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Abstract: Glutathione (GSH) is the most abundant antioxidant that contributes to regulating the cel-
lular production of Reactive Oxygen Species (ROS) which, maintained at physiological levels, can 
exert a function of second messengers in living organisms. In fact, it has been demonstrated that 
moderate amounts of ROS can activate the signaling pathways involved in cell growth and prolifera-
tion, while high levels of ROS induce DNA damage leading to cancer development. Therefore, GSH 
is a crucial player in the maintenance of redox homeostasis and its metabolism has a role in tumor 
initiation, progression, and therapy resistance. Our recent studies demonstrated that neuroblastoma 
cells resistant to etoposide, a common chemotherapeutic drug, show a partial monoallelic deletion of 
the locus coding for miRNA 15a and 16-1 leading to a loss of these miRNAs and the activation of 
GSH-dependent responses. Therefore, the aim of this review is to highlight the role of specific miR-
NAs in the modulation of intracellular GSH levels in order to take into consideration the use of mod-
ulators of miRNA expression as a useful strategy to better sensitize tumors to current therapies. 
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1. INTRODUCTION 

During metabolic processes, all aerobic cells produce  
Reactive Oxygen Species (ROS) which act as signalling 
molecules at physiological levels but, when their amount 
exceeds the cell antioxidant response, physio-pathological 
(i.e. aging) and pathological (i.e. cancer) events occur. In 
both cancer and healthy cells, the maintenance of the redox 
equilibrium is crucial in order to guarantee cell survival [1, 
2]. All cells are able to counteract ROS overproduction by 
means of enzymatic and non-enzymatic antioxidant systems, 
and, among these, glutathione (GSH) plays a fundamental 
role. GSH is a multifunctional tripeptide (γ-glutamyl-
cysteinyl-glycine) involved in several metabolic and cellular 
processes such as cell differentiation, proliferation, and death 
[3, 4] and also in all phases of cancer progression and in the 
acquisition of treatment resistance [5-7]. 

The maintenance of adequate intracellular GSH levels is 
the result of the coordinated action of several enzymes that 
contribute to its synthesis (i.e. glutamate-cysteine-ligase, 
GCL and glutathione-synthetase, GSS), its reduction from 
GSSG (glutathione-reductase, GR), degradation (γ-glutamyl-
transferase, γ-GT), or its employment (glutathione-S-
transferase, GST and glutathione peroxidase, GPx) [5].  
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GCL which catalyzes the chemical bond of L-glutamate 
with cysteine, the rate-limiting reaction in GSH biosynthesis, 
was found to be down-regulated in ectopic endometriosis 
lesions [8], while GSS, catalyzing the reaction between γ-
glutamyl-cysteine and glycine leading to GSH formation, 
was over-expressed in colon cancer [9]. GR, which catalyzes 
the reduction of GSSG to GSH, was down-regulated in glio-
blastoma and meningioma [10] while γ-GT, catalyzing ex-
tracellular GSH degradation leading to the formation of glu-
tamate and cysteine, was up-regulated in gastric cancer [11], 
sarcoma, leukaemia, melanoma [12], Hepatocellular Carci-
noma (HCC), and breast cancer [13, 14]. 

Among GSH-dependent enzymes, GST, a detoxifying 
enzyme that catalyzes the reaction of endogenous/exogenous 
substrates with GSH, was up-regulated in several cancers 
that have become chemoresistant such as breast cancer [15], 
Hodgkin’s lymphoma [16], and neuroblastoma [6, 17]. 

Moreover, GPxs are a family of enzymes that are able to 
reduce free hydrogen peroxide to water and lipid hydroper-
oxides to their corresponding alcohols. It has been demon-
strated that GPx4 over-expression characterizes ovarian can-
cer, melanoma, and diffuse large B-cell lymphoma [18, 19] 
and it is crucially involved in the acquisition of chemo-
resistance and in cancer relapse [19-21] probably by limiting 
the formation of lipoperoxides responsible for inducing fer-
roptosis [19, 20]. 
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Table 1. MiRNAs involved in the regulation of GSH homeostasis in cancer.  

