataset. A high-throughput calcium imaging experiment 
was performed on a cultured slice of the CA3 region of 
rat hippocampus [11]. Using the Nipkow disc, the sam-
pling frequency was as high as 100 Hz, and the number 
of time samples was T = 60, 000; that is, the observa-
tion time was 10 min. During preprocessing, 170 regions 
of interest (ROIs), each of which showed its individual 
activity, and the corresponding time-courses of the fluo-
rescence level were obtained. A visual inspection found 
that each ROI mostly corresponded to a neuron. Then, 
for each fluorescence time-course, we detected the peak 
timings by applying a fixed template that represented a 
calcium profile associated with a single spike. A single 
detected peak may not correspond to a single real neu-
ronal action potential; actually, there were some cases in 
which only one spike was detected for burst-like calcium 
activity. We simply regarded such burst activity as a sin-
gle spike because their number was small. More detail on 
the above preprocessing is shown in the Additional file 1. 
We selected 60 neurons out of the 170 ROIs that showed 
frequent spike activities and found that the highest spike 
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frequency was 20 times larger than the lowest one within 
them. After this preprocessing, we evaluated the func-
tional connectivity between the 60 neurons and their sta-
tistical significance using our method empirical Bayesian 
testing after the regularized parameter estimation of the 
GLM-based spike response model.

For each neuron pair, the spike response function of at 
most an 80 samples (800 ms) time-lag was estimated. We 
prepared ten surrogate neurons and assumed two chan-
nels of external inputs, which were estimated by apply-
ing PCA analysis (“Estimation of external input” section) 
to all of the 60 neurons’ activities. We found that the 

false positive control based on shape-related statistics 
worked as well as the likelihood test statistic, so the q 
value threshold was determined using the Peak statistic 
(“Shape-related statistics” section).

Figure 7 shows the result of the functional connectiv-
ity analysis, in which 43 probable directed connections 
are shown by arrows. The number of connections (43) 
was determined so that the estimated false discovery rate 
was 0.2. In this figure, some neuron pairs connected by 
red arrows (putative facilitatory connections) and being 
located close to one another may be single neurons seg-
mented into two parts (ROIs), such as soma and axon 
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hillocks. Even if such pairs are removed, the detected 
functional connectivity still tends to connect two neu-
rons near each other. There were five neuron pairs con-
nected by blue arrows (putative inhibitory connections) 
being located distant to each other.

Statistical properties of the proposed empirical Bayes-
ian testing for this dataset are shown in Fig.  8. The 
probability distribution of a test statistic is a mixture (a 
weighted sum) of unknown null and alternative distri-
butions, which would correspond to the left mass and 
the right tail of the density function shape in panel (a), 
respectively. The surrogate distribution of the test sta-
tistic (green curve) fits well to the left mass part of the 
empirical distribution (blue curve), indicating that the 
surrogate distribution well simulated the unknown null 
distribution. The local false discovery rate (panel b) 
shows that the estimated total proportion of null con-
nections was π0 = 0.83 and that the local false discovery 
rate was smaller than 0.2 when the statistic was larger 
than 2.5. The significant pairs of neurons are shown as 

white dots in the source/destination matrix (panel c), so 
that their degrees of significance are seen by comparing 
to the background noise level in the surrogate area of the 
matrix.

The spike response functions of significant functional 
connectivity are shown in Fig. 9 in ascending order of q 
values. Many response functions of the top significant 
functional connectivity had a positive peak at lag-times 
of around 8 samples (≈ 80 ms), and some response func-
tions included a tail around the 50th sample (≈ 500 ms), 
which can be consistently considered as EPSPs possi-
bly mediated by AMPA and NMDA receptors (see Dis-
cussion for details). Moreover, obvious continuity of 
response functions between pre-post connections, Ric(s), 
and their reverse ones, Rci(s), was found for many pairs of 
neurons, (i, c), in Fig. 10. This continuity (at s = 0) occurs 
partly because it reflects the correlation of neurons i and 
c. Such correlation might have been overestimated due to 
jitter in spike timing detection; in some cases, neuron i 
emits a spike slightly earlier than that of neuron c, and in 

Fig. 7  Analysis of calcium imaging data. a Averaged calcium fluorescent image of a rat CA3 region. b 60 neurons (ROIs) and 43 probable directed 
connections (with the 43 smallest p values, q < 0.2) between the 60 neurons. Red and blue arrows denote putative facilitatory and suppressive con-
nections, respectively. Statistical properties of the empirical Bayesian testing
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other cases, neuron c’s spike can be earlier, because of the 
jitter in the binning.

