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Abstract: (1) Background: Inflammation is a major pathomechanism in the development and pro-
gression of age-related macular degeneration (AMD). The retinal pigment epithelium (RPE) may
contribute to retinal inflammation via activation of its Toll-like receptors (TLR). TLR are pattern
recognition receptors that detect the pathogen- or danger-associated molecular pattern. The involve-
ment of TLR activation in AMD is so far not understood. (2) Methods: We performed a systematic
literature research, consulting the National Library of Medicine (PubMed). (3) Results: We identified
106 studies, of which 54 were included in this review. Based on these studies, the current status
of TLR in AMD, the effects of TLR in RPE activation and of the interaction of TLR activated RPE
with monocytic cells are given, and the potential of TLR activation in RPE as part of the AMD
development is discussed. (4) Conclusion: The activation of TLR2, -3, and -4 induces a profound
pro-inflammatory response in the RPE that may contribute to (long-term) inflammation by induction
of pro-inflammatory cytokines, reducing RPE function and causing RPE cell degeneration, thereby
potentially constantly providing new TLR ligands, which could perpetuate and, in the long run,
exacerbate the inflammatory response, which may contribute to AMD development. Furthermore,
the combined activation of RPE and microglia may exacerbate neurotoxic effects.

Keywords: retinal pigment epithelium (RPE); toll-like receptors (TLR); age-related macular degener-
ation (AMD); microglia

1. Introduction

Age-related macular degeneration (AMD) is the major cause for blindness and severe
visual impairment of the elderly in the industrialized world [1]. It can present in early,
intermediate, and two different late forms of the disease, with only the late forms actually
threatening vision. A major hallmark of AMD is the appearance of so-called Drusen, sub-
cellular aggregations of lipids, glycoconjugates, and (pro-inflammatory) proteins [2]. The
late forms of the disease may present in the “dry” form, in which areas of the retinal pig-
ment epithelium (RPE) degenerate, leaving atrophic patches that may result in geographic
atrophy (GA), and the exudative or wet form of the late disease, in which vessels grow from
the choroid into and beneath the retina (choroidal neovascularization, CNV), which are
immature and leaky, causing edema and tissue destruction [3,4]. So far, treatment is only
available for the exudative forms of the disease, targeting the vascular endothelial growth
factor (VEGF) [5]. The untreated, exudative AMD may progress to a subretinal fibrosis and
a fibrotic scar [6]. AMD is a multifactorial disease with different factors contributing to
its onset and progression. While age, genetic disposition (mainly concerning genes of the
complement system), and environmental factors contribute to the risk of developing AMD,
on the tissue level, oxidative stress, lipid dysregulation, and angiogenic signaling are impli-
cated as major pathogenic factors [7–9]. Furthermore, inflammation, especially low-grade
chronic inflammation, is regarded as a major factor in AMD development [10–12].

On a cellular level, the pathogenesis of the disease is happening at the photore-
ceptor/retinal pigment epithelium (RPE)/choroid complex [13], with the RPE generally
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considered to be the primary contributor to disease development [14,15]. The RPE is a
single-layered epithelium, situated between the choroid and the photoreceptors. It has
many functions to support the photoreceptor cells and maintain vision. It makes up the
outer blood-retinal barrier, controlling the entry into the outer retina and supplying the pho-
toreceptor cells with nutrients from the choroid. Additionally, it facilitates waste disposal
in the opposite direction as well as secretes a variety of cytokines, such as VEGF, which
protect the photoreceptors and the choroidal endothelium. Moreover, it takes up shed
photoreceptor outer segments and takes part in recycling the photopigment [16]. It protects
the photoreceptors by defending the tissue against oxidative stress [17] and helps keep up
the immune privilege [18]. The RPE is a major contributor to the blood-retinal barrier [19].
Furthermore, it contributes to an anti-inflammatory milieu by secreting anti-inflammatory
cytokines and suppresses T-cell activation by inducing anergy, apoptosis or regulatory
T-cell differentiation [20–24]. However, the RPE is also involved in the inflammatory
response in the retina. The RPE can act as a sentinel, being strategically located at the
interface between the blood supply (choroid) and the photoreceptors [13], and is equipped
with Toll-like receptors (TLR) [25].

Toll-like receptors are pattern recognition receptors, designed to detect potential dan-
gerous molecules, either pathogen-associated molecular patterns (PAMPS), e.g., lipopolysac-
charid from Gram-negative bacteria or danger-associated molecular patterns (DAMPS), e.g.,
RNA from dying cells [26,27]. In humans, 10 different TLR have been described [28], with
TLR2, -3, and -4 being of the highest interest in regards to the RPE and AMD. TLR can be
located on the cell surface, e.g., TLR2 and TLR4 or intracellularly localized, as TLR3, which
can be found in the endosome [29]. Each TLR detects specific patterns, with TLR2 (together
with TLR1 or TLR6) recognizing, among others, peptidoglycans as indicators of Gram-
positive bacteria [30], TLR3 detecting double strand RNA as found in viruses and dying
cells [31], and TLR4 detecting lipopolysaccharide (LPS), as an indicator for Gram-negative
bacteria [27]. TLR are transmembrane proteins with extracellular leucine-rich repeats to
bind the PAMPS and DAMPS and an intracellular TIR (Toll-interleukin-1 receptor) domain,
responsible for signal transduction [29]. Activation and signaling pathways are dependent
on the respective TLR and ligand, and generally result in the expression of inflammatory
cytokines and are often being mediated via nuclear factor ‘kappa-light-chain-enhancer’
of activated B-cells (NFκB) [29]. Excellent reviews are available on the different signal
transduction pathways and regulators [28,29].

TLR are widely expressed in the eye [32–34], playing a role in a variety of ophthal-
mological conditions such as corneal immunity and inflammation [35–37], conjunctivi-
tis [34,38] or protection from endophthalmitis [39,40]. The aim of this review is to give an
overview on the recent knowledge regarding TLR involvement in AMD, its activation in
the RPE, and the implications this might have for AMD pathophysiology.

2. Results
2.1. Toll-Like Receptors in AMD
2.1.1. TLR Polymorphisms and Patient Studies

The influence of TLRs on the pathophysiology of the AMD is complex. The literature
is filled with contradicting reports on the association of TLR polymorphisms and AMD,
which have been rather recently reviewed in [41]. While some reports see clear, sometimes
protective associations of certain TLR gene variants, others see little or no association at all.
The differences are likely to be associated with the genetic background of the investigated
populations (e.g., American Caucasians vs. Han Chinese population), with the respective
single nucleotide polymorphism (SNP) of the TLR, low frequencies of the investigated
alleles, but also with the different subtypes of AMD.

Little has been published on the potential involvement of TLR2 SNPs in regards to
AMD. In one study conducted in Turkey, the TLR2 Arg753Gln genotype had approximately
four times greater risk of AMD compared with the TLR2 Arg753Arg genotype [42].



Int. J. Mol. Sci. 2021, 22, 8387 3 of 13

For TLR3, the published results are diverse. A protective effect of a specific poly-
morphism in TLR3 (L412F variant, rs3775291) has been shown in geographic atrophy, but
not with early AMD or CNV, as shown in a study in Caucasian Americans from three
different regions (Utah, Maryland, Oregon) [43]. However, several authors expressed their
concerns about the study, questioning its conclusions [44–47]. In addition, other studies
could not replicate this result [48–50]. In a meta-analysis, however, Zhou et al. could
confirm the association between this variant and GA. As a reason for the lack of association
in the previous studies, they discussed small sample size, stratification, and heterogeneous
study populations [51]. Furthermore, they showed that the L412F variant did not alter
the expression of TLR3, but decreased its binding capacity to dsRNA and consequently
shows a reduced activation of NFκB after stimulation [51]. While this association may be
of importance for Caucasian subpopulations, no association has been found in a study
with Indian subjects [52], supported by another meta-analysis, which showed an associ-
ation with Caucasian, but not Asian subjects [53]. Moreover, no association between the
polymorphism of TLR3 has been drawn to the neovascular subtype of AMD, as shown
for Chinese study populations [54,55] or with the growth of GA in AMD patients treated
with anti-VEGF compounds (American study population of 43 different centers) [56]. In
an exhaustive study investigating 68 SNPs of several TLRs, associations of some SNPs,
e.g., for TLR3 and TLR7 were shown to be statistically significant in one cohort of patients
(Dallas cohort), but not in another cohort (Michigan cohort) [48].

The opposite effects of a SNP in a coding region of TLR4 have been studied, with
TLR4 variant D299G (rs4986790) being associated with susceptibility to AMD in one
study (in Caucasian subjects) [57], but not in follow-up studies (in Indian, Turkish, and
Caucasian subjects) [42,43,49,58,59]. However, two recent meta-analyses did find a higher
risk associated with this SNP [60,61]. In a recent Chinese study, an association with an SNP
in a non-coding region of TLR4 with AMD has been shown [62].

Taken together, the evidence of a genetic TLR involvement in AMD is not as strong
as, e.g., shown for the complement factor (CF) H polymorphisms, but there might be
some associations with the AMD development, depending on the genetic background of
the carrier.

In addition, in a small study in a cohort in China, it was shown that blood mononuclear
cells (PBMC) from patients with wet AMD expressed more TLR2 and TLR3 (but not TLR1
or TLR4-10). Furthermore, these cells displayed an elevated secretion of pro-inflammatory
cytokines when treated with TLR2 or TLR3 agonists [63]. These data indicate that extra-
ocular TLR activation may be involved in AMD development. In CNV membranes from
patients with wet AMD, the local expression of TLR3 was also elevated (in the RPE) [64].

2.1.2. Pre-Clinical Data

Apart from clinical data, mouse models have given an indication of potential TLR
involvement in AMD development. In a laser-induced CNV model, TLR2 activation
(by Chlamydia pneumoniae) elevated interleukin (IL)-6 and VEGF and exacerbated neo-
vascularization [65]. This is of special interest, as both the retinal pigment epithelium
and peripheral macrophages could contribute to this CNV by enhanced cytokine secre-
tion [63,65]. Indeed, in addition to increasing the CNV area, TLR2 activation increased the
infiltration of monocytic cells (microglia, macrophages) and neutrophils in a laser-induced
CNV mouse model [66]. TLR2 activation byω-(2-carboxyethyl)pyrrole (CEP), a product
of lipid oxidation, can exert pro-angiogenic effects, shown for various tissues [67] and is
elevated in plasma and retina of AMD patients [68,69]. Furthermore, in mouse models
of oxidative stress, including CEP-induced retinal degeneration, TLR2 inhibition resulted
in decreased complement deposition and activation, and a protection of the RPE and
photoreceptors from cell death. In addition, TLR2 inhibition reduced the migration of
microglia or macrophages into the subretinal space [70]. Of note, the TLR2 activating and
pro-angiogenic properties of CEP have been challenged [71] and CEP has been suggested
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to enhance TLR2(/TLR1) activation by specific agonists [72]. In addition, TLR2 activation
has been shown to be involved in spontaneous CNV development in a mouse model [73].

Activation of TLR3 has been shown to elicit cell death in different retinal cells, such as
photoreceptors [74], retinal ganglion cells [75], and retinal pigment epithelium cells [76,77]
(see below). TLR3 has been implicated to be responsible for retinal degeneration in a mouse
model of cone-rod dystrophy as well as in light-induced degeneration [76]. However, it
has been shown that when activated under oxidative stress, TLR3 activation may actually
protect photoreceptors [78] or retinal pigment epithelial cells [79]. In addition, activation of
TLR3 has been shown to prevent angiogenesis in a laser-induced CNV mouse model [80].

Various Drusen components have been suggested to activate TLR4 signaling. Amyloid
ß is a constituent of Drusen and has been indicated to be involved in AMD pathogene-
sis [81]. In cell culture experiments, it has been shown that amyloid ß induces the secretion
of pro-inflammatory and pro-angiogenic cytokines in RPE cells and induces tube formation,
an indicator of angiogenesis, via the activation of TLR4 [82]. Similarly, 7-Ketocholesterol,
a oxidized cholesterol product, which is a constituent of Drusen and has been impli-
cated in AMD development [83], induces pro-inflammatory cytokine expression via TLR4
signaling [84]. In addition, in mouse models of retinal degeneration, TLR4 activation
by photoreceptor proteins contributed to an increase in subretinal monocytes/microglia,
pro-inflammatory cytokine production, and retinal degeneration [85].

Complement is considered to be a major contributor to AMD pathogenesis, and the
systemic activation of TLR2, -3, and -4 has been indicated to increase the expression and
activation of the alternative complement pathway (C3, CFB) in mouse eye tissue. However,
it has to be pointed out that whole eye homogenates were used in this study. Therefore, the
exact location or the biological significance of this finding is not known [86]. Subretinal
fibrosis is a late-stage after subretinal hemorrhage in late AMD. In a mouse model of
subretinal fibrosis, TLR2 and TLR4 were shown to reduce subretinal fibrosis [87]. Taken
together, the preclinical data indicate that TLR is involved in a variety of pathophysiological
pathways associated with AMD development.

2.2. Toll-Like Receptors in the RPE
2.2.1. TLR Expression in the RPE

RPE cells have been shown to express various TLRs (1–7, 9, 10) with TLR3 considered
to be the most abundant [88]. Expression of TLRs in the RPE can be elevated by pro-
inflammatory stimuli, such as polyinosinic:polycytidylic acid (Poly I:C), as an agonist of
TLR3 or interferon (IFN) γ [88–90]. Interestingly, the effect is not limited to the activated
TLR, as Poly I:C increased the expression of TLR2, TLR3, and TLR4 in the RPE [88]. In
addition, TLR2 expression can be enhanced by LPS, chemical TLR2 agonists, Poly I:C or
Chlamydia pneumoniae [65,73,88,91].

Of note, in the widely used RPE cell line ARPE-19, the expression of TLR3 and TLR4
has been shown [76]. However, ARPE-19 has been described as not responding to LPS
due to the lack of other appropriate components for TLR4 activation (MD-2, CD14) [84],
while other authors find that ARPE-19 responds to LPS [92]. Amyloid ß has been shown
to elevate the expression of TLR4 in ARPE-19. In addition, it induced the elevation of
secretion of IL-6, IL-8, IL-33, and VEGF via TLR4 signaling [44]. Moreover, the complement
factor C5a increased the expression of TLR4 in ARPE-19 cells [93].

2.2.2. TLR Activation in the RPE

The activation of TLR in the RPE primarily induces pro-inflammatory cytokine secre-
tion, which depends on the stimulus, time frame of stimulation, and TLR targeted. The
activation of TLR2 by Chlamydia pneumoniae induces the secretion of IL-6 and VEGF but
not tumor necrosis factor (TNF) α [65]. In addition, TLR2 activation can interfere with
RPE tight junctions, resulting in decreased expression or translocation of tight junction
proteins, and impairing their barrier function [94]. Moreover, an increased expression of
complement factors CFB and C3 has been shown after TLR2 activation [70]. The stimulation



Int. J. Mol. Sci. 2021, 22, 8387 5 of 13

of TLR2 with the synthetic TLR2 agonist PAM2CSK4 induces the secretion of IL-6, IL-1ß,
IL-8, monocyte chemoattractant protein (MCP) 1, and TNFα in RPE cells [73,94,95]. When
tested in RPE/choroid organ cultures allowing for a separation of apical (towards the
retina) and basal (towards the choroid) secretion, IL-1ß and TNFα were secreted almost
exclusively on the basal side, while IL-6 secretion could be seen basally and, to a lesser
degree, apically [94].

RPE cells constitutively express TLR3, as shown for human and porcine RPE [77,88,96].
In fact, TLR3 is the most abundantly expressed TLR in the RPE [88], and its elevation can
be enhanced by activation [88]. Stimulation with the TLR3 agonist Poly I:C [31] induced
the expression and/or secretion of IFN-γ (but not IFN-α), IL-6, IL-1ß, IL-8, TNFα, MCP-
1, and soluble intercellular adhesion molecule (sICAM)-1 [88,91,94,95,97] as well as the
expression of hypoxia-inducible factor (HIF)-1α, junctional adhesion molecule (Jam)-1,
ICAM-1, and basic fibroblast growth factor (bFGF) [25,90,91]. Moreover, an induction of
genes of the complement system (C5, C9, CFH, CFB) has been described [91]. When tested
in RPE/choroid organ cultures allowing for a separation of apical and basal secretion,
IL-1ß and TNFαwere secreted almost exclusively on the basal side, while IL-6 secretion
could be seen basally and, to a lesser degree, apically [94]. In addition, TLR3 activation
can induce VEGF secretion, however, this may be a concentration dependent effect [77,90].
Moreover, TLR3 activation may induce the activation of Mitogen-activated protein kinases
(MAPK; extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun N-terminal kinase
(JNK)) [77,91]. Concerning the RPE function, the activation of TLR3 hardly affects RPE
phagocytosis [25,97], but may reduce the RPE barrier function [94].

In addition to its pro-inflammatory effects, TLR3 activation can induce cell death
in RPE cells [43,76,77,79,97], which may be executed by (programmed) necrotic [74] or
apoptotic pathways [76]. The pathway of cell death may be concentration dependent,
as, e.g., cell death induced by 10 µg/mL but not by 100 µg/mL was mediated by JNK
MAPK [77]. Interestingly, in the presence of oxidative stress, TLR3 activation confers a
protective effect in RPE cells, both shown for primary (murine) RPE cells and ARPE-19.
This protection is mediated via the activation of the transcription factor signal transducer
and activator of transcription (STAT) 3 [78].

As pointed out above, RPE cells express TLR4 (and CD14, as a co-receptor for LPS
detection), and its expression can be enhanced by LPS stimulation [98]. Stimulation of TLR4
with LPS induces the expression and secretion of IL-8, IL-6, TNFα, and IL-1ß [94,97–99] and
the expression of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) [99].
When tested in RPE/choroid organ cultures, IL-1ß and TNFα were secreted almost exclu-
sively on the basal side, while IL-6 secretion was mainly basally found [94]. TLR4 mediated
secretion of IL-6 and IL-8 could be elevated by the complement factor C5a [93]. Regarding
the RPE function, TLR4 stimulation with LPS also interferes with the barrier function of
RPE cells, as shown for primary RPE, RPE/choroid explants, and ARPE-19 cells [94,99].
Moreover, TLR4 stimulation with LPS can reduce the cell viability and phagocytic activity
of primary RPE cells [97]. Of high interest, the long-term stimulation with LPS reduced
the expression of RPE65, an enzyme important for the recycling of the visual pigment [97].
These data strongly indicate that, in addition to inducing pro-inflammatory cytokines, pro-
longed TLR4 activation may interfere with the RPE function. In addition to inflammation,
TLR4 has additional tasks in the RPE, as it participates in the recognition and phagocytosis
of photoreceptor outer segments [100].

The activation of TLR9 in the RPE induces the secretion of IL-8 (but not MCP-1) in RPE
cells (shown for ARPE-19) [25]. Furthermore, the activation of TLR9 increased phagocytic
activity in RPE cells (shown for ARPE-19) [25]. An overview of the effects of TLR activation
in RPE cells can be found in Table 1.
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Table 1. Effects of TLR activation in RPE cells.

TLR Agonist Effect Reference

TLR2 Chlamydia pneumonia Secretion IL-6, VEGF [65]

Expression MCP-1, IL-1ß, IL-8 [73]

PAM2CSK4 Expression CFB, C3 [70]

Expression/secretion IL-6, IL-1ß, IL-8, MCP1, TNFα [73,94,95]

Decreased barrier function, reduced expression tight junction [94]

TLR3 Poly I:C Expression/secretion IL-6, IL-1ß, IL-8, TNFα, MCP-1, sICAM-1,
IFN-ß [25,88,90,91,94,95,97]

Expression HIF-1α, Jam-1, ICAM-1, bFGF, C5, C9, CFB [25,90,91]

VEGF [77]

Activation of ERK1/2, p38, JNK [77,91]

Reduced barrier function [94]

Induced cell death [43,74,76,77,97]

Poly I:C + paraquat Protection from oxidative stress [78,79]

TLR4 LPS Expression/secretion IL-8, IL-6, TNFα, IL-1ß [94,97–99]

Expression COX-2, iNOS [99]

Reduced barrier function [94,99]

Reduced cell viability [97]

Reduced phagocytosis [97]

Reduced expression RPE65 [97]

TLR9 CpG-DNA Secretion IL-8 [25]

Increased phagocytosis [25]

2.2.3. TLR-Activated RPE and Microglia/Monocytes

The innate immunity of the retina is mainly mediated by the retina-specific cells of
the monocytic lineage, the microglia, which has also been implicated in contributing to
various retinal diseases [101]. Several lines of studies have indicated that the activated RPE
and microglia interact in inflammatory signaling. In addition, the RPE can interact with
monocytes derived from the blood.

TLR2 activation in RPE results in a polarized apical secretion of MCP-1, a chemokine
that attracts mononuclear cells [70]. Concomitantly, TLR2 activation has been indicated
to attract macrophages to CNV lesions (in mouse models) and its inhibition results in a
reduced number of macrophages and a reduced CNV in these models [73]. In addition,
TLR2 activation in RPE cells reduces the secretion of IL-8 and TNFα, but increases the
secretion of IL-1ß (in higher concentrations) in microglia [95].

The activation of TLR3 in the RPE promotes the chemotaxis and adhesion of monocytic
cells [25,96]. In addition, TLR3-activated RPE cells inhibit the pro-inflammatory activation
of monocytes by reducing the expression of COX-2 and iNOS [96]. Furthermore, they
induce the expression of Fas ligand (FasL), which may contribute to an anti-angiogenic
phenotype [96,102]. RPE cells also interfere with the pro-inflammatory activity of microglia
cells, including the expression and secretion of proteins. TLR3 stimulated RPE cells show
an inhibitory effect of iNOS expression in microglia cells [103]. Moreover, TLR3 stimulated
RPE cells reduced the secretion of IL-8 and TNFα in microglia cells, while IL-6 secretion in
microglia cells showed some induction and IL-1ß was not changed [95]. However, on an
mRNA level, both IL-6 and IL-1ß had been elevated [103]. Furthermore, the expression of
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COX-2 in the microglia was also elevated by RPE cells [103]. Conversely, TLR3 activated
RPE cells do not change the phagocytic activity of microglia [103].

TLR4 stimulated RPE cells show an inhibitory effect of iNOS expression in microglia
cells [95]. They also reduced the secretion of IL-8 and TNFα in microglia cells, and a
reduction of IL-6 mRNA expression could be found [95]. The mRNA expression and
cytokine secretion of IL-1ß was not changed by TLR4 stimulated RPE cells [95].

Of interest, irrespective of the regulating effects of RPE on microglia activation, mi-
croglia cells that were treated with the supernatant of TLR-activated RPE cells induced cell
death in a neuronal cell line [95].

Taken together, the studies indicate a differentiated influence of TLR activated RPE
cells on (retinal) microglia and (blood-derived) monocytes. Interestingly, while the RPE
itself reacts with a pro-inflammatory cytokine release, it shows a differentiated effect on
microglia by “fine-tuning” their cytokine release, reducing IL-8 (which is considered pro-
angiogenic [104]) and TNFα (which is considered neurotoxic [105]). Still, the expression
of the pro-inflammatory enzyme COX-2 was enhanced in microglia by TLR-activated
RPE, in a clear distinction to monocytes, where TLR-activated RPE reduced the expression
of COX-2 (and iNOS). In addition, TLR stimulated RPE increased the neurotoxicity of
activated microglia cells.

2.3. Potential Role of TLR Activation of the RPE in the Development of AMD

Taken together, the published data clearly show a strong involvement of TLR activa-
tion in pro-inflammatory cytokine secretion in the RPE, indicating their role as a sentinel
and active contributor to the innate immunity of the retina. The pro-inflammatory cy-
tokines induced by TLR activation have been implicated in AMD development (IL-6, IL-8,
MCP-1 [106,107]), and may be involved in AMD pathogenesis. Of interest is the polarized
reaction of the RPE to TLR stimulation, indicating a differentiated response of the RPE
in the retinal and choroidal direction [94]. Moreover, pro-angiogenic cytokines induced
by TLR activation (VEGF, IL-8) may contribute to the development of CNV. The activa-
tion of the TLR in the development of AMD could be mediated by pathogens, such as
Chlamydia pneumoniae or by degenerating retinal cells [26,65]. As TLR activation, especially
considering TLR3, may induce cell death in the retina, e.g., in the RPE and endothelial
cells [77,108], this could perpetuate the situation, leading to a vicious cycle of activation
of TLR, pro-inflammatory signaling, cell death, and more activation of TLR by the dying
cells. However, differences between the activation of different TLRs have to be considered,
as well as the difference between short-term (acute) and long-term (chronic) effects. The
activation of TLR3 may be of higher significance for long-term induced cell death and the
consequent potential vicious cycle than the activation of TLR4, as it was recently shown
that Poly I:C induces a severe decrease in RPE cell viability over the course of an activation
of 4 weeks, while the toxic effect of LPS was only seen in short (24 h) and medium (7 days)
stimulation [97]. Concerning pro-inflammatory cytokine secretion, both stimulation of
TLR3 and TLR4 show a similar reaction pattern, with IL-1ß only and IL-6 mainly acutely in-
duced, while IL-8 is elevated both acutely and chronically (investigated for 4 weeks), again
stressing its potential involvement in neovascularization [97]. In addition, TLR activation
can contribute to AMD development by interfering with the RPE barrier function [94],
and, especially in long-term stimulation, with protein expression, as shown for long-term
stimulation with LPS and the visual cycle protein RPE65 [97]. On the other hand, the
TLR activation of RPE cells may exert a certain calming effect on monocytic cells [96],
with an anti-inflammatory and potentially cell-death inducing effect on monocytes and an
activating but regulating effect on the pro-inflammatory reaction of microglia, at least in
acute stimulation [95,103]. However, TLR-stimulated RPE may increase the neurotoxicity
of microglia, which also may indicate an involvement in the development of AMD [95].
However, it must be stressed that these data were obtained in vitro, therefore its relevance
in vivo needs to be confirmed. It would also be of interest to investigate how long-term
TLR activated RPE would influence monocytic cells, both considering pro-inflammatory
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activation and neurotoxicity. A schematic of the influence of TLR activation on the RPE
which is of potential impact for AMD development is depicted in Figure 1.

Figure 1. Schematic effects of summarized TLR activation in the RPE and its potential contribution
to AMD development. Activation of TLR (summarized for TLR2, -3, and -4) induces the activation
and expression of various genes and cytokines, potentially inducing degeneration, angiogenesis,
reduced RPE function, chemotaxis of mononuclear cells (monocytes (round), microglia (star shaped)),
neuronal degeneration, pro-inflammatory cytokine release, and complement activation.

Further research is needed to elucidate the role of TLR in the development of AMD,
concerning both in vitro and in vivo models. The consequence of activation of TLR in
the RPE and its interaction with the cells of the immune system needs to be investigated
further. In addition, the role of TLR in the development of AMD should be investigated in
animal models mimicking the development of age-related changes in the retina [109–111].
Finally, their role in the human situation need to be further investigated. While intervention
studies have to be regarded premature considering the current studies and available data,
the analysis of donor eyes and tissues of AMD patients regarding TLR expression and
activation, as well as identification of the present DAMPS and PAMPS would strongly
increase our knowledge and pave the way for potential interventional studies. Understand-
ing the precise contribution of the different TLR to AMD development and identifying
the precise activators and contributing pathways could lead to new avenues for (early)
AMD prevention.

3. Methods

In this systematic review, publications concerning TLR and RPE in AMD related
research have been presented. Suitable publications have been searched in PubMed (Na-
tional Library of Medicine), using the following search terms: Retinal pigment epithelium
AND age-related macular degeneration AND Toll-like receptors (21 hits), retinal pigment
epithelium AND Toll-like-receptor (41 hits); Toll-like receptors AND age-related macular
degeneration (87 hits); without doublings, a total of 106 publications were found of which
54 were included in this study. Only studies published in the English language were
considered. In addition, in subsequent searches, five additional papers were included in
the manuscript which were not found in the original search. A list of the included studies
can be found in Supplementary Table S1.
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4. Conclusions

The role of TLR in the development of AMD is not sufficiently elucidated yet. While
a direct effect of TLR SNP is controversially discussed, pre-clinical data indicate a role of
TLR activation in AMD pathogