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Abstract

Background: The study of functional associations between ncRNAs and human diseases is a pivotal task of modern
research to develop new and more effective therapeutic approaches. Nevertheless, it is not a trivial task since it
involves entities of different types, such as microRNAs, lncRNAs or target genes whose expression also depends on
endogenous or exogenous factors. Such a complexity can be faced by representing the involved biological entities
and their relationships as a network and by exploiting network-based computational approaches able to identify new
associations. However, existing methods are limited to homogeneous networks (i.e., consisting of only one type of
objects and relationships) or can exploit only a small subset of the features of biological entities, such as the presence
of a particular binding domain, enzymatic properties or their involvement in specific diseases.

Results: To overcome the limitations of existing approaches, we propose the system LP-HCLUS, which exploits a
multi-type hierarchical clustering method to predict possibly unknown ncRNA-disease relationships. In particular,
LP-HCLUS analyzes heterogeneous networks consisting of several types of objects and relationships, each possibly
described by a set of features, and extracts multi-type clusters that are subsequently exploited to predict new
ncRNA-disease associations. The extracted clusters are overlapping, hierarchically organized, involve entities of
different types, and allow LP-HCLUS to catch multiple roles of ncRNAs in diseases at different levels of granularity. Our
experimental evaluation, performed on heterogeneous attributed networks consisting of microRNAs, lncRNAs,
diseases, genes and their known relationships, shows that LP-HCLUS is able to obtain better results with respect to
existing approaches. The biological relevance of the obtained results was evaluated according to both quantitative
(i.e., TPR@k, Areas Under the TPR@k, ROC and Precision-Recall curves) and qualitative (i.e., according to the
consultation of the existing literature) criteria.

Conclusions: The obtained results prove the utility of LP-HCLUS to conduct robust predictive studies on the
biological role of ncRNAs in human diseases. The produced predictions can therefore be reliably considered as new,
previously unknown, relationships among ncRNAs and diseases.

Keywords: Non-coding RNA (ncRNAs), Diseases, Cancer, Heterogeneous network, Clustering, Link prediction

Background
High-throughput sequencing technologies, together with
recent, more efficient computational approaches have
been fundamental for the rapid advances in functional
genomics. Among the most relevant results, there is the
discovery of thousands of non-coding RNAs (ncRNAs)
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with a regulatory function on gene expression [1]. In par-
allel, the number of studies reporting the involvement of
ncRNAs in the development of many different human
diseases has grown exponentially [2]. The first type of
ncRNAs that has been discovered and largely studied is
that of microRNAs (miRNAs), classified as small non-
coding RNAs in contrast with the other main category
represented by long non-coding RNAs (lncRNAs), that are
ncRNAs longer than 200nt [3, 4].
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Long non-coding RNAs (lncRNAs) and microRNAs
(miRNAs) [5] are among the largest and heterogeneous
groups of regulators of major cellular processes. How-
ever, lncRNAs, differently from miRNAs which primarily
act as post-transcriptional regulators, have a plethora of
regulatory functions [6]. They are involved in chromatin
remodeling and epigenetic modifications, and organize
functionally different nuclear sub-compartments with an
impact on the nuclear architecture [7]. LncRNAs are
also involved in the regulation of the expression of tran-
scripts at cytoplasmic level by another series of interac-
tions/functions that interfere with the efficiency of trans-
lation of transcripts in their protein products. In partic-
ular, they can directly interfere with miRNAs functions
acting as miRNA sponges [8]. Nevertheless, the number
of lncRNAs for which the functional andmolecular mech-
anisms are completely elucidated is still quite poor. This is
due to two main reasons: their recent discovery as master
regulators with respect to miRNAs, and some particular
features, such as the low cross-species conservation, the
low expression levels and the high tissue specificity that
make their characterization or any type of generalization
still very difficult [9]. Therefore, assessing the role and
the molecular mechanisms underlying the involvement of
lncRNAs in human diseases is not a trivial task, and exper-
imental investigations are still too much expensive for
being carried out without any computational pre-analysis.
In the last few years, there have been several attempts to

computationally predict the relationships among biolog-
ical entities, such as genes, miRNAs, lncRNAs, diseases,
etc. [10–19]. Such methods are mainly based on a net-
work representation of the entities under study and on the
identification of new links among nodes in the network.
However, most of the existing approaches are able to work
only on homogeneous networks (where nodes and links
are of one single type) [20], are strongly limited by the
number of different node types or are constrained by a
pre-defined network structure. To overcome these limita-
tions we propose the method LP-HCLUS (Link Prediction
through Hierarchical CLUStering), which can discover
previously unknown ncRNA-disease relationships work-
ing on heterogeneous attributed networks (that is, net-
works composed of different biological entities related by
different types of relationships) with arbitrary structure.
This ability allows LP-HCLUS to investigate how different
types of entities interact with each other, possibly lead-
ing to increased prediction accuracy. LP-HCLUS exploits
a combined approach based on hierarchical, multi-type
clustering and link prediction. As we will describe in
detail in the next section, a multi-type cluster is actually
a heterogeneous sub-network. Therefore, the adoption of
a clustering-based approach allows LP-HCLUS to base
its predictions on relevant, highly-cohesive heterogeneous
sub-networks. Moreover, the hierarchical organization of

clusters allows it to perform predictions at different levels
of granularity, taking into account either local/specific or
global/general relationships.
Methodologically, LP-HCLUS estimates an initial score

for each possible relationship involving entities belonging
to the types of interest (in our case, ncRNAs and dis-
eases), by exploiting the whole network. Such scores are
then used to identify a hierarchy of overlapping multi-
type clusters, i.e., groups of objects of different types.
Finally, the identified clusters are exploited to predict new
relationships, each of which is associated with a score
representing its degree of certainty. Therefore, accord-
ing to the classification provided in [21] (see Additional
file 1), LP-HCLUS simultaneously falls in two categories:
i) algorithmic methods, since it strongly relies on a clus-
tering approach to predict new relationships and to asso-
ciate them with a score in [ 0, 1], and ii) similarity-based
approaches, since the first phase (see “Estimation of the
strength of the relationship between ncRNAs and di-
seases” section) exploits the computation of similarities
between target nodes, taking into account the paths in the
network and the attributes of the nodes.
The rest of the paper is organized as follows: in the next

section, we describe our method for the identification
of new ncRNA-disease relationships; in “Results” section
we describe our experimental evaluation and in “Discus-
sion” section we discuss the obtained results, including a
qualitative analysis of the obtained predictions; finally, we
conclude the paper and outline some future work. More-
over, in Additional file 1, we discuss the works related
to the present paper; in Additional file 2 we report an
analysis of the computational complexity of the proposed
method; finally, in Additional files 3, 4 and 5 we report
some detailed results obtained during the experiments.

Methods
The algorithmic approach followed by LP-HCLUS mainly
relies on the predictive clustering framework [22–24].
The motivation behind the adoption of such a framework
comes from its recognized ability of handling data affected
by different forms of autocorrelation, i.e., when close
objects (spatially, temporally, or in a network as in this
work) appear to be more similar than distant objects. This
peculiarity allows LP-HCLUS to catch multiple depen-
dencies among the involved entities, which can represent
relevant cooperative/interfering activities.
Specifically, LP-HCLUS identifies hierarchically orga-

nized, possibly overlapping multi-type clusters from a
heterogeneous network and exploits them for predic-
tive purposes, i.e., to predict the existence of previously
unknown links. The extraction of a hierarchical structure,
rather than a flat structure, allows the biologists to focus
on either more general or more specific interaction activ-
ities. Finally, the possible overlaps among the identified
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clusters allow LP-HCLUS to consider multiple roles of
the same disease or ncRNA, which may be involved in
multiple interaction networks.
It is noteworthy that, even if the analyzed network may

consist of an arbitrary number of types of nodes and
edges, the prediction of new associations will focus on
edges involving ncRNAs and diseases, called target types.
On the contrary, node types that are only used during the
analysis will be called task-relevant node types.
Intuitively, the approach followed by LP-HCLUS con-

sists of three main steps:

1. estimation of the strength of relationships for all the
possible pairs of ncRNAs and diseases, according to
the paths connecting such nodes in the network and
to the features of nodes involved in such paths;

2. construction of a hierarchy of overlapping multi-type
clusters, on the basis of the strength of relationships
computed in the previous step;

3. identification of predictive functions to predict new
ncRNA-disease relationships on the basis of the
clusters identified at different levels of the hierarchy.

It is noteworthy that the clustering step could be directly
applied on the set of known interactions, without per-
forming the first step. However, such an approach would
lead to discard several potential indirect relationships that
can be caught only through a deep analysis of the network,
which is indeed the main purpose of the first step. A naïve
solution for the prediction task would be the use of the
output of the first step as the final score, ignoring steps
2 and 3. However, this would lead to disregard a more
abstract perspective of the interactions which, instead,
can be caught by the clustering-based approach. Another
effect would be to disregard the network homophily phe-
nomenon and not to catch possible relationships between
ncRNAs and between diseases based on the nodes they
are connected with. On the contrary, the exploitation of
such relationships is in line with the guilt-by-association
(GBA) principle, which states that entities with similar

functions tend to share interactions with other entities.
This principle has been recently applied to and investi-
gated for ncRNAs [25].
Each step will be described in details in the next sub-

sections, while in the following we formally define the
heterogeneous attributed network, that is analyzed by
LP-HCLUS, as well as the solved task.