Discussion
Information shortage and detection performance
To detect functional connectivity, we need sufficient 
events of delayed spike pairs at the corresponding pair 
of neurons. Moreover, the number of events should 
exceed the background level of spontaneous activity 
of the post-synaptic neuron. Thus, various factors can 
reduce detection performance via information shortage; 
shorter observation time length, lower total spike fre-
quency, weaker connection weight, an unknown external 
input to post-synaptic neuron, high background activity 
of post-synaptic neuron, and so on. Any of these factors 
unavoidably exists in real situations and consideration 
of information shortage is always vital for any case even 
when the observation time length is fairly long. This 
point of view motivated the current study. And, a part of 
them were demonstrated in Experiments 1 and 4 in this 
paper.

Alternative options in smoothing and regularization
Recently, two distinct approaches have been proposed for 
functional connectivity analysis from the neuronal spike 
train data. In the first approach, hierarchical Bayesian 
methods were applied to GLM-based models to obtain 

sparse solutions [4, 13, 15, 28]. A prior in the hierarchi-
cal Bayesian setting allows the statistical estimation of 
GLM-based models to prefer sparsely connected net-
works, such as reflecting the sparse structure of neuronal 
networks. The sparseness also reduces the complexity of 
each spike response function. The second approach was 
based on Granger causality with a likelihood-ratio test 
[7]. Functional connectivity analysis based on Granger 
causality can be performed for any regression model; 
the authors used the simplest AR model without any 
smoothing kernel or regularization to enable the null 
distribution of the likelihood-ratio test to be analytically 
calculated.

These two approaches are based on different statisti-
cal approaches but share the same objective of functional 
connectivity analysis; combining these approaches has 
options, such as, how to introduce regularization and 
how to define null and alternative hypotheses in the 
likelihood-ratio test. In this study, we evaluated several 
reasonable options in terms of two criteria in statisti-
cal testing: (1) appropriate false positive control, which 
is based on good estimation of the false discovery rate 
in multiple simultaneous testing, and (2) high detection 
accuracy which is determined by increasing the number 
of true positives while fixing the level of false positives.

Further comparison to Chen et al. (2011) [15] may bet-
ter illustrate the difference between the two approaches. 
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Their work proposed two distinct ideas, automatic-rele-
vance-determination (ARD) with variational Bayes (VB) 
to estimate connection weights of GLM and a use of 95 % 
confidence interval (CI) criteria to determine the con-
nection. Their ARD with VB technique estimates sparse 
model as like the L1 regularization does with optimizing 
sparseness hyperparameter, and thus the result tends to be 
as good as the best among the L1 of various regularization 
parameters. The use of the 95 % CI may resemble our work 
in the consideration of false positive risk control. However, 
note that both of these ideas were designed based on the 

first approach for the purpose of fitting a generative model 
to the observed data rather than to detect functional con-
nectivity. The best model, measured by likelihood, is not 
necessarily the best model, measured by ROC curve. Fur-
thermore, the gap between these two criteria tends to be 
larger at information shortage. We showed this contra-
diction in Fig 1 of Experiment 1 and more prominently in 
Experiment 4. Our approach remarkably outperformed 
the VB if the performance is measured by ROC. Conse-
quently, we recommend choosing appropriate approach 
with determining purposes in advance to the analysis.
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Fig. 9  Spike response functions of 43 top significant functional connections, arranged from the top-left to bottom-right panels in ascending q value 
order. In each panel, a pair of source and destination neurons’ code numbers and the corresponding q value are shown. Horizontal and vertical axes 
denote the lag-time s [time sample] and the spike response function, respectively, where 1 sample corresponds to 10 ms
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Model mismatch bias
Model mismatch bias is an important issue that needs to 
be addressed here. Any Bayesian methodologies using 
prior probability to improve estimation performance 
always, at least implicitly, presume that the parametric 
model includes the truth. Although such a presump-
tion can actually improve the estimation performance 
in ideal situations without any model mismatch, most 
models include a mismatch to the reality to a greater or 
lesser extent. There is no guarantee that the GLM rep-
resents actual neural behaviors well enough even with 
the best setting of the model parameters. However, our 
framework is based on statistical testing that allows 
model mismatch to some extent. Namely, the alternative 
model does not necessarily include the truth because the 
functional connectivity is determined by rejection of the 
corresponding null hypothesis. Better and worse alterna-
tive models lead to decrease and increase in false nega-
tive rate, but do not affect false positive control. The false 
positive is well controlled if the surrogate distribution 
well simulates the null process, that is, spike response 
between functionally unconnected neurons in our case. 
Experiment 2 (“Experiment 2: a network of non-linear 
conductance-based neurons” section) showed a reasona-
ble performance in a typical model mismatch case where 
the data were generated by the Hodgkin–Huxley equa-
tions and analysis was done based on the GLM model. 

The analysis of calcium imaging data (“Experiment 4: 
spike frequency, connection weight, and detection accu-
racy” section) suggested that the surrogate distribution 
well simulated the null part of the distribution of the 
Peak statistic. We thus conclude that our method can 
perform conservative statistical testing in many practical 
cases including that of model mismatch.

Computational cost
Computational cost for the GLM parameter estimation is 
proportional to the observation length and to the square 
of the number of neurons. When we add surrogate neu-
rons for the empirical Bayesian testing, it increases the 
effective number of possible connections and causes a 
corresponding increase in computational cost. Note that 
the number of surrogate neurons CS may not be so large 
when the real neuron number C is large because the vari-
ance in the statistical test depends on the number of null 
samples of their inter-connections, CSC. We set CS so 
that the number of null samples was around CSC = 300 
in our experiments.

Partial observation
Partial observation is an important practical issue 
because it is difficult for many physiological techniques 
to cover all neurons recruited by the target system; func-
tional connectivity analyzes should cope with this issue.
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In experiment 3, we demonstrated that spike response 
functions of indirectly connected pairs of neurons were 
far weaker than those of directly connected pairs. We 
conducted similar experiments with various other set-
tings and found similar results (data not shown), where 
the variants included different observation length, 
10,000, 50,000, and 100,000, different sets of observed 
and non-observed neurons, different moving average 
windows in PCA analysis, different strengths of external 
inputs, and different network structures. We consistently 
observed the following tendencies:

• • When a strong external input exists, it is detected by 
the proposed procedure with PCA and AIC.

• • The proposed procedure with PCA with AIC hardly 
ever detected a total activity of non-observed neu-
rons as a distinct external input. The effect of non-
observed neurons was indistinguishable to a back-
ground activity level of each observed neuron.

• • Spike response was very weak and not significant for 
indirect connections.

• • Spike response of direct connection was stronger 
than that of indirect connections but weaker than 
that in fully observed cases.

In analysis of partial observation case with the GLM 
model, the total effect of non-observed neurons is 
roughly summed up into the scalar value of background 
activity level, which causes severe loss of information 
compared to the fully observed case. This information 
loss has probably caused the higher estimation vari-
ance of spike response and the lower sensitivity to detect 
direct and indirect functional connectivities.

In total, Experiment 3 demonstrated an additional rea-
son to consider information shortage that might be pre-
sent in case of long observation length and to need the 
proposed procedure with empirical Bayesian test with 
surrogate neurons to control false positives. Further anal-
ysis would be needed as future studies to clarify the effect 
of non-observed neurons to the estimation variance 
although it is out of scope of the current study.