MiRNA Target Cancer Refs. 

miRNA-18a 

GCL 

Hepatocellular carcinoma 
Prostatic cancer 

[25] 
[26] 

miRNA-433 
Liver cancer 

Ovarian cancer 
Colon cancer 

[27] 
[28] 
[29] 

miRNA-27a/b Hepatocellular carcinoma [30] 

miRNA-125b GSS Chronic lymphocytic leukemia [31] 

miRNA-214 GR 

Breast cancer 
Lung adenocarcinoma 

Colorectal cancer and Cervical cancer 
Lung cancer 

Kidney cancer 

[32] 
[33] 
[34] 
[35] 
[36] 

miRNA-22 γ-GT 

Hepatocellular carcinoma 
Colorectal cancer 

Gastric cancer 
Prostatic cancer 

[37] 
[38] 
[39] 
[40] 

miRNA-133 
GST 

Bladder cancer 
Ovarian cancer 

Lung cancer 

[41] 
[42] 
[43] 

miRNA-513-a-3p Lung cancer [44] 

miRNA-153 

GPx 

Glioblastoma [45] 

miRNA-185-5p 
Colorectal cancer 

Hepatocellular carcinoma 
[46] 
[47] 

miRNA-17-3p Prostatic cancer [48] 

miRNA-26b 

xCT 

Breast cancer 
Colorectal cancer 

[49] 
[50, 51] 

miRNA-375 Squamous cell carcinoma [52, 53] 

miRNA-27 Breast cancer [54] 

miRNA-124 

ΔNp63 

Colorectal cancer [55] 

miRNA-527 

miRNA-665 
Osteosarcoma [56] 

miRNA-28 

Nrf2 

Breast cancer cells [57] 

miRNA-27a 
miRNA-153 

Neuroblastoma cells [58] 

miRNA-432-3p Esophageal squamous cell carcinoma [59] 

 
Interestingly, it has been shown that the day-time varia-

tion of GSH levels can be regulated by several miRNAs and 
this circadian rhythm is linked to various human diseases 
related to oxidative stress [22]. miRNAs are short double-
stranded RNAs able to regulate gene expression by linking 
themselves to the complementary RNAs [23]. In relation to 
their role in cancer, miRNAs are divided into two classes: 
the oncogenic miRNAs, which target oncosuppressor genes, 
and Tumor-Suppressive (TS)-miRNAs targeting oncogenes. 

Therefore, the aim of this review is to focus on the role of 
specific miRNAs in the regulation of GSH homeostasis in 
cancer initiation, progression, and therapy resistance.  

2. ROLE OF MIRNAs IN THE ALTERATIONS OF 

GSH HOMEOSTASIS IN CANCER 

Despite the synergistic role played by miRNAs and the 
cell redox state having been well-documented in the patho-
genesis of several diseases [24], the specific role of miRNAs 
in GSH homeostasis has only been partially investigated. In 
Table 1, the miRNAs involved in the most important steps of 
GSH homeostasis are listed [25-59]. 

2.1. MiRNAs Involved in the Regulation of GSH Synthesis 
and Employment 

The over-expression of miRNA-18a, a Myc-regulated 
miRNA belonging to the miRNA-17-92 cluster [60-62], has 
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been demonstrated to induce a decrease in the GCL expres-
sion, playing a role as an oncogene in HCC [25]. Moreover, 
miRNA-433 down-regulated the expression of both catalytic 
(GCLC) and regulatory (GCLM) subunits of GCL by an 
Nrf2-independent mechanism [63] while miRNA-27a/b 
modulated GCL expression in an Nrf2-dependent manner 
[64].  

It has been found that GSS levels are inversely related to 
those of miRNA125-b whose expression is down-regulated 
in chronic lymphocytic leukemia patients, conferring an on-
cosuppressor role to this miRNA [31]. 

The over-expression of miRNA-214 has been demon-
strated to reduce the expression of GR causing a condition of 
oxidative stress. In this regard, Feng et al. reported that 
miRNA-214 over-expression is related to a poor prognosis in 
several cancers [65].  

In addition, the γ-GT expression is inhibited by miRNA-
22 in HCC [37] and GST is inhibited by miRNA-133b, trig-
gering apoptosis in bladder cancer [41] and sensitizing ovar-
ian [42] and lung cancers [43] to chemotherapeutic drugs. 
Similar action has been described for miRNA-513-a-3p that 
sensitizes lung cancer to cisplatin-induced cytotoxic effects 
by down-regulating GST [44]. 

In regards to the role of miRNAs in the modulation of 
GPx expression, it has been observed that the miRNA-
153/Nrf2/GPx1 pathway regulates the radiosensitivity of 
glioblastoma stem cells by favoring cell differentiation via 
ROS-dependent activation of the p38MAPK pathway [45]. A 
modulator of GPx2 expression is miRNA-185-5p that acts as 
an oncosuppressor in colorectal cancer: its over-expression is 
inversely correlated with the expression of the Stromal Inter-
action Molecule 1 (STIM1), a protein able to facilitate the 
metastatic process [46]. Moreover, miRNA-17-3p has been 
found to suppress the tumorigenicity of prostate cancer cells 
by inhibiting the expression of GPx2, manganese superoxide 
dismutase, and thioredoxin reductase [48]. 

Furthermore, xCT or Solute Carrier Family seven-
member eleven (SLC7A11) is a cystine/glutamate antiport 
that regulates the cysteine influx favoring GSH biosynthesis 
[66] and is stabilized in the cell membrane by CD44v, a 
known cancer stem cell marker [67]. It has been found that 
the xCT expression level is inversely correlated with that of 
miRNA-26b in human breast cancer cell lines and specimens 
[49]. In addition, miRNA-375 over-expression, by down-
regulating the xCT expression, inhibited the proliferation and 
invasion and enhanced the radiosensitivity of oral squamous 
cell carcinoma also via Insulin-Like Growth Factor-1 Recep-
tor (IGF-1R) inhibition [52, 53]. Similarly, miRNA-27 over-
expression has been observed to reduce xCT levels and in-
tracellular GSH amounts, re-sensitizing breast cancer cells 
resistant to cisplatin [54]. 

The expression of the genes, coding for the above-
reported GSH-related enzymes, is modulated by ΔNp63 and 
by Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), two 
transcription factors involved in cancer initiation and pro-
gression. ΔNp63 belongs to the p53 gene family and plays a 
crucial role as an oncosuppressor [68]. Depending on the 

promoter that is activated, the transcription of the same gene 
may produce the full-length transactivation domain (TAp63) 
or the truncated N-terminus which lacks the transactivation 
domain (ΔNp63) [69]. ΔNp63 is able to regulate the expres-
sion of GCL, GSS, and GPx2, contributing to the increase of 
the intracellular GSH/GSSG ratio [70]. 

Furthermore, the transcription factor Nrf2 has a role in 
the regulation of GSH-related enzymes [71]. Under basal 
conditions, Nrf2 homeostasis is maintained by Kelch-like 
ECH-associated protein 1 (Keap1), the endogenous inhibitor 
of Nrf2 that binds to, and detains Nrf2 in the cytosol, facili-
tating its ubiquitination and proteasomal degradation [72]. 
Under oxidative stress conditions, Keap1 undergoes confor-
mational changes that prevent its binding with Nrf2. There-
fore, Nrf2 moves into the nucleus where it can modulate the 
expression of the cytoprotective antioxidant genes [73]. In 
fact, it has been recently demonstrated that Nrf2 has a two-
fold role in the carcinogenic process, acting as an oncogene 
as well as an oncosuppressor [74]. Moreover, the increase in 
Nrf2 levels has been related to chemosensitivity in neuro-
blastoma cells treated with L-Buthionine-Sulfoximine, a 
GSH-depleting agent, or with Bortezomib, a proteasome 
inhibitor [75, 76]. In addition, it has been recently demon-
strated that the Keap1/Nrf2 pathway drives metabolic repro-
gramming and increases the sensitivity to the glutaminase 
inhibitor CB-839 in KRAS-mutant lung adenocarcinoma 
[77]. 

In this regard, it has been recently reported that miRNA-
144 over-expression inhibited Nrf2 with a consequent reduc-
tion of GSH levels [78, 79]. Moreover, the over-expression 
of miRNA-28, miRNA-27a, and miRNA-153 is accompa-
nied by a reduction of Nrf2 levels by promoting mRNA deg-
radation or by reducing its stability in a Keap1-independent 
way [57, 58]. In a different way, the over-expression of 
miRNA-432-3p is able to lower Keap1 levels and conse-
quently to increase Nrf2 activity, contributing to the acquisi-
tion of cisplatin resistance in several cancer cells [59]. 
Therefore, the Nrf2-dependent pathway can be modulated by 
many miRNAs whose biosynthesis can, in turn, be regulated 
by Nrf2. In fact, Nrf2-dependent Heme Oxygenase-1 (HO-1) 
over-expression was able to reduce miRNA biosynthesis by 
down-regulating DiGeorge Critical Region-8 (DGCR8) 
which is a protein involved in miRNA maturation [80]. 

2.2. MiRNAs Involved in the Reprogramming of Cancer 

Cell Metabolism 

Moreover, it is necessary to underline that GSH homeo-
stasis is not only regulated by the above-mentioned enzymes 
but also by the metabolic reprogramming of cancer cells 
which is characterized by an increase in glycolysis and glu-
taminolysis in dependence of their ability to have an in-
creased glucose and glutamine uptake [81, 82]. It is im-
portant to note that glucose metabolism in cancer cells also 
occurs via the Pentose Phosphate Pathway (PPP) leading to 
NADPH formation (Fig. 1) that is crucial to restoring GSH 
in its reduced form [83]. Moreover, it has been extensively 
demonstrated that the oncogene Myc (c-Myc and N-Myc) is 
able to modulate the expression of GLUT1 and glutaminase, 
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which catalyzes glutamine deamination leading to the for-
mation of glutamate that can then be used either in the Tri-
carboxylic Acid cycle (TCA) to produce ATP or in GSH 
biosynthesis (Fig. 1).  

Recent studies reported that N-Myc promotes glutamine 
catabolism by the selective activation of glutaminase 2 
(GLS2) which is able to modulate both oxidative phosphory-
lation and glycolysis [84]. The GLS2-dependent regulation 
of glycolysis is probably due to the ability of Nrf2 to modu-
late the expression of GLUT1 [85] and of many enzymes 
involved in glycolysis such as lactic dehydrogenase, hexoki-
nase, phosphofructokinase, and enolase [86].  

Therefore, the Myc oncogene plays a central role in 
modulating GSH homeostasis and metabolism in cancer cells 
(Fig. 1) [87] and, interestingly, it has been found that it may 
exert its function also by regulating the processing and the 
expression of several miRNAs [88]. In fact, the over-
expression of miRNA-124 in B-cell lymphoma inhibited the 
expression of Myc and Bcl-2 [89] and suppressed prolifera-
tion and glycolysis in non-small cell lung cancer cells by 
targeting Akt-GLUT1/hexokinase II [90]. Moreover, elevat-
ed levels of Myc in human prostate cancer cells can inhibit 
miRNA-23a, thus enhancing the expression of GLS, its spe-
cific target, and increasing glutamine metabolism [91]. In-
stead, in Myc-driven liver tumors, miRNA-18 over-
expression reduces the expression of GCL, inhibiting GSH 
synthesis (Fig. 1) [25]. 

