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Abstract: MXenes with a two-dimensional (2D) structure have attracted attention as potential biomed-
ical materials. In this study, Ti3C2 MXene particles with 2D-lamellar structures were intercalated and
their potential as a biomaterial was evaluated using human mesenchymal stem cells. Intercalated
MXene was characterized in terms of microstructure, phase composition, and size. Cell prolifera-
tion experiments with MXene particles confirmed that concentrations >50 µg/mL were cytotoxic,
while concentrations <20 µg/mL promoted osteogenic differentiation. Moreover, MXene effectively
facilitated the early and late osteogenic gene expression.
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1. Introduction

Many pathways have led to the discovery of new materials with completely new prop-
erties. Bioceramics are very useful in hard-tissue engineering and have structural stability
and superior biocompatibility [1]. Traditional industrial oxides, such as zirconia, alumina,
and titanium oxide, have been applied biologically when new biological properties have
been discovered [2–4].

MXenes were discovered in 2011. They are hydrophilic two-dimensional (2D) materi-
als that have been studied in various applications, such as sensors, catalysis, and water
purification [5–8]. Their use as biomedical materials has attracted attention, especially their
antibacterial effects, photothermal-conversion efficiency, and fluorescence properties [9].
They are expected to show good biostability compared to 2D graphene-based materials due
to their biodegradability [10,11]. MXenes naturally form stacked structures, which increase
the surface available for drug attachment and reduce cell damage induced by direct contact
with 2D MXene, compared to MXene nanosheets [12–14]. This stacked-lamellar structure
can enhance the application of MXene particles as drug carriers [10].

Despite the interest as a biomaterial, little is known about the interactions of MXenes
with stem cells or their biological tissue affinity [10]. MXenes have been applied as bone
regeneration composites due to their excellent mechanical properties for tissue engineer-
ing [15,16]. However, there are no reports on the osteo-inductive or -conductive properties
of MXene particles or flakes. As a potential biomaterial, it is essential to investigate their
biological characteristics for wide application in hard-tissue engineering [17,18].

In this study, MXene particles with a stacked 2D-flake structure were prepared by
intercalation, resulting in a more favorable interlocking structure for producing composites
or incorporating drugs [19]. The effects of the MXenes on the bone differentiation behavior
of human mesenchymal stem cells were also evaluated [20,21].

2. Materials and Methods

Ti3C2 MXene (Invisible, Korea) was proceeded through intercalation at room tempera-
ture. MXene particles were mixed with tetramethylammonium hydroxide for 3 days, and
the morphology of the intercalated MXene was observed using field emission scanning
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electron microscopy (FE-SEM; Sigma300, Zeiss, Oberkochen, Germany). The particle size
was investigated using Zetasizer (Nano-ZS Zetasizer, Malvern Panalytical, Malvern, UK)
and the phase composition by X-ray diffraction (XRD; Ulima IV, Rigaku, Tokyo, Japan).
Intercalated MXene was used throughout all experiments in this study.

The cytotoxicity of MXene was evaluated in human mesenchymal stem cells (hMSCs,
A15652, Thermo Fischer, Waltham, MA, USA) treated with MXene at concentrations of
0–100 µg/mL and cultured for up to 7 days. Cell proliferation was assessed using the MTS
kit (G3580, Promega, Madison, WI, USA) [22], and cell morphology was observed after
culture for 1 day using confocal laser scanning microscopy (CLSM; Zeiss).

The alkaline phosphatase (ALP, Anaspec, Fremont, CA, USA) activity was measured after
7 and 14 days using p-nitrophenylphosphate, according to the manufacturer’s protocol [23].

Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to investi-
gate the osteogenic effects of MXene via gene expression. The synthesis of cDNA from total
RNA was examined for 2 weeks in accordance with the protocol of the cDNA Synthesis
Kit (NanoHelix, Daejeon, Korea) [24]. First, 1 µg of RNA extracted from cells was used
to synthesize cDNA by reverse transcription. The expression of osteogenic markers was
examined using SYBR green master mix (NanoHelix) [25], normalized to the expression of
glyceraldehyde-3-phosphate dehydrogenase and calculated as 2∆∆Ct. The Alizarin Red S
(ARS, Sigma-Aldrich, St. Louis, MO, USA) assay was used to detect calcium deposits gen-
erated by hMSC at 14 days, using normal (alpha-MEM, LM 008-02, Welgene, Gyeongsan,
Korea) and osteogenic (O/M) media [26,27]. The mineralized cells stained red, and the
amount of staining was quantified at 405 nm.

The quantitative results were performed at the least three replicates from each test
group. All the results were presented as mean ± deviation. The statistical analyses
were performed using a t-test and comparisons between groups were analyzed by one-
way analysis of variance test. The differences with p < 0.05 were considered statistically
significant (* p < 0.05, ** p < 0.01, *** p < 0.001).

3. Results and Discussion

Figure 1 shows the properties of intercalated MXene. The SEM images show the
stacked-lamellar structure of the MXene. After intercalation, the gaps between 2D sheets
of MXene were wider, and the average volume increased [28]. Figure 1b illustrates the
size distribution graphs of MXene particles. D [3,4] indicates the mean size of particles
based on volume. The average sizes of MXene and intercalated MXene particles were 6.3
and 11.2 µm, respectively. After the intercalation of MXene, XRD was used to determine
whether a phase or crystallographic change had occurred. The XRD pattern in Figure 1c
shows the typical crystallographic peaks of MXene before and after intercalation.

Intercalation is an intermediate step in the process of delaminating MXene with a
stacked structure to a 2D lamella structure, which increases the effective surface area of
MXene particles and, if necessary, adjusts the thickness of the MXene particles. The interca-
lation in this study is also performed because we aimed to assess MXene in a more favorable
form for application to therapeutic agent loading or composite preparation. Intercalation is
treated using intercalating compounds, such as DMSO [29–31], CTAB [32], alkylamines,
isopropyl alcohol, urea, tetrapropylammonium hydroxide [33], and metal cations [34,35].
We conducted the intercalation using tetramethylammonium hydroxide, which allowed us
to obtain intercalated MXene. After the intercalation treatment, the typical crystallographic
peaks of MXene were detected through XRD, but the overall peaks were relatively broad,
and the peak intensity of the (002) plane decreased compared to that of pristine MXene.
The decrease in the (002) peak is caused by the decrease in the crystallinity of MXene [36].
Moreover, the intensity of the (110) plane increased relative to other characteristic peaks,
which is attributed to structural expansion by the intercalation process [36]. This XRD
pattern analysis demonstrates the successful preparation of intercalated MXene.



Materials 2021, 14, 4453 3 of 8Materials 2021, 14, x FOR PEER REVIEW 3 of 9 
 

 

 
Figure 1. SEM images (a) and particle size distribution (b) of MXene before and after intercalation, 
and the XRD pattern of the MXenes (c). 

Intercalation is an intermediate step in the process of delaminating MXene with a 
stacked structure to a 2D lamella structure, which increases the effective surface area of 
MXene particles and, if necessary, adjusts the thickness of the MXene particles. The inter-
calation in this study is also performed because we aimed to assess MXene in a more fa-
vorable form for application to therapeutic agent loading or composite preparation. Inter-
calation is treated using intercalating compounds, such as DMSO [29–31], CTAB [32], al-
kylamines, isopropyl alcohol, urea, tetrapropylammonium hydroxide [33], and metal cat-
ions [34,35]. We conducted the intercalation using tetramethylammonium hydroxide, 
which allowed us to obtain intercalated MXene. After the intercalation treatment, the typ-
ical crystallographic peaks of MXene were detected through XRD, but the overall peaks 
were relatively broad, and the peak intensity of the (002) plane decreased compared to 
that of pristine MXene. The decrease in the (002) peak is caused by the decrease in the 
crystallinity of MXene [36]. Moreover, the intensity of the (110) plane increased relative to 
other characteristic peaks, which is attributed to structural expansion by the intercalation 
process [36]. This XRD pattern analysis demonstrates the successful preparation of inter-
calated MXene. 

The effects of MXene at concentrations of 0–100 μg/mL on cytotoxicity and prolifer-
ation were assessed Figure 2. Cell proliferation on the first day was higher at low MXene 
concentrations (<20 μg/mL) compared to a tissue culture plate (TCP) without MXene. 
However, beginning day three, the proliferation on TCP and MXene were similar. Results 
after 5 days of incubation showed a significant decrease in cell proliferation at 50 μg/mL. 
Although 50 μ/mL is slightly cytotoxic, it does not strongly attack cells from scratch, such 
as a concentration of 100 μg/mL; thus, it seems that the cells, even weakly, survived and 
multiplied slightly until the third day. However, it is thought that the growth rate, after 
three days, of the remaining cells was very low because unhealthy cells were eliminated 
significantly during the culture media exchange after 3 days of culture. The hMSC popu-
lation was reduced when exposed to >50 μg/mL MXene for 7 days, indicating cell toxicity. 
For all subsequent cell experiments, concentrations <50 μg/mL were used. 

Figure 1. SEM images (a) and particle size distribution (b) of MXene before and after intercalation,
and the XRD pattern of the MXenes (c).

The effects of MXene at concentrations of 0–100 µg/mL on cytotoxicity and prolifera-
tion were assessed Figure 2. Cell proliferation on the first day was higher at low MXene
concentrations (<20 µg/mL) compared to a tissue culture plate (TCP) without MXene.
However, beginning day three, the proliferation on TCP and MXene were similar. Results
after 5 days of incubation showed a significant decrease in cell proliferation at 50 µg/mL.
Although 50 µ/mL is slightly cytotoxic, it does not strongly attack cells from scratch, such
as a concentration of 100 µg/mL; thus, it seems that the cells, even weakly, survived and
multiplied slightly until the third day. However, it is thought that the growth rate, after
three days, of the remaining cells was very low because unhealthy cells were eliminated
significantly during the culture media exchange after 3 days of culture. The hMSC popula-
tion was reduced when exposed to >50 µg/mL MXene for 7 days, indicating cell toxicity.
For all subsequent cell experiments, concentrations <50 µg/mL were used.

Many studies have been reported that cells maintain viability at concentrations ranging
from tens to hundreds of µg/mL of MXenes [37–39]. Among them, some publications show
the cytotoxicity result at a similar concentration level of MXene to this study [39]. Previous
studies were conducted using various cell lines such as cancer cells and pre-osteoblast [40].
In a study using neural stem cell (NSC), MXene induced cytotoxicity at a relatively low
concentration of 25 µg/mL [37]. Biocompatible MXenes are rising biomaterial that has
recently received great attention for biological applications, with different biocompatibility
reported depending on the cell type used in the evaluation, concentrations of MXene, and
exposure time [41]. Therefore, in this study, we tried to investigate the biocompatibility of
MXene using MSC, a stem cell, and the MTS results showed that MSC behavior is dependent
on MXene concentration and has active cell viability under a concentration of 50 µg/mL.

Figure 3 shows the cell morphology on CLSM. All MXene conditions supported hMSC
attachment, and the cells remained spread out. There was no significant difference in cell
morphology with the MXene concentration.
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Figure 3. The CLSM image is the result of confirming the adhesion and proliferation of hMSCs.