Definition 1 (Heterogeneous attributed network) A
heterogeneous attributed network is a network G = (V ,E),
where V denotes the set of nodes and E denotes the set of
edges, and both nodes and edges can be of different types
(see Fig. 1). Moreover:

• T = Tt∪Ttr is the set of node types, where Tt is the set
of target types and Ttr is the set of task-relevant types;

• each node type Tv ∈ T defines a subset of nodes in
the network, that is Vv ⊆ V ;

• each node type Tv ∈ T is associated with a set of
attributesAv = {Av,1,Av,2, . . . ,Av,mv}, i.e., all the
nodes of a given type Tv are described according to
the attributesAv;

• R is the set of all the possible edge types;
• each edge type Rl ∈ R defines a subset of edges

El ⊆ E.

Definition 2 (Overlapping Multi-type cluster) Given a
heterogeneous attributed network G = (V ,E), an over-
lapping multi-type cluster is defined as G′ = (V ′,E′),
where:

• V ′ ⊆ V ;
• ∀v′ ∈ V ′, v′ is a node of a target type;
• ∀v′ ∈ V ′, v′ may also belong to other clusters besides

G′;
• E′ ⊆ (E ∪ Ê) is a set of relationships among the nodes

in V ′, belonging either to the set of known
relationships E or to a set of extracted relationships Ê,
which are identified by the clustering method.

Fig. 1 An example of a heterogeneous attributed network. On the left, a general overview of the network, where shapes represent different node
types and colors represent different edge types. On the right, a zoom on a small portion of the network, where we can observe node attributes
associated with squares (As,∗), triangles (At,∗) and circles (Ac,∗)
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The details about the strategy adopted to identify Ê
will be discussed in “Estimation of the strength of the
relationship between ncRNAs and diseases” section.

Definition 3 (Hierarchical multi-type clustering) A
hierarchy of multi-type clusters is defined as a list of hier-
archy levels [ L1, L2, . . . , Lk], where each Li consists of a set
of overlapping multi-type clusters. For each level Li, i =
2, 3, .. . . . k, we have that ∀ G′ ∈ Li ∃ G′′ ∈ Li−1, such that
G′′ is a subnetwork of G′ (see Fig. 2).

On the basis of these definitions, we formally define the
task considered in this work.

Definition 4 (Predictive hierarchical clustering for
link prediction) Given a heterogeneous attributed network
G = (V ,E) and the set of target types Tt , the goal is to find:

• A hierarchy of overlapping multi-type clusters
[ L1, L2, . . . , Lk].

• A function ψ(w) : Vi1 × Vi2 →[ 0, 1] for each
hierarchical level Lw (w ∈ 1, 2, ..., k), where nodes in
Vi1 are of type Ti1 ∈ Tt and nodes in Vi2 are of type
Ti2 ∈ Tt . Intuitively, each function ψ(w) maps each
possible pair of nodes (of types Ti1 and Ti2 ,
respectively) to a score that represents the degree of
certainty of their relationship.

The learning setting considered in this paper is trans-
ductive. In particular, only the links involving nodes
already known and exploited during the training phase are
considered for link prediction. In other terms, we do not
learn a model from a network and apply this model to a
completely different network (classical inductive learning
setting).
The method proposed in this paper (see Fig. 3 for

the general workflow) aims at solving the task formal-
ized in Definition 4, by considering ncRNAs and dis-
eases as target types (Fig. 4). Hence, we determine two

distinct set of nodes denoted by Tn and Td , represen-
ting the set of ncRNAs and the set of diseases, respectively.

Estimation of the strength of the relationship between
ncRNAs and diseases
In the first phase, we estimate the strength of the rela-
tionship among all the possible ncRNA-disease pairs in
the network G. In particular, we aim to compute a score
s(ni, dj) for each possible pair ni, dj, by exploiting the con-
cept of meta-path. According to [26], a meta-path is a set
of sequences of nodes which follow the same sequence of
edge types, and can be used to fruitfully represent concep-
tual (possibly indirect) relationships between two entities
in a heterogeneous network (see Fig. 5). Given the ncRNA
ni and the disease dj, for each meta-path P, we compute a
score pathscore(P, ni, dj), which represents the strength of
their relationship on the basis of the meta-path P.
In order to combine multiple contributions provided

by different meta-paths, we adopt a strategy that follows
the classical formulation of fuzzy sets [27]. In particular,
a relationship between a ncRNA ni and a disease dj can
be considered “certain” if there is at least one meta-path
which confirms its certainty. Therefore, by assimilating
the score associated with an interaction to its degree of
certainty, we compute s(ni, dj) as the maximum value
observed over all the possible meta-paths between ni and
dj. Formally:

s(ni, dj) = max
P∈metapaths(ni,dj)

pathscore(P, ni, dj) (1)

where metapaths(ni, dj) is the set of meta-paths connect-
ing ni and dj, and pathscore(P, ni, dj) is the degree of
certainty of the relationship between ni and dj according
to the meta-path P.
As introduced before, each meta-path P represents a

finite set of sequences of nodes, where:

• the i -th node of each sequence in the metapath P is
of the same type;

Fig. 2 A hierarchy of overlapping multi-type clusters: a emphasizes the overlapping among multi-type clusters; b shows their hierarchical
organization
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Fig. 3Workflow of the method LP-HCLUS

Fig. 4 An example of a ncRNA-disease heterogeneous network. In this example, ncRNAs are represented as triangles, while diseases are represented
as squares. Other (task-relevant) nodes (e.g., target genes, proteins, etc) are represented as gray circles

Fig. 5 Diagram showing three different meta-paths between a disease and a ncRNA. The first meta-path connects diseases and ncRNAs via genes,
the second connects diseases and ncRNAs directly and the third connects diseases and ncRNAs via proteins
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• the first node is a ncRNA and the last node is a
disease;

• if two nodes are consecutive in the sequence, then
there is an edge between them in E.

According to this definition, if there is a path P
directly connecting a ncRNA ni to a disease dj, then
pathscore(P, ni, dj) = 1, therefore s(ni, dj) = 1.
Otherwise, when there is no direct connection between

ni and dj, pathscore(P, ni, dj) is computed as themaximum
similarity between the sequences that start with ni and
those that end with dj. Formally:

pathscore(P, ni, dj) =
max

seq′,seq′′∈P,
seq′.first=ni,seq′′.last=dj

similarity(seq′, seq′′) (2)

The intuition behind this formula is that if ni and dj are
not directly connected, their score represents the similar-
ity of the nodes and edges they are connected to. In other
words, this is a way to analyze the similarity between the
neighborhood of ni and the neighborhood of dj in terms
of the (similarity of the) paths they are involved in.
It is noteworthy that, in order to make the neigh-

bors comparable, we exploit the concept of meta-path,
which includes sequences that involve the same types of
nodes. In fact, in Formula (2), the similarity between two
sequences seq′ and seq′′ is computed as follows:

similarity(seq′, seq′′) =
∑

x∈A(P) sx(seq′, seq′′)
|A(P)| (3)

where:

• A(P) is the set of attributes of the nodes involved in
the path P ;

• sx(seq′, seq′′) is the similarity between valx(seq′), that
is the value of the attribute x in the sequence seq′,
and valx(seq′′), that is the value of the attribute x in
the sequence seq′′.

Following [28], we compute sx(seq′, seq′′) as follows:

• if x is numeric, then
sx(seq′, seq′′) = 1 − |valx(seq′)−valx(seq′′)|

maxx−minx , whereminx
(resp.maxx) is the minimum (resp. maximum) value,
for the attribute x;

• if x is not a numeric attribute, then sx(seq′, seq′′) = 1
if valx(seq′) = valx(seq′′), 0 otherwise.

An example of the computation of the similarity among
sequences is reported in Fig. 6. In this example, we com-
pute the score between the ncRNA h19 and the disease
asthma. First, we identify the sequences starting with h19
(i.e., 1 and 9, emphasized in yellow) and those ending
with asthma (i.e., 4, 5, 6 and 7, emphasized in blue). Then
we pairwisely compute the similarity between sequences
belonging to the two sets and select the maximum value,
according to Eq. 2. The similarity between two sequences
is computed according to Eq. 3.
In this solution there could be some node types that

are not involved in any meta-path. In order to exploit
the information conveyed by these nodes, we add an
aggregation of their attribute values (the arithmetic mean
for numerical attributes, the mode for non-numerical
attributes) to the nodes that are connected to them and
that appear in at least one meta-path. Such an aggrega-
tion is performed up to a predefined depth of analysis
in the network. In this way, we fully exploit the network
autocorrelation phenomena.

Construction of a hierarchy of overlapping multi-type
clusters
Starting from the set of possible ncRNA-disease pairs,
each associated with a score that represents its degree of
certainty, we construct the first level of the hierarchy by
identifying a set of overlapping multi-type clusters in the
form of bicliques. That is, multi-type clusters where all the
ncRNA-disease relationships have a score greater than (or

Fig. 6 Analysis of sequences between the ncRNA “h19” and the disease “asthma” according to a meta-path. Sequences emphasized in yellow (1 and
9) are those starting with “h19”, while sequences emphasized in blue (4, 5, 6 and 7) are those ending with “asthma”. White rows, although belonging
to P, are not considered during the computation of the similarity in this specific example, since they do not involve “h19” or “asthma”



Barracchia et al. BMC Bioinformatics           (2020) 21:70 Page 7 of 24

equal to) a given threshold β ∈[ 0, 1] (see Fig. 7). More for-
mally, in order to construct the first level of the hierarchy
L1, we perform the following steps:

i) Filtering, which keeps only the ncRNA-disease pairs
with a score greater than (or equal to) β . The result
of this step is the subset {(ni, dj)|s(ni, dj) ≥ β}.

ii) Initialization, which builds the initial set of clusters
in the form of bicliques, each consisting of a
ncRNA-disease pair in {(ni, dj)|s(ni, dj) ≥ β}.

iii) Merging, which iteratively merges two clusters C′
and C′′ into a new cluster C′′′. This step regards the
initial set of clusters as a list sorted according to an
ordering relation <c that reflects the quality of the
clusters. Each cluster C′ is then merged with the first
cluster C′′ in the list that would lead to a cluster C′′′
which still satisfies the biclique constraint. This step
is repeated until no additional clusters that satisfy the
biclique constraint can be obtained.

The ordering relation <c exploited by the merging step
implicitly defines a greedy search strategy that guides the
order in which pairs of clusters are analyzed and possi-
bly merged. <c is based on the cluster cohesiveness h(c),
which corresponds to the average score of the interactions
in the cluster. Formally:

h(C) = 1
|pairs(C)| ·

∑

(ni,dj)∈pairs(C)

s(ni, dj) (4)

where pairs(C) is the set of all the possible ncRNA-disease
pairs that can be constructed from the set of ncRNAs and
diseases in the cluster. Numerically, |pairs(C)| = |{ni|ni ∈
C ∧ ni ∈ Tn}| · |{dj|dj ∈ C ∧ dj ∈ Td}|.
Accordingly, if C′ and C′′ are two different clusters, the

ordering relation <c is defined as follows:

C′ <c C′′ ⇐⇒ h(C′) > h(C′′) (5)

The approach adopted to build the other hierarchical
levels is similar to the merging step performed to obtain
L1. The main difference is that, in this case, we do not
obtain bicliques, but generic multi-type clusters, i.e., the
score associated with each interaction does not need to
satisfy the threshold β . Since the biclique constraint is
removed, we need another stopping criterion for the itera-
tive merging procedure. Coherently with approaches used
in hierarchical co-clustering and following [29], we adopt
a user-defined threshold α on the cohesiveness of the
obtained clusters. In particular, two clustersC′ andC′′ can
be merged into a new cluster C′′′ if h(C′′′) > α, where
h(C′′′) is the cluster cohesiveness defined in Eq. 4. This
means that α defines the minimum cluster cohesiveness
thatmust be satisfied by a cluster obtained after amerging:
small values of α lead to increase the number of merging
operations and, therefore, to a relatively small number of
final clusters containing a large number of nodes.
For every iteration of the merging procedure, a new

hierarchical level is generated. The iterative process stops
when it is not possible to merge more clusters with a
minimum level of cohesiveness α. The output of such a
process is a hierarchy of overlapping multi-type clusters
{L1, L2, . . . , Lk} (see Definition 3).
A pseudocode description of the proposed algorithm for

the construction of the hierarchy of clusters is reported in
Algorithm 1.

Prediction of new ncRNA-disease relationships
In the last phase, we exploit each level of the identified
hierarchy of multi-type clusters as a prediction model. In
particular, we compute, for each ncRNA-disease pair, a
score representing its degree of certainty on the basis of
the multi-type clusters containing it. Formally, let Cw

ij be
a cluster identified in the w-th hierarchical level in which

Fig. 7 Biclique constraint on two multi-type clusters a An example of multi-type cluster which satisfies the biclique constraint with β = 0.7 (i.e., all
the relationships have a score ≥ 0.7). b An example that does not satisfy such a constraint. It is noteworthy that, with β = 0.6, also (b) would satisfy
the biclique constraint
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Algorithm 1 Construction of the hierarchy of overlapping multi-type clusters
Require:
- Initial set of clusters L0, each containing a single ncRNA-disease pair in {(ni, dj)|s(ni, dj) ≥ β};
- An ordering relation <c that reflects the quality of the clusters;
- A threshold α on the quality of the clusters obtained after a merging.

Ensure:
- The hierarchy of overlapping multi-type clusters L1, L2, . . . , Lk
k ← 0
repeat

{Define the merging condition: biclique constraint for the first level; threshold on the cluster cohesiveness h(·) for the
subsequent levels}
if k = 0 then

condition(·) ← isBiclique(·)
else

condition(·) ← h(·) > α
end if
L ← Lk
sort L in according to the ordering relation <c
clusters ← [ ]
mergedClusters ← 0
{Loop over the sorted list of clusters. This defines a greedy search strategy: clusters with a higher cohesiveness value are
processed first}
for i ← 1 to|L| − 1 do

C′ ← L[ i]
{Search for another cluster that can be merged with C′ in the ordered list}
j ← i + 1
merged ← false
while j ≤ |L| and notmerged do

C′′ ← L[ j]
C′′′ ← merge(C′,C′′)
{If C′ and C′′ can be merged into C′′′ according to the merging condition, merge them}
if condition(C′′′) then

add C′′′ to clusters
mergedClusters ← mergedClusters + 1
remove C′′ from L
merged ← true

end if
j ← j + 1

end while
{If C′ cannot be merged with any other cluster, add it to the result as it is}
ifmerged = false then

add C′ to clusters
end if

end for
newLevel ← false
{Check if there was at least one merging}
ifmergedClusters > 0 then

if k > 0 then
{If we are not building the first level, define a new hierarchical level}
k ← k + 1
newLevel ← true;

end if
Lk ← clusters

else
{End the construction of the first hierarchical level and continue with the others}
if k = 0 then

k ← k + 1
Lk ← clusters
newLevel ← true;

end if
end if

untilmergedClusters = 0 and newLevel = false
return L1, L2, . . . , Lk



Barracchia et al. BMC Bioinformatics           (2020) 21:70 Page 9 of 24

the ncRNA ni and the disease dj appear. We compute the
degree of certainty of the relationship between ni and dj
as:

ψ(w)(ni, dj) = h
(
Cw
ij

)
, (6)

that is, we compute the degree of certainty of the new
interaction as the average degree of certainty of the known
relationships in the cluster. In some cases, the same inter-
action may appear in multiple clusters, since the proposed
algorithm is able to identify overlapping clusters. In this
case, Cw

ij represents the list of multi-type clusters (i.e.,
Cw
ij =[C1,C2, . . . ,Cm]), ordered accordingly to relation

<c defined in Eq. 5, in which both ni and dj appear, on
which we apply an aggregation function to obtain a single
degree of certainty. In this work, we propose the adoption
of four different aggregation functions:

• Maximum: ψ(w)(ni, dj) = maxc∈Cw
ij
h(c)

• Minimum: ψ(w)(ni, dj) = minc∈Cw
ij
h(c)

• Average: ψ(w)(ni, dj) = 1
|Cw

ij | · ∑
c∈Cw

ij
h(c)

• Evidence Combination: ψ(w)(ni, dj) = ec(Cm),
where:

ec(Cm)=
{
h(C1) if Cm=C1
ec(Cm−1)+[ 1 − ec(Cm−1)] ·h(Cm) otherwise

(7)

It is noteworthy that the Evidence Combination func-
tion, already exploited in the literature in the context of
expert systems [30], generally rewards the relationships
appearing in multiple high cohesive clusters.
In the following, we report an example of this predic-

tion step, with the help of Fig. 8. In this example, we have
two overlapping multi-type clusters C1 and C2, identified

at the w-th hierarchical level, that suggest two new poten-
tial relationships (dashed lines in the figure), i.e. the pair
n2, d2 and the pair n2, d3.
The first relationship only appears in C1, therefore its

degree of certainty is computed according to the cohesive-
ness of C1 (see Eq. 4):

ψ(w)(n2, d2) = h(C1) = 1
2 · 3 (0.7 + 0.8 + 0.9) = 0.4. (8)

On the contrary, the second relationship is suggested by
both C1 and C2, i.e., it appears in their overlapped area.
Therefore, we aggregate the cohesiveness of C1 and C2
according to one of the functions we described before. In
particular, since h(C1) = 0.4 and h(C2) = 1

1·2 · 0.6 = 0.3,
we have:

• Maximum: ψ(w)(n2, d3) = maxc∈Cw
ij
h(c) = 0.4

• Minimum: ψ(w)(n2, d3) = minc∈Cw
ij
h(c) = 0.3

• Average: ψ(w)(n2, d3) = 1
|Cw

ij | · ∑
c∈Cw

ij
h(c) =

1
2 · (0.4 + 0.3) = 0.35

• Evidence Combination:
ψ(w)(n2, d3) = h(C1)+[ 1 − h(C1)] ·h(C2) =
0.4 + (1 − 0.4) · 0.3 = 0.58

Results
The proposed method was evaluated through several
experiments. In this section, we present the main adopted
resources, define the experimental setting, introduce the
adopted evaluation measures and compare our system
with the competitors from a quantitative viewpoint.

Datasets
We performed experiments on two different heteroge-
neous networks involving ncRNAs and diseases. In the
following, we report the details of each dataset, together

Fig. 8 Example of the prediction step. Two clusters identified at a given hierarchical level w. Triangles represent ncRNAs, squares represent diseases
and the grey shapes are other type nodes. The clusters suggest two new possible relationships between n2 and d2 and between n2 and d3
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Fig. 9 UML diagram of the dataset HMDD v3.0. The attributes in red are the identifiers of the nodes of a given type (i.e., the primary key in a
relational database), while attributes in green refer to the identifier of nodes of other types (i.e., foreign keys in a relational database)

with UML diagrams that represent their data and struc-
ture, i.e., nodes, links and attributes.

HMDD v3 [31]. This dataset stores information about
diseases, miRNAs and their known relationships. The
network consists of 985 miRNAs, 675 diseases (charac-
terized by 6 attributes) and 20,859 relationships between
diseases and miRNAs (characterized by 3 attributes). A
diagram of this dataset is depicted in Fig. 9, while the
attributes are described in Table 1. The official link of the
dataset is: http://www.cuilab.cn/hmdd. In this evaluation,
we used two versions of the HMDD v3 dataset: the version
released on June 28th, 2018 (v3.0) and the version released
on March 27th, 2019 (v3.2). Both versions are available
at the following link: http://www.di.uniba.it/~gianvitopio/
systems/lphclus/.

Table 1 HMDD v3.0 dataset - Description of the attributes

Type Feature Description

Disease disease Disease name

root_name Category of the disease

doid Disease Ontology Identifiers

icd10cm ICD-10-CM Code

mesh Medical Subject Headings (MeSH)
code

omim Online Mendelian Inheritance in
Man (OMIM) code

hpo Human Phenotype Ontology (HPO)
code

Disease_miRNA id ID of the relationship

category Category of the relationship

mirna miRNA involved in the association

disease Disease involved in the association

pmid PubMed ID of the publication
reporting the association

description Description of the relationship

miRNA mirna miRNA name

Integrated Dataset (ID). This dataset has been built by
integrating multiple public datasets in a complex hetero-
geneous network. The source datasets are:

• lncRNA-disease relationships and lncRNA-gene
interactions from [32] (June 2015)1

• miRNA-lncRNA interactions from [33] 2
• disease-gene relationships from DisGeNET v5 [34] 3
• miRNA-gene and miRNA-disease relationships from

miR2Disease [35] 4

From these resources we only kept data related to
H. Sapiens. The integration led to a network consist-
ing of 1015 ncRNAs (either lncRNAs or miRNAs), 7049
diseases, 70 relationships between lncRNAs and miR-
NAs, 3830 relationships between diseases and ncRNAs,
90,242 target genes, 26,522 disease-target associations
and 1055 ncRNA-target relationships. Most of the consid-
ered entities are also characterized by a variable number
of attributes, as shown in Fig. 10 and in Table 2. The final
dataset is available at the following link: http://www.di.
uniba.it/~gianvitopio/systems/lphclus/.

Experimental setting & competitors
LP-HCLUS has been run with different values of its input
parameters, namely: α ∈ {0.1, 0.2} (we remind that α is
the minimum cohesiveness that a cluster must satisfy) and
β ∈ {0.3, 0.4} (we remind that β represents the minimum
score that each ncRNA-disease pairmust satisfy to be con-
sidered as existing), while depth has been set to 2 in order
to consider only nodes that are relatively close to those
involved in the meta-paths. We performed a compara-
tive analysis with two competitor systems and a baseline
approach that we describe in the following.

1http://www.cuilab.cn/lncrnadisease
2Dataset “Data S3” in
https://www.sciencedirect.com/science/article/pii/S009286741300439X?via
%3Dihub#mmc3
3http://www.disgenet.org/
4http://www.mir2disease.org/

http://www.cuilab.cn/hmdd
http://www.di.uniba.it/~gianvitopio/systems/lphclus/
http://www.di.uniba.it/~gianvitopio/systems/lphclus/
http://www.di.uniba.it/~gianvitopio/systems/lphclus/
http://www.di.uniba.it/~gianvitopio/systems/lphclus/
http://www.cuilab.cn/lncrnadisease
https://www.sciencedirect.com/science/article/pii/S009286741300439X?via%3Dihub#mmc3
https://www.sciencedirect.com/science/article/pii/S009286741300439X?via%3Dihub#mmc3
http://www.disgenet.org/
http://www.mir2disease.org/
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Fig. 10 UML diagram of the Integrated Dataset (ID). The attributes in red are the identifiers of the nodes of a given type (i.e., the primary key in a
relational database), while attributes in green refer to the identifier of nodes of other types (i.e., foreign keys in a relational database)

HOCCLUS2 [29] is a biclustering algorithm that, simi-
larly to LP-HCLUS, is able to identify a hierarchy of (possi-
bly overlapping) heterogeneous clusters. HOCCLUS2 was
initially developed to study miRNA-mRNA associations,
therefore it is inherently limited to two target types.More-
over, besides miRNAs, mRNAs and their associations,
it is not able to take into account other entities in the
network and actually cannot predict new relationships.
We adapted HOCCLUS2 in order to analyze ncRNA-
disease relationships and to be able to predict new associ-
ations. In particular, we fed HOCCLUS2 with the dataset
produced by the first step of LP-HCLUS (see “Estima-
tion of the strength of the relationship between ncRNAs
and diseases” section) and we performed the prediction
according to the strategy we proposed for LP-HCLUS (see
“Prediction of new ncRNA-disease relationships” section),
considering all the aggregation functions proposed in this

paper. We emphasize that, since both the initial analy-
sis and the prediction step are performed by LP-HCLUS
modules, the comparison with HOCCLUS2 allows us
to evaluate the effectiveness of the proposed clustering
approach. Since the HOCCLUS2 parameters have a sim-
ilar meaning with respect to LP-HCLUS parameters, we
evaluated its results with the same parameter setting, i.e.,
α ∈ {0.1, 0.2} and β ∈ {0.3, 0.4}.
ncPred [14] is a system which was specifically designed

to predict new associations between ncRNAs and dis-
eases. ncPred analyzes two matrices containing informa-
tion about ncRNA-gene and gene-disease relationships.
Therefore, we transformed the considered heterogeneous
networks into matrices and fed ncPred with them. We
again emphasize that ncPred is not able to catch informa-
tion coming from other entities in the network of types
different from ncRNAs and diseases, and that it is not able
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Table 2 ID dataset - Description of the attributes

Type Feature Description

Disease name Disease name

mesh_disease_class Disease classification by Medical Subject Headings (MeSH)

umls_semantic_type Semantic type provided by the Unified Medical Language System

Disease_ncRNA id ID of the relationship

ncrna ncRNA involved in the association

disease Disease involved in the association

type Type of association

detection Method used to detect the relationship

year Year of the detection

descr Description of the association

chromosome Chromosome

refseq RefSeq identifier

pmid PubMed ID of the publication reporting the association

Disease_target id ID of the relationship

target Target gene involved in the association

disease Disease involved in the association

score DisGENET score for the Gene-Disease association

source Original source reporting the Gene-Disease association

num_pmid Total number of publications reporting the association

num_snp Total number of SNPs associated to the association

cui Concept Unique Identifier (CUI)

lncRNA_miRNA id ID of the relationship

mirna miRNA involved in the association

lncrna lncRNA involved in the association

ncRNA name ncRNA name

biotype Type of ncRNA. The value can be “lncrna” or “mirna”

ncRNA_target id ID of the relationship

ncrna ncRNA involved in the association

target Target genes involved in the association

interaction Elements involved in the associations (e.g. RNA-RNA, RNA-protein)

inter_type Type of interaction (e.g. Regulatory, Binding, etc.)

description Description of the interaction

refseq RefSeq identifier

pmid PubMed ID of the publication reporting the association

pubdate Date of first publication

reference Textual description of the association

Target name Name of target gene

to exploit features associated to nodes and links in the
network. We set ncPred parameter values to their default
values.
LP-HCLUS-NoLP, which corresponds to our system

LP-HCLUS, without the clustering and the link predic-
tion steps. In particular, we consider the score obtained

in the first phase of LP-HCLUS (see “Estimation of the
strength of the relationship between ncRNAs and di-
seases” section) as the final score associated with each
interaction. This approach allows us to evaluate the con-
tribution provided by our link prediction approach based
on multi-type clustering.
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The evaluation was performed through a 10-fold cross-
validation. It is noteworthy that the computation of classi-
cal measures, such as Precision and Recall, would require
the presence of negative examples or some assumptions
made on unknown examples. In our case, the datasets
contain only positive examples, i.e., we have a set of vali-
dated relationships but we do not have negative examples
of relationships (relationships whose non-existence has
been proven).
Therefore, following the approach adopted in [13], we

evaluated the results in terms of TruePositiveRate@k,
where:

• an association is considered a True Positive (TP) if it
is validated in the literature and it is in the first top k
relationships predicted by the system;

• an association is considered a False Negative (or FN)
if it is validated in the literature, but it is not in the
first top k relationships predicted by the system.