Biological suggestions
When we applied the proposed method to the rat CA3 
calcium imaging dataset, we extracted 43 directed con-
nections (q < 0.2). Many of their response functions 
exhibited sharp peaks at around 8 samples (80  ms), 
while some (e.g., 3 → 9, 16 → 13, and 12 → 5) were also 
accompanied by dull and weak tails lying over 10–50 
samples (100–500 ms) (Fig 9). The delayed activation cor-
responding to the weak tails may reflect sequential spike 
chains across multiple neurons, which prevail in hip-
pocampal networks and often last for more than 100 ms 

[29]. More physiologically, the sharp peaks and weak tails 
may reflect EPSP of rat hippocampal pyramidal neu-
rons revealed by an electrophysiological study; report-
edly, EPSP of rat CA1 pyramidal neurons showed sharp 
strong peaks at around 10  ms and relatively weak tails 
of 10–100  ms delay [30], which were putatively medi-
ated by AMPA and NMDA receptors. In fact, when we 
convolved an alpha function with a delay time of 50 ms 
(Fig.  11b), which represents a chelating property of our 
calcium indicator (Oregon Green 488 BAPTA-1AM), to 
the mixture of the fast AMPA-mediated EPSP and the 
late NMDA-mediated EPSP (Fig.  11b), we could repro-
duce a typical shape of our response functions (Fig. 11c). 
Changes in the mixture of AMPA- and NMDA-mediated 
EPSPs would produce various kinds of response func-
tions. Therefore, the variety in the response functions 
found by our data-driven functional connectivity analysis 
(Fig. 9) may have reflected to some extent the difference 
in the receptor distributions between the pyramidal neu-
rons in the rat CA3 circuit.

There were two prominent negative responses, 16 → 46 
and 18 → 25, that also included positive peaks (Fig  9). 
The positive peak of 18 → 25 was weak and could not 
be statistically significant, while that of 16 → 46 was still 
prominent. Seeing the response function of the coun-
ter direction 46 → 16, the positive peak in 16 → 46 was 
considered to be an artifact coming from the significant 
positive peak in 46 → 16 (Fig  10). There were no other 
bi-polar responses that were significantly strong enough.

Conclusions
In this study, we presented a new combination of GLM-
based spike response modeling and empirical Bayes-
ian testing to perform functional connectivity analysis 
between neurons. Even when the observation period was 
relatively short, our method showed reasonably good 
detection accuracy while keeping good false positive con-
trol. Empirical Bayesian testing effectively estimated the 
q values for multiple simultaneous hypotheses testing, 
leading to good false positive control. A regularized but 
non-sparse estimation for the GLM-based spike response 
model improved the detection accuracy. Conventional 
testing procedures have suffered from difficulties in 
approximating the false discovery rate, particularly when 
a likelihood-ratio statistic is biased, for example, when 
with a regularization; our approach based on empirical 
Bayesian testing is a reasonable solution to the difficulty. 
Our new method’s contribution is prominent, especially 
when the sample size is relatively small and there are 
short observation periods like in many in vivo and ex vivo 
imaging experiments. A typical example can be seen in 
functional multi-neuron calcium imaging, where high-
temporal resolution restricts the observation length. 
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In addition, we found that empirical Bayesian testing 
on arbitrary statistics that represent the shapes of spike 
response functions attained a similar performance to 
that using the well-established likelihood-ratio statistic. 
This finding is important for increasing computational 
efficiency, because the likelihood-ratio statistics must 
be calculated after fitting GLMs for all pairs of null and 

alternative hypotheses, and hence are computationally 
heavy.

When applied to a functional multi-neuron calcium 
imaging dataset from a rat hippocampal CA3 region, we 
found significant functional connections that are possibly 
mediated by AMPA and NMDA receptors.

Accordingly, our method exhibited reasonably good 
functional connectivity results even from relatively short 
observation times and could become a powerful statisti-
cal tool in studies of connectomics.
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region of interest.
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