Alkaline phosphatase (ALP) activation was performed to confirm early osteogenic
differentiation, where higher ALP activation indicates that osteogenic differentiation is
being facilitated [42]. The ALP activity with MXene was assessed at 1 and 2 weeks without
osteogenic differentiation (Figure 4). After 1 week, the ALP activity was higher with MXene
than with the TCP control, and the maximum value was 20 µg/mL. After 2 weeks, despite
the noticeable increase in ALP activity in the control, all MXene concentrations showed
higher ALP activity than that of TCP. The ALP activity of cells cultured for 2 weeks was
higher than after 1 week, indicating that MXene particles stimulate the initial osteogenic
differentiation of hMSCs.

Using ARS to analyze the bone mineral formation of cells and extracellular matrix,
which indicates the last stage of osteogenic differentiation, after culture for 21 days, calcium
deposits were visualized in cells and quantified with ARS staining (Figure 5). Cells treated
with MXene showed greater osteogenic differentiation than with the TCP control [21]. The
red part of the picture constitutes mineralized cells dyed by ARS. The calcium deposition
caused by stem cell osteogenic differentiation was proportional to the MXene concentration
and was higher in O/M medium than in α-MEM. The mineral deposition in hMSCs with
MXene was significantly higher than with TCP.
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Figure 6 shows the results of qRT-PCR to examine osteogenic differentiation of hMSC
with MXene at the mRNA level using the markers runt-related transcription factor 2
(RUNX-2) and osteopontin (OPN) (early), osteocalcin (OCN) (middle), and bone sialopro-
tein (BSP) (late), which are markers of the stages of bone differentiation in parentheses.
After cell culture for 1 week, all MXene concentrations resulted in greater marker expression
than TCP. Comparing the differences according to culture duration, the levels of the initial
and middle stage markers (RUNX2, OPN, and OCN) were higher in the cells cultured
for 1 week than at 2 weeks, whereas the levels of the late stage marker BSP was higher at
2 weeks. Comparing MXene concentrations, 20 µg/mL resulted in the strongest osteogenic
gene expression. Interestingly, there was no difference in RUNX2 or OPN expression
between MXene and TCP at 2 weeks. This demonstrates that the expression of early stage
markers is induced very quickly by the MXene and decreases during more than one week
of incubation; middle or late stage osteogenic markers are much more active in two weeks
of incubation.
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Several studies on toxicity and osteogenic differentiation induction for pre-osteoblast
have been published before 2020, as MXene is expected to favor bone-tissue engineering
due to its hydrophilicity and mechanical properties [16,20]. However, there are, yet, no
reports of the effects of MXene particles on biocompatibility and osteogenic differentiation
of mesenchymal stem cells (MSCs).

MSCs are multipotent stromal cells that can be differentiated into a variety of cells,
such as osteoblasts, chondrocytes, myocytes (muscle cells), and adipocytes. Therefore,
stem cells have the advantage of more clearly assessing the osteogenesis-inducing ability
of biomaterials than studies using osteoblastic cell-line, which only have the potential
of osteoblastic differentiation [43]. In addition, the practical healing of damaged tissue
progresses slowly, so the use of stem cells, such as MSC, which can simulate an actual
tissue environment, may obtain clearer data for developing biomaterials or biodevices that
can enhance the ability to recover [44]. Hereby, we evaluated the effects of MXene on MSC
osteogenesis in various ways. As a result, MXene can promote osteogenesis of MSC, but
it is revealed that the differentiation level is dependent on MXene concentration and cell
culture time.

These experimental data showed that Ti3C2 MXene has a significant effect on bone
differentiation, which can provide useful information to many researchers on bone-tissue
engineering. Starting with this study, studies should be followed to establish basic knowl-
edge of MXene biomaterial by comparing and analyzing the biomedical characteristics
between MXenes.

4. Conclusions

MXene particles with a stacked 2D-lamellar structure were intercalated, and their
biomedical characteristics were evaluated by human mesenchymal stem cells. MXene
concentrations >50 µg/mL were cytotoxic, while concentrations <20 µg/mL induced and
accelerated osteogenic differentiation. These results provide information that MXene is
osteoconductive and potentially applicable as a biomaterial for bone-tissue engineering.
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