Since the optimal value of k cannot be known in
advance, we plot the obtained TPR@k by varying the
value of k and compute the Area Under the TPR@k curve
(AUTPR@k). For a thorough analysis on the most promis-
ing (i.e., top-ranked) interactions, we report all the results
by varying the value of k within the interval [ 1, 5000],
obtained with the same configuration of the parameters α

and β for HOCCLUS2 and LP-HCLUS. Moreover, we also

report the results in terms of ROC and Precision-Recall
curves, as well as the areas under the respective curves
(AUROC and AUPR), by considering the unknown rela-
tionships as negative examples. We remark that AUROC
and AUPR results can only be used for relative compar-
ison and not as absolute evaluation measures because
they are spoiled by the assumption made on unknown
relationships.
In the paper we report the results obtained with the

most promising configuration according to some prelim-
inary experiments. The complete results, including those
obtained in such preliminary experiments, can be down-
loaded at: http://www.di.uniba.it/~gianvitopio/systems/
lphclus/.

Results - HMDD v3 dataset
In Figures 11, 12 and 13 we show the results obtained
on the HMDD dataset in terms of TPR@k, ROC and
Precision-Recall curves, while in Table 3, we report the
AUTPR@k, AUROC and AUPR values. From Fig. 11,
we can observe that the proposed method LP-HCLUS,
with the combination strategy based on the maximum,
is in general able to obtain the best performances. The
competitor system ncPred obtains good results, but it out-
performs LP-HCLUS_MAX only for high values of k, and
only when focusing on the first level of the hierarchy.
However, we stress the fact that it is highly preferable to

Fig. 11 TPR@k results for the dataset HMDD v3.0, obtained with the best configuration (α = 0.2,β = 0.4) at different levels of the hierarchy

http://www.di.uniba.it/~gianvitopio/systems/lphclus/
http://www.di.uniba.it/~gianvitopio/systems/lphclus/
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Fig. 12 ROC curves for the dataset HMDD v3.0, obtained with the best configuration (α = 0.2,β = 0.4) at different levels of the hierarchy. These
curves can only be used for relative comparison and not as absolute evaluation measures because they are spoiled by the assumption made on
unknown relationships

achieve better performances on the left side of the curve,
i.e., with low values of k, since it is the real portion of the
ranking on which researchers will focus their analysis. In
such a portion of the curve, LP-HCLUS_MAX dominates
over all the competitors for all the hierarchical levels. It is
noteworthy that some variants of LP-HCLUS (i.e., MAX
and AVG) obtain their best performances at the second
level of the hierarchy. This emphasizes that the extraction
of a hierarchy of clusters could provide some improve-
ments with respect to a flat clustering. This is not so evi-
dent for HOCCLUS2 even if, analogously to LP-HCLUS,
it is able to extract a hierarchy. The results in terms of
AUTPR@k, AUROC and AUPR (see Table 3) confirm the
superiority of LP-HCLUS_MAX over the competitors.

Results - ID dataset
In Figures 14, 15 and 16 we show the results obtained
on the Integrated Dataset (ID) in terms of TPR@k, ROC
and Precision-Recall curves, while in Table 4, we report
the AUTPR@k, AUROC and AUPR values. It is note-
worthy that this dataset is much more complex than
HMDD, because it consists of several types of nodes, each
associated with its attributes. In this case, the system LP-
HCLUS can fully exploit information brought by other
node types to predict new associations between ncRNAs
and diseases.

As it can be observed from the figures, thanks to such
an ability, LP-HCLUS clearly outperforms all the competi-
tors. It is noteworthy that also the simpler version of LP-
HCLUS, i.e., LP-HCLUS-NoLP, is able to outperform the
competitors, since it exploits the exploration of the net-
work based on meta-paths. However, when we exploit the
full version of LP-HCLUS, which bases its prediction on
the clustering results, the improvement over the existing
approaches becomes much more evident. These conclu-
sions are also confirmed by the AUTPR@k, AUROC and
AUPR values shown in Table 4.

Statistical comparisons
By observing the results reported in Figs. 11, 12, 13, 14,
15 and 16, it is clear that the adoption of the Maxi-
mum (MAX) as LP-HCLUS aggregation function leads
to the best results. This behavior can be motivated by
the fact that such an approach rewards the associations
which show at least one strong evidence from the clus-
ters. Although such a behavior should be observed also
with the Evidence Combination (EC) function, it is note-
worthy that the latter also rewards associations which are
confirmed by several clusters, even if they show a weak
confidence. In this way, EC is prone to false positives
introduced by the combined contribution of several weak
relationships.
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Fig. 13 Precision-Recall curves for the dataset HMDD v3.0, obtained with the best configuration (α = 0.2,β = 0.4) at different levels of the
hierarchy. These curves can only be used for relative comparison and not as absolute evaluation measures because they are spoiled by the
assumption made on unknown relationships

In order to confirm the superiority of LP-HCLUS_MAX
from a statistical viewpoint, we performed a Friedman
test with Nemenyi post-hoc test with significance value of
0.05. This test is applied to the Area Under the TPR@k
curve, in order to provide a k-independent evaluation of
the results. By observing the results in Fig. 17, it is clear
that LP-HCLUS_MAX is the best ranked method among
the considered approaches. Since, at a glance, the differ-
ence between LP-HCLUS_MAX and ncPred is clear, but
does not appear to be statistically significant with a test
that evaluates differences across multiple systems, we per-
formed three pairwise Wilcoxon tests (one for each hier-
archical level), with the Bonferroni correction. In this way,
it is possible to directly compare LP-HCLUS_MAX and
ncPred. Looking at the average Area Under the TPR@k
and p-values reported in Table 5, it is clear that the differ-
ence between LP-HCLUS_MAX and its direct competitor
ncPred is large (especially for the ID dataset) and, more
importantly, statistically significant for all the hierarchical
levels, at a significance value of 0.01.

Discussion
In this section we discuss about the results of the compar-
ison of LP-HCLUS with its competitors from a qualitative

viewpoint, in order to assess the validity of the proposed
system as a useful tool for biologists.

Discussion on the HMDD v3 dataset
We performed a comparative analysis between the results
obtained by LP-HCLUS against the validated interactions
reported in the updated version of HMDD (i.e., v3.2
released on March 27th, 2019). A graphical overview of
the results of this analysis is provided in Fig. 18, while the
detailed results are provided in Additional file 3, where the
relationships introduced in the new release of HMDD are
highlighted in green. The general conclusion we can draw
from Fig. 18 is that several relationships predicted by LP-
HCLUS have been introduced in the new HMDD release
v3.2.
In particular, we found 3055 LP-HCLUS predictions

confirmed by the new release of HMDD at the hierar-
chy level 1 (score range 0.97-0.44), 4119 at level 2 (score
range 0.93-0.37) and 4797 at level 3 (score range 0.79-
0.37). Overall, these results underline the behavior of
LP-HCLUS at the different levels of the hierarchy. As
expected, the number of predictions grows progressively
from the lowest to the highest levels of the hierarchy, due
to the less stringent constraints imposed by the algorithm,
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Table 3 AUTPR@k, AUROC and AUPR values for the dataset
HMDD, obtained with the best configuration (α = 0.2,β = 0.4)
at different levels of the hierarchy

AUTPR@k AUPR AUROC

LP-HCLUS-NoLP 0.000000 0.000000 0.496169

ncPred 0.087370 0.007540 0.584268

LP-HCLUS AVG Level 1 0.042658 0.005437 0.523872
Level 2 0.056392 0.003140 0.548665
Level 3 0.020129 0.000469 0.515470

LP-HCLUS MAX Level 1 0.088130 0.010865 0.568056
Level 2 0.109292 0.013420 0.585560
Level 3 0.104244 0.011983 0.580824

LP-HCLUS MIN Level 1 0.031888 0.001935 0.519936
Level 2 0.032765 0.001232 0.524077
Level 3 0.011012 0.000170 0.505846

LP-HCLUS EC Level 1 0.005626 0.000035 0.501872
Level 2 0.004851 0.000030 0.500943
Level 3 0.006493 0.000050 0.502762

HOCCLUS2 AVG Level 1 0.018339 0.000839 0.511722
Level 2 0.016484 0.000670 0.509663
Level 3 0.012082 0.000287 0.507020

HOCCLUS2 MAX Level 1 0.018332 0.000829 0.510398
Level 2 0.016065 0.000659 0.508897
Level 3 0.011150 0.000274 0.506331

HOCCLUS2 MIN Level 1 0.015922 0.000753 0.509336
Level 2 0.016401 0.000668 0.509542
Level 3 0.011647 0.000270 0.506575

HOCCLUS2 EC Level 1 0.013922 0.000536 0.507314
Level 2 0.013717 0.000352 0.507112
Level 3 0.013065 0.000253 0.507751

The results in terms of AUPR and AUROC values can only be used for relative
comparison and not as absolute evaluation measures because they are spoiled by
the assumption made on unknown associations, that are considered as negative
examples
The best result is highlighted in boldface.

that allow LP-HCLUS to identify larger clusters at higher
levels of the hierarchy. Larger clusters, even if possibly less
reliable, in some cases can lead to the identification of less
obvious functional associations.
Comparing the diseases at different levels of the hier-

archy confirmed in the updated release of HMDD, we
found associations involving 276 diseases at level 1, 360
at level 2 and 395 at level 3. Among the diseases involved
in new associations predicted at level 3, but not at levels
1 and 2, there is the acquired immunodeficiency syn-
drome, a chronic, potentially life-threatening condition
caused by the human immunodeficiency virus (HIV). The
associations predicted by LP-HCLUS for this disease, con-
firmed in HMDD v3.2, involve hsa-mir-150 (with score
0.68) and hsa-mir-223 (with score 0.63). Such associations
have been reported in [36]. The authors show the results
of a study where the regulation of cyclin T1 and HIV-
1 replication has been evaluated in resting and activated
CD4+ T lymphocytes with respect to the expression of

endogenous miRNAs. In this study, the authors demon-
strated that miR-27b, miR-29b, miR-150, and miR-223 are
significantly downregulated upon CD4(+) T cell activa-
tion, and identified miR-27b as a novel regulator of cyclin
T1 protein levels and HIV-1 replication, while miR-29b,
miR-223, and miR-150 may regulate cyclin T1 indirectly.
Other validated miRNAs associated with the acquired

immunodeficiency syndrome in HMDD v3.2 are hsa-mir-
27b, -29b, -29a, -29b-1 and hsa-mir-198. As shown in
Fig. 19, these miRNAs, although not directly associated
by LP-HCLUS with the acquired immunodeficiency syn-
drome, have been associated with disease terms strictly
related to the immune system, with a score and speci-
ficity depending on the hierarchy level. In particular, at
level 1, they have been associated with the immune sys-
tem disease term (DOID_2914, a subclass of disease of
anatomical entity) with a score ranging from 0.48 for hsa-
mir-29b to a maximum value of 0.67 for hsa-mir-29a. At
level 2 of the hierarchy, in addition to the classification
in the immune system disease, they have also been asso-
ciated with the human immunodeficiency virus infection
(DOID_526) that is a subclass of viral infectious disease
(DOID_934) and the direct parent of the acquired immun-
odeficiency syndrome (DOID_635). At level 3, all the miR-
NAs have also been associated with the viral infectious
disease term.
In addition to hsa-mir-155 and hsa-mir-223, LP-HCLUS

returned many other associations involving acquired
immunodeficiency syndrome with a high score. In partic-
ular, 59 different miRNAs have been associated at level 2
(score between 0.74 and 0.63), and 191 at level 3 (score
between 0.68 and 0.63). Considering such high scores,
we investigated in the literature for some of the associ-
ated miRNAs. In particular, we searched for hsa-mir-30a,
that was among the miRNAs with the highest association
score (0.74 at the 2nd level) and found a work where it has
been significantly associated with other six miRNAs (i.e.,
miR-29a, miR-223, miR-27a, miR-19b, miR-151-3p, miR-
28-5p, miR-766) as biomarker for monitoring the immune
status of patients affected by acquired immunodeficiency
syndrome [38].
Together with hsa-mir-30a, also other miRNAs belong-

ing to the same family (i.e., hsa-mir-30b, -30c and -30e)
have been associated by LP-HCLUSwith the same disease.
In [39], fourmiRNA-like sequences (i.e., hsa-mir-30d, hsa-
mir-30e, hsa-mir-374a and hsa-mir-424) were identified
within the env and the gag-pol encoding regions of sev-
eral HIV-1 strains. The mapping of their sequences within
the HIV-1 genomes localized them to the functionally sig-
nificant variable regions, designated V1, V2, V4 and V5,
of the env glycoprotein gp120. This result was impor-
tant because the regions V1 to V5 of HIV-1 envelopes
contain specific and well-characterized domains that are
critical for immune responses, virus neutralization and
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Fig. 14 TPR@k results for the dataset ID, obtained with the best configuration (α = 0.1,β = 0.4) at different levels of the hierarchy

Fig. 15 ROC curves for the dataset ID, obtained with the best configuration (α = 0.1,β = 0.4) at different levels of the hierarchy. These curves can
only be used for relative comparison and not as absolute evaluation measures because they are spoiled by the assumption made on unknown
relationships
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Fig. 16 Precision-Recall curves for the dataset ID, obtained with the best configuration (α = 0.1,β = 0.4) at different levels of the hierarchy. These
curves can only be used for relative comparison and not as absolute evaluation measures because they are spoiled by the assumption made on
unknown relationships

disease progression. The authors concluded that the
newly discovered miRNA-like sequences in the HIV-1
genomes might have evolved to self-regulated survival
of the virus in the host by evading the innate immune
responses and therefore influencing persistence, replica-
tion or pathogenicity of the virus.
Another example of reliable associations of ncRNAs

with the acquired immunodeficiency syndrome identified
by LP-HCLUS, and not present in HMDD 3.2, are those
with hsa-mir-125b, hsa-mir-28 and hsa-mir-382. These
associations are confirmed in [40], where the authors pro-
vided evidence that these miRNAs can contribute, along-
side hsa-mir-155 and hsa-mir-223, to the HIV latency. It
is noteworthy that these associations appear only at level
3 of the hierarchy but not at levels 2 or 1.
Altogether, these results highlight two interesting fea-

tures of LP-HCLUS: the ability to discover meaningful
functional associations, and the way the hierarchical clus-
tering can help in the identification of hidden informa-
tion. In principle, none of the hierarchy levels should be
ignored. As shown for the case of the acquired immun-
odeficiency syndrome, the first hierarchical level, although
in principle more reliable (since based on more strin-
gent constraints), in some cases is not able to capture less

obvious existing associations. On the other hand, results
obtained from higher levels of the hierarchy are much
more inclusive and can provide pieces of information that,
in the lowest levels, are hidden, and that can be pivotal to
the specific aims of a research investigation.
Finally, we compared the ranking values assigned by

LP-HCLUS, ncPred and HOCCLUS2 on the same asso-
ciations, that are, those confirmed in the HMDD v3.2
release (see Additional file 5). At this purpose, we com-
puted the AUTPR@k by considering the new interactions
introduced in HMDD v3.2 as ground truth. By observ-
ing the results reported in Table 6, we can confirm that
LP-HCLUS based on the MAX measure outperforms all
the competitors in identifying new interactions from the
previous version of the dataset (HMDD v3.0) that have
been subsequently validated and introduced in the latest
version (HMDD v3.2).

Discussion on the integrated dataset
As concerns the ID dataset, we performed a qualita-
tive analysis of the top-ranked relationships predicted by
LP-HCLUS, i.e., on those with a score equal to 1.0. For
this purpose, we exploited MNDR v2.0 [41], which is
a comprehensive resource including more than 260,000



Barracchia et al. BMC Bioinformatics           (2020) 21:70 Page 19 of 24

Table 4 AUTPR@k, AUROC and AUPR values for the dataset ID,
obtained with the best configuration (α = 0.1,β = 0.4) at
different levels of the hierarchy

AUTPR@k AUPR AUROC

LP-HCLUS-NoLP 0.024087 0.000150 0.525501

ncPred 0.015365 0.000087 0.521975

LP-HCLUS AVG Level 1 0.024335 0.000198 0.532059
Level 2 0.013660 0.000080 0.519290
Level 3 0.005883 0.000024 0.510396

LP-HCLUS MAX Level 1 0.070639 0.001218 0.567991
Level 2 0.054821 0.000780 0.554388
Level 3 0.055141 0.000756 0.551873

LP-HCLUS MIN Level 1 0.005451 0.000010 0.504690
Level 2 0.000474 0.000000 0.500490
Level 3 0.000305 0.000000 0.500154

LP-HCLUS EC Level 1 0.004609 0.000010 0.506366
Level 2 0.005605 0.000013 0.505695
Level 3 0.005353 0.000010 0.505862

HOCCLUS2 AVG Level 1 0.002246 0.000087 0.502169
Level 2 0.002553 0.000006 0.502843
Level 3 0.000885 0.000001 0.501328

HOCCLUS2 MAX Level 1 0.002238 0.000087 0.502169
Level 2 0.002659 0.000005 0.502676
Level 3 0.000973 0.000001 0.500826

HOCCLUS2 MIN Level 1 0.002247 0.000087 0.502169
Level 2 0.002553 0.000006 0.502843
Level 3 0.000885 0.000001 0.501328

HOCCLUS2 EC Level 1 0.002763 0.000015 0.502337
Level 2 0.002320 0.000008 0.501835
Level 3 0.003533 0.000007 0.503683

The results in terms of AUPR and AUROC values can only be used for relative
comparison and not as absolute evaluation measures because they are spoiled by
the assumption made on unknown associations, that are considered as negative
examples
The best result is highlighted in boldface.

experimental and predicted ncRNA-disease associations
for mammalian species, including lncRNA, miRNA,
piRNA, snoRNA and more than 1,400 diseases. Data
in MNDR comes from manual literature curation and
other resources, and include a confidence score for each
ncRNA–disease association. Experimental evidences are
manually classified as strong or weak, while the confi-
dence score is calculated according to the evidence type
(s: strong experimental evidence, w: weak experimental
evidence, p: prediction) and the number of evidences.
The top-ranked relationships returned by LP-HCLUS

involve 1,067 different diseases and 814 different ncR-
NAs, consisting of 488 miRNAs and 326 lncRNAs, among
which there are several antisense RNAs and miRNA host-
ing genes. Table 7 shows some examples of top-ranked
interactions predicted by LP-HCLUS and involving 4 ncR-
NAs, i.e., h19, wrap53, pvt1 and hsa-miR-106b.
h19 is a long intergenic ncRNA (lincRNA) and

a developmentally-regulated maternally-imprinted gene
that is expressed only from the inherited chromosome
11. A putative function assigned to it is a tumor suppres-
sor activity. GeneCards (GCID:GC11M001995) reports
its association with the Wilms Tumor 2 (WT2) and
Beckwith-Wiedemann Syndrome, both caused by muta-
tion or deletion of imprinted genes within the chromo-
some 11p15.5 region. Other sources, such as GenBank
[42] and MNDR [41, 43], report the association of h19
with many other human diseases, the majority being dif-
ferent types of tumors.
Searching for h19-disease associations in MNDR, we

obtained 101 results with a confidence score ranging
from 0.9820 to 0.1097. The same search performed on
the output produced by LP-HCLUS (0.1 - 0.4, first level
of the hierarchy) returned 993 associations with a score

Fig. 17 Result of the Friedman test with Nemenyi post-hoc test, with a significance level of 0.05, performed on the area under the TPR@k curve
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Table 5 Average Area Under the TPR@k curve and p-values
obtained by the Wilcoxon signed-rank test with the Bonferroni
correction

Average Area Under TPR@k p-values

Method HMDD v3.0 dataset ID dataset LP-HCLUS vs ncPred

ncPred 0.087370 0.015365

LP-HCLUS_MAX_L1 0.088130 0.070639 0.005833 (+)

LP-HCLUS_MAX_L2 0.109292 0.054821 0.000266 (+)

LP-HCLUS_MAX_L3 0.104244 0.055141 0.000266 (+)

The best result for each dataset is emphasized in boldface. (+) indicates that
LP-HCLUS significantly outperforms ncPred (p-value <0.01)
The best result is highlighted in boldface.

ranging from 1.0 to 0.4. A comparative analysis of the
results shows a perfect match of 33 predictions (see
Table 8), many of which also with a similar confidence
score, despite the different approaches adopted to calcu-
late them.
Among the top-ranked associations predicted by LP-

HCLUS involving h19, the association with “bone dis-
eases, developmental” is not present in the results
obtained by the MNDR database (see Table 7). Bone dis-
eases can have different origins and can be also related to
hyperfunction or hypofunction of the endocrine glands,
such as pituitary gland, thyroid gland, parathyroid glands,
adrenal glands, pancreas, gonads, and pineal gland. The
results of the comparative analysis with the data in

MNDR, in addition to the relationship with osteosar-
coma (LP-HCLUS score 0.7732385; MNDR confidence
score s: 0.9820) show associations between h19 and other
diseases which involve endocrine glands such as: ovar-
ian neoplasms (LP-HCLUS score 0.7052352; MNDR con-
fidence score p: 0.1097, s: 0.8589); pancreatic cancer
(LP-HCLUS score 0.8150848; MNDR confidence score s:
0.8808); pancreatic ductal adenocarcinoma (LP-HCLUS
score 0.6575157; MNDR confidence score s: 0.9526) and
thyroid cancer (LP-HCLUS score 0.7732385; MNDR con-
fidence score s: 0.8808, p: 0.1097) (See Table 8). This
indicates that h19 can have a relationship with endocrine
glands functions and, therefore, can be related to bone
diseases as predicted by LP-HCLUS.

Conclusions
In this paper, we have tackled the problem of pre-
dicting possibly unknown ncRNA-disease relationships.
The approach we proposed, LP-HCLUS, is able to take
advantage from the possible heterogeneous nature of the
attributed biological network analyzed. In this way, it is
possible to identify ncRNA-disease relationships by tak-
ing into account the properties of additional biological
entities (e.g. microRNAs, lncRNAs, target genes) they are
connected to.
Methodologically, LP-HCLUS is based on the identifi-

cation of paths in the heterogeneous attributed biolog-
ical network, which potentially confirm the connection

Fig. 18 A graphical representation of the top-100 relationships predicted by LP-HCLUS from HMDD v3.0. The dark green lines represent the position
of the relationships that have been subsequently validated and introduced in HMDD v3.2
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Fig. 19 Ontology classification of acquired immunodeficiency syndrome according to EMBL-EBI Ontology Lookup Service [37]

between a ncRNA and a disease, and a clustering phase,
which is preparatory to a link prediction phase. In this
way, it is possible to catch the network autocorrelation
phenomena and exploit information implicitly conveyed
by the network structure.

Table 6 AUTPR@k computed using the new associations
introduced in the new version of HMDD v3.2 as ground truth

AUC TPR@k

LP-HCLUS-NoLP 0.00000

ncPred 0.01448

LP-HCLUS AVG Level 1 0.01754
Level 2 0.02663
Level 3 0.01453

LP-HCLUS MAX Level 1 0.03247
Level 2 0.03423
Level 3 0.03111

LP-HCLUS MIN Level 1 0.01846
Level 2 0.02197
Level 3 0.00962

LP-HCLUS EC Level 1 0.00695
Level 2 0.00527
Level 3 0.00548

HOCCLUS2 AVG Level 1 0.01750
Level 2 0.00627
Level 3 0.00962

HOCCLUS2 MAX Level 1 0.01774
Level 2 0.00763
Level 3 0.00991

HOCCLUS2 MIN Level 1 0.01657
Level 2 0.00627
Level 3 0.00962

HOCCLUS2 EC Level 1 0.01689
Level 2 0.01269
Level 3 0.01252

The best result is highlighted in boldface.

The results confirm the initial intuitions and show com-
petitive performances of LP-HCLUS in terms of accu-
racy of the predictions, also when compared, through
a statistical test (at a significance level of 0.01), with
state-of-the-art competitor systems. These results are also
supported by a comparison of LP-HCLUS predictions
with data reported in MNDR and by a qualitative analy-
sis that revealed that several ncRNA-disease associations
predicted by LP-HCLUS have been subsequently experi-
mentally validated and introduced in amore recent release
(v3.2) of HMDD.
Finally, the association between the long-intergenic

ncRNA h19 and bone diseases, predicted by LP-HCLUS,
suggests an important functional role of h19 in the regula-
tion of endocrine glands functions. This further confirms
the potential of LP-HCLUS as a prediction tool for the for-
mulation of new biological hypothesis and experimental

Table 7 Examples of top-ranked ncRNA-disease associations
predicted by LP-HCLUS with a score equal to 1.0

ncRNA Disease

h19 bone diseases, developmental

h19 carcinoma, hepatocellular

h19 colorectal neoplasms

h19 liver neoplasms

h19 parkinson disease, secondary

hsa-miR-106b aging, premature

hsa-miR-106b burkitt s lymphomas

hsa-miR-106b disease progression

pvt1 aging, premature

pvt1 disease progression

wrap53 adrenal gland neoplasms

wrap53 adrenocortical carcinoma

wrap53 emphysema
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Table 8 Result of matching between the associations predicted
by LP-HCLUS and those present in MNDR

ncRNA Disease LP-HCLUS MNDR

h19 adenocarcinoma 0.7455674 s: 0.7311

h19 adrenocortical carcinoma 0.8150848 s: 0.7311

h19 aortic valve disease 0.6492379 s: 0.7311

h19 astrocytoma 0.7455674 s: 0.7311

h19 breast adenocarcinoma 0.7005121 s: 0.7311

h19 carcinoma, non-small-cell lung 0.7052352 s: 0.9820, p: 0.1097

h19 chronic myeloid leukemia 0.7005121 s: 0.8808

h19 colon carcinoma 0.7005121 s: 0.8589

h19 colorectal cancer 0.8150848 s: 0.9820, p: 0.1097

h19 coronary artery disease 0.6600133 w: 0.4752

h19 embryonal carcinoma 0.6522726 s: 0.9526

h19 endometriosis 0.7052352 s: 0.8808

h19 esophageal cancer 0.8150848 s: 0.8589

h19 gallbladder cancer 0.6522726 s: 0.8808

h19 heart defects, congenital 0.6703589 s: 0.8589

h19 laryngeal squamous cell carcinoma 0.6522726 s: 0.9526

h19 liver neoplasms 1.0000000 w: 0.4752

h19 lung adenocarcinoma 0.6669160 s: 0.8589

h19 lymphoma 0.6962170 p: 0.1321

h19 osteoarthritis 0.6749659 w: 0.4752

h19 osteosarcoma 0.7732385 s: 0.9820

h19 ovarian neoplasms 0.7052352 s: 0.8589, p: 0.1097

h19 pancreatic cancer 0.8150848 s: 0.8808

h19 pancreatic ductal adenocarcinoma 0.6575157 s: 0.9526

h19 polycythemia vera 0.7005121 s: 0.7311

h19 prostatic neoplasms 0.7052352 s: 0.7311, p: 0.1097

h19 rheumatoid arthritis 0.6703589 s: 0.9526

h19 schizophrenia 0.7052352 p: 0.1097

h19 squamous cell carcinoma 0.6826756 w: 0.4752

h19 thyroid cancer 0.7732385 s: 0.8808, p: 0.1097

h19 urinary bladder neoplasms 0.6962170 p: 0.1097

h19 uterine cervical neoplasms 0.7455674 s: 0.7311, p: 0.1097

MNDR scores are associated with an evidence type: s: strong experimental
evidence, w: weak experimental evidence, p: prediction

validations for the characterization of the roles of ncRNAs
in biological processes.
For future work, we plan to extend our approach in

order to predict the direction of the relationships, and
not only their presence. This would require to identify
and deal with cause/effect phenomena. Depending on
the availability of data, it would also be very interesting
to evaluate the results of LP-HCLUS analysis on tissue-
specific datasets or on datasets related to physiological or
pathological specific conditions.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-020-3392-2.

Additional file 1: Discussion of related work.

Additional file 2: Analysis of the time complexity of lP-HCLUS.

Additional file 3: Complete results of the comparative analysis between
the predictions returned by lP-HCLUS from hMDD v3.0 and the new
validated relationships in hMDD v3.2.

Additional file 4: Detailed list of associations involving the acquired
immunodeficiency syndrome and similar disease terms in three hierarchical
levels extracted by lP-HCLUS.

Additional file 5: Comparative analysis of the ranking produced by
lP-HCLUS and its competitors with respect to the new validated
relationships in hMDD v3.2.

Abbreviations
AUPR: Area under the Precision-Recall curve; AUROC: Area under the ROC
curve; AUTPR@k: Area under the TPR@k curve; AVG: Average; CUI: Concept
Unique Identifier; DOID: Human Disease Ontology ID; EC: Evidence
Combination; EMBL-EBI: European Molecular Biology Laboratory - European
Bioinformatics Institute; GBA: Guilt-By-Association principle; GCID: GeneCards
ID; HOCCLUS2: Hierarchical Overlapping Co-CLUStering2; HPO: Human
Phenotype Ontology; lncRNA: long non-coding RNA; LP-HCLUS: Link Prediction
through Hierarchical CLUStering; MAX: Maximum; MeSH: Medical Subject
Headings; MIN: Minimum; miRNA: microRNA; ncRNA: non-coding RNA; OMIM:
Online Mendelian Inheritance in Man; RefSeq: NCBI’s Reference Sequences
database; RNA: RiboNucleic Acid; ROC: Receiver Operating Characteristic; SNP:
Single-Nucleotide Polymorphism; TPR@k: True Positive Rate at k; UML: Unified
Modeling Language; UMLS: Unified Medical Language System

Acknowledgements
Not applicable

Authors’ contributions
MC and GP conceived the task and designed the solution from a
methodological point of view. EB and GP implemented the system. EB ran the
experiments and collected the results. MC and GP discussed the results from a
quantitative viewpoint. DD contributed to the conception of the biological
investigation, collaborated to the review and selection of bioinformatics
resources and analyzed the results from a qualitative viewpoint. All the authors
contributed to the manuscript drafting and approved the final version of the
manuscript.

Funding
We would like to acknowledge the financial support of the European
Commission through the project MAESTRA - Learning from Massive,
Incompletely annotated, and Structured Data (Grant Number
ICT-2013-612944). We also acknowledge the financial support of Ministry of
Education, Universities and Research (MIUR) through the PON projects “Big
Data Analytics” (AIM1852414 - Activity 1, Line 1) and TALIsMAn - Tecnologie di
Assistenza personALizzata per il Miglioramento della quAlità della vitA (Grant
N. ARS01_0111), and of Italian National Research Council (CNR) through the
InterOmics Flagship project.

Availability of data andmaterials
The system LP-HCLUS, the adopted datasets and all the results are available at:
http://www.di.uniba.it/~gianvitopio/systems/lphclus/

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

https://doi.org/10.1186/s12859-020-3392-2
http://www.di.uniba.it/~gianvitopio/systems/lphclus/


Barracchia et al. BMC Bioinformatics           (2020) 21:70 Page 23 of 24

Author details
1University of Bari Aldo Moro - Department of Computer Science, Via Orabona,
4, 70125 Bari, Italy. 2Big Data Laboratory, National Interuniversity Consortium
for Informatics (CINI), 00185 Rome, Italy. 3CNR, Institute for Biomedical
Technologies, 70126 Bari, Italy. 4Department of Knowledge Technologies,
Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.

Received: 30 August 2019 Accepted: 29 January 2020

References
1. Cech TR, Steitz JA. The Noncoding RNA Revolution—Trashing Old Rules

to Forge New Ones. Cell. 2014;157(1):77–94. https://doi.org/10.1016/j.cell.
2014.03.008.

2. Lekka E, Hall J. Noncoding RNAs in disease. FEBS Lett. 2018;592(17):
2884–900. https://doi.org/10.1002/1873-3468.13182.

3. Bernstein B, Birney E, Dunham I, Green E, Gunter C, Snyder M, Abyzov
A, Aken B, Barrell D, Barson G, Berry A, Bignell A, Boychenko V, Bussotti
G, Chrast J, Davidson C, Derrien T, Despacio-Reyes G, Diekhans M,
Hubbard T. An integrated encyclopedia of DNA elements in the human
genome. Nature. 2012;489:57–74.

4. Davis C, Hitz B, Sloan C, Chan E, Davidson J, Gabdank I, Hilton J, Jain K,
Baymuradov U, Narayanan A, Onate K, Graham K, Miyasato S, Dreszer T,
Strattan J, Jolanki O, Tanaka F, Cherry J. The Encyclopedia of DNA
elements (ENCODE): data portal update. Nucleic Acids Res. 2017;46:.
https://doi.org/10.1093/nar/gkx1081.

5. Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions
and therapy. Trends Mol Med. 2014;20(8):460–9. https://doi.org/10.1016/j.
molmed.2014.06.005.

6. Melissari M-T, Grote P. Roles for long non-coding RNAs in physiology and
disease. Arch Eur J Physiol. 2016;468(6):945–58. https://doi.org/10.1007/
s00424-016-1804-y.

7. Akhade VS, Pal D, Kanduri C. Long Noncoding RNA: Genome
Organization and Mechanism of Action. Adv Exp Med Biol. 2017;1008:
47–74. https://doi.org/10.1007/978-981-10-5203-3_2.

8. Bak RO, Mikkelsen JG. miRNA sponges: soaking up miRNAs for regulation
of gene expression. Wiley Interdiscip Rev RNA. 2014;5(3):317–33. https://
doi.org/10.1002/wrna.1213.

9. Yoon J-H, Abdelmohsen K, Gorospe M. Functional interactions among
microRNAs and long noncoding RNAs. Semin Cell Dev Biol. 2014;34:9–14.
https://doi.org/10.1016/j.semcdb.2014.05.015.

10. Yang X, Gao L, Guo X, Shi X, Wu H, Song F, Wang B. A Network Based
Method for Analysis of lncRNA-Disease Associations and Prediction of
lncRNAs Implicated in Diseases. PLoS ONE. 2014;9(1):87797. https://doi.
org/10.1371/journal.pone.0087797.

11. Wang P, Guo Q, Gao Y, Zhi H, Zhang Y, Liu Y, Zhang J, Yue M, Guo M,
Ning S, Zhang G, Li X. Improved method for prioritization of disease
associated lncRNAs based on ceRNA theory and functional genomics
data. Oncotarget. 2016;8(3):4642–55. https://doi.org/10.18632/
oncotarget.13964.

12. Ceci M, Pio G, Kuzmanovski V, Džeroski S. Semi-supervised multi-view
learning for gene network reconstruction. PLoS ONE. 2015;10(12):1–27.
https://doi.org/10.1371/journal.pone.0144031.

13. Pio G, Ceci M, Malerba D, D’Elia D. ComiRNet: a web-based system for
the analysis of miRNA-gene regulatory networks. BMC Bioinformatics.
2015;16(Suppl 9):7. https://doi.org/10.1186/1471-2105-16-S9-S7.

14. Alaimo S, Giugno R, Pulvirenti A. ncPred: ncRNA-Disease Association
Prediction through Tripartite Network-Based Inference. Front Bioeng
Biotechnol. 2014;2:. https://doi.org/10.3389/fbioe.2014.00071.

15. Bonnici V, Caro GD, Constantino G, Liuni S, D’Elia D, Bombieri N,
Licciulli F, Giugno R. Arena-Idb: a platform to build human non-coding
RNA interaction networks. BMC Bioinformatics. 2018;19(Suppl 10):.
https://doi.org/10.1186/s12859-018-2298-8.

16. Pio G, Ceci M, Prisciandaro F, Malerba D. LOCANDA: Exploiting Causality
in the Reconstruction of Gene Regulatory Networks. In: Yamamoto A,
Kida T, Uno T, Kuboyama T, editors. Discovery Science. Cham: Springer;
2017. p. 283–97.

17. Pio G, Ceci M, Prisciandaro F, Malerba D. Exploiting causality in gene
network reconstruction based on graph embedding. Mach Learn. 2019.
https://doi.org/10.1007/s10994-019-05861-8.

18. Pio G, Malerba D, D’Elia D, Ceci M. Integrating microRNA target
predictions for the discovery of gene regulatory networks: a
semi-supervised ensemble learning approach. BMC bioinformatics.
2014;15(Suppl 1):4. https://doi.org/10.1186/1471-2105-15-S1-S4.

19. Mignone P, Pio G, D’Elia D, Ceci M. Exploiting transfer learning for the
reconstruction of the human gene regulatory network. Bioinformatics.
2019. https://doi.org/10.1093/bioinformatics/btz781.

20. Chen X, Yan CC, Luo C, Ji W, Zhang Y, Dai Q. Constructing lncRNA
functional similarity network based on lncRNA-disease associations and
disease semantic similarity. Sci Rep. 2015;5:. https://doi.org/10.1038/
srep11338.

21. Martínez V, Berzal F, Cubero J-C. A Survey of Link Prediction in Complex
Networks. ACM Comput Surv. 2016;49(4):69–16933. https://doi.org/10.
1145/3012704.

22. Blockeel H, Raedt LD, Ramon J. Top-down induction of clustering trees.
In: Shavlik JW, editor. Proc. of ICML 1998. Madison: Morgan Kaufmann;
1998. p. 55–63.
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