3. MiRNA THERAPY: A PROMISING STRATEGY IN 

TREATMENT OF CANCER AND IN THE PREVEN-

TION OF CHEMORESISTANCE  

The above-mentioned miRNAs involved in GSH homeo-
stasis and metabolic reprogramming could play an oncogenic 
or oncosuppressor role in several kinds of tumors. In more 
detail, miRNA-18 acts as an oncogene in prostatic [26] and 
in breast cancer [92] and, analogously, miRNA-26b in colo-
rectal cancer by stimulating Epithelial-Mesenchymal Transi-
tion (EMT) and CSC generation [50].  

An oncosuppressor role has been reported for miRNA-
433 in liver [27], ovarian [28], and colon cancer [29]; for 
miRNA-185-5p in HCC [47] and for miRNA-375 in colorec-
tal cancer [51].  

Moreover, miRNA-214 acts as an oncogene in breast 
cancer by modulating the Akt-pathway [32] and in lung ade-
nocarcinoma by facilitating EMT and metastatization [33] 
whereas it can act as an oncosuppressor in lung [35], kidney 
[36], colorectal, and cervical cancer by modulating the ex-
pression of the high mobility group AT-hook (HMGA), a 
protein involved in the regulation of cell metabolism [34]. 
Similarly, also miRNA-22 has a double role: in fact, it can 
act as an oncogene modulating EMT and reducing E-
cadherin levels, thus increasing in vivo prostate cancer inva-
sivity [40], while it plays an oncosuppressor role in colorec-
tal [38] and in gastric cancer [39]. In vivo and in vitro studies 
demonstrated that miRNA-124 modulates the expression of 

 

Fig. (1). Relationship between modulation of GSH homeostasis and cancer metabolic reprogramming. The metabolic reprogramming, an 
event that characterizes cancer cells, leads to an increase in both glycolysis and glutaminolysis. This adaptation is due to the ability of cancer 
cells to facilitate the glucose uptake by increasing the expression of glucose transporters 1 (GLUT1) and increasing glutamate intracellular 
levels by stimulation of the glutaminase (GLS) activity. However, intracellular glucose is metabolized by glycolysis, but also via the Pentose 
Phosphate Pathway (PPP) which, leading to the formation of NADPH, contributes to maintaining GSH in its reduced form. On the other 
hand, GSH levels are also due to the action of glutaminase, the enzyme that catalyzes glutamine deamination contributing to the formation of 
glutamate that can be used either in the Tricarboxylic Acid cycle (TCA) to produce ATP and in GSH biosynthesis. In this network, Myc, 
which has a central role by directly increasing the gene transcription of GLUT1 and glutaminase, is also able to modulate these genes by 
regulating the expression of specific miRNAs. 
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Table 2. MiRNAs targeting GSH homeostasis able to inhibit cancer growth and to counteract therapy resistance. 

miRNA Manipulation Outcome Following Manipulation Cancers Refs. 

miRNA-18a 
Downregulation 

Radiosensitization 
Reduction tumor growth 

Chemiosensitization 

NSCLC 
Prostatic cancer 
Breast cancer 

[92] 
[26] 
[93] 

Overexpression Apoptosis, migration inhibition Colorectal cancer [94] 

miRNA-433 Overexpression 
Chemiosensitization 

Migration and proliferation inhibition 
Cervical cancer 

Bladder cancer, Colon cancer 
[95] 

[29, 96] 

miRNA-27a/b 

Downregulation 
Tumor growth inhibition 

Migration and proliferation inhibition 
Breast cancer 

Multiple myeloma 
[97, 98] 

[99] 

Overexpression 
Chemiosensitization 

Migration and proliferation inhibition 
Breast cancer 

Adenocarcinoma 
[100] 
[101] 

miRNA-125b 

Downregulation 
Reversion of EMT 

CSC formation inhibition 
Apoptosis 

Pancreatic adenocarcinoma 
NSCLC 

Breast cancer 

[102] 
[103] 
[104] 

Overexpression 
Migration and proliferation inhibition 

CSC formation inhibition 
Chemiosensitization 

Gastric cancer 
Breast cancer 

Breast cancer, Gastric cancer, 
Gallbladder cancer 

[105] 
[106] 

[107-109] 

miRNA-214 

Downregulation 
Radiosensitization 

Metastasis inhibition 
Osteosarcoma 

Melanoma, breast cancer 
[110] 

[111, 112] 

Overexpression 

Radiosensitization 
CSC formation inhibition 

Chemiosensitization 
Migration and tumorigenesis inhibition 

Colorectal cancer 
NSCLC 

Breast cancer 
Prostate cancer, Cervical cancer 

[113] 
[114] 
[115] 

[116, 117] 

miRNA-22 Overexpression 

Radiosensitization 
Chemiosensitization 

Cancer progression inhibition 
Migration and proliferation inhibition 

Breast Cancer 
Tongue squamous cell carcinoma 

Cervical cancer, Acute myeloid leukaemia, 
Breast carcinoma, Osteosarcoma, prostate 

cancer, cervical cancer and lung cancer 

[118] 
[119] 
[120] 

[121-123] 

miRNA-133 Overexpression Invasiveness and tumorigenesis inhibition 
Breast cancer 

NSCLC 
[124] 
[125] 

miRNA-513-a-3p Overexpression Chemiosensitization Lung adenocarcinoma [44] 

miRNA-153 Overexpression 
Chemiosensitization 

Tumor growth inhibition 

Breast cancer 
Lung cancer, Breast cancer, 

Bladder cancer 

[126] 
[127-129] 

miRNA-185-5p Overexpression 
Chemiosensitization 

Tumor growth inhibition 
NSCLC 

Breast cancer 
[130] 

[131, 132] 

miRNA-17-3p 
Downregulation Proliferation inhibition Colon cancer [133] 

Overexpression Radiosensitization Prostate cancer [134] 

miRNA-26b Overexpression 
Proliferation inhibition 

Chemiosensitization 
Colon cancer, Breast cancer 

Laryngeal cancer, Glioma, HCC 
[135, 136] 
[137-139] 

miRNA-375 Overexpression Cancer growth inhibition Colon cancer, Liver cancer [140, 141] 

miRNA-124 Overexpression 
Radiosensitization 

Tumor growth inhibition 
Colorectal cancer, Head and neck carcinoma 

Prostate cancer, Medulloblastoma 

[142, 143] 
[144] 
[145] 

miRNA-665 Overexpression Tumor growth and migration inhibition Ovarian cancer, Osteosarcoma [146, 147] 

miRNA-28 Overexpression Proliferation inhibition Renal cell carcinoma [148] 
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ΔNp63 and TAp63, influencing the growth of colorectal can-
cer [55]. On the other hand, it has been observed that ΔNp63, 
by directly inhibiting the expression of both miRNA-527 and 
miRNA-665, stimulates osteosarcoma metastatic dissemina-
tion facilitating an EMT response [56]. 

Considering the role that these miRNAs play in cancer 
progression, it is possible that the utilization of miRNA 
mimics or inhibitors can be used to stimulate or inhibit the 
activity of GSH-related enzymes in order to stop cancer 
growth and to prevent the onset of chemoresistance.  

In fact, as reported in Table 2, several in vitro and in vivo 
studies demonstrated that the over-expression or down-
regulation of GSH-related miRNAs is efficacious in counter-
acting tumor growth and sensitizing cancer cells to different 
therapeutic approaches, suggesting that the manipulation of 
these miRNA levels could offer new opportunities to treat 
cancer patients. 

Although the therapeutic relevance of this approach 
could be remarkable, its efficacy depends on the way in 
which miRNAs enter the target cells. In fact, since endocyto-
sis does not guarantee an adequate supply of miRNAs, it is 
fundamental to identify methods that are able to specifically 
and efficiently “ferry” these miRNAs into the target cells 
[149].  

To this end, several Stable Nucleic Acid-Lipid nanoparti-
cles (SNALP), capable of “ferrying” miRNAs, have been 
developed. This has led to the formulation of MRX34 which 
enables the introduction of a miRNA-34 mimic into the cell 
and which is currently being used in a Phase I clinical trial 
for primary and secondary liver tumors (NCT01829971).  

In another study, it has been recently demonstrated that 
miRNA-34 encapsulated in hyaluronic acid nanoparticles is 
able to reduce intracellular GSH levels and Nrf2 expression, 
thus sensitizing Non-Small-Cell Lung Carcinoma (NSCLC) 
cells to the cytotoxic effects of cisplatin [150]. 

An additional therapeutic strategy could be the combina-
tion of these miRNAs with chemotherapeutic drugs by load-
ing them into biodegradable polymeric nanocarriers. In this 
context, it has been reported that micelles formed by miR-
NA-205 and gemcitabine are able to revert the chemo-
resistance of pancreatic cancer both in vitro and in vivo 
[151]. Other promising results were obtained for glioma by 
using nanocarriers loaded with the miRNA-21 inhibitor and 
doxorubicin [152]. Nanoparticles consisting of miRNA-200c 
and docetaxel have been shown to potentiate the drug effica-
cy and to counteract cancer growth in vivo, by reducing the 
CD44 expression and increasing E-cadherin [153]. In order 
to “ferry” miRNAs together with drugs, several nanocarriers 
have been developed and despite the in vitro results being 
promising, they still need to be validated in vivo before being 
considered for clinical trials [149]. 

Recently, a new redox-responsive system based on ferro-
cenium capped-amphiphilic-pillar[5]arene has been formu-
lated and utilized to introduce miRNAs and the associated 
drug in cancer cells characterized by high GSH levels [154]. 

CONCLUSION 

The review deals with the role of GSH homeostasis in 
tumor initiation, progression, and drug resistance and the 
implication of specific miRNA in changing GSH levels and 
influencing the pathogenesis and outcome treatment of can-
cer. Moreover, tumor cells could be sensitized to a specific 
therapy that, by reactivating oncosuppressor-miRNAs or by 
inhibiting oncogenic miRNAs, reduces the antioxidant de-
fenses and hinders the metabolic reprogramming, thus pre-
venting CSC generation and inducing apoptosis. 

In fact, the results obtained in combining drugs and 
miRNAs are promising and the research that is aimed at 
finding GSH-related miRNAs will be of help in identifying 
clinical markers of cancer and therapy resistance. 

LIST OF ABBREVIATIONS 

CSC = Cancer Stem Cells 

DCGR = DiGeorge Critical Region 

EMT = Epithelial-Mesenchymal Transition 

GCL = Glutamate-Cysteine-Ligase 

GCLC = Catalytic Subunit of GCL 

GCLM = Regulator Subunit of GCL 

GLS = Glutaminase 

GLUT = Glucose Transporter 

GPx = Glutathione Peroxidase 

GR = Glutathione Reductase 

GSH = Glutathione 

GSS = Glutathione Synthetase 

GSSG = Oxidized GSH 

GST = Glutathione-S-Transferase 

HCC = Hepatocellular Carcinoma 

HMGA = High Mobility Group AT-hook 

HO-1 = Heme Oxygenase 1 

IGF = Insulin like Growth Factor 

JAK = Janus Kinase 

Keap1 = kelch-like ECH-associated protein 1 

lnsRNA = long non-coding RNA 

MAPK = Mitogen-Activated Protein Kinase 

miRNA = microRNA 

Nrf2 = nuclear factor (erythroid-derived 2)-like 2 

NSCLC = Non-Small-Cell Lung Carcinoma 

PPP = Pentose Phosphate Pathway 

PTEN = Phosphatase and Tensin Homolog 

ROS = Reactive Oxygen Species 

SLC7A11 = Solute Carrier family seven membrane  
element 
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SNALP = Stable Nucleic Acid Lipid Nanoparticles 

STIM = Stromal Interaction Molecule 

TCA = Tricarboxylic Acid Cycle 

TS-miRNA = Tumor Suppressive-miRNA 

γ-GT = γ-glutamil-transferase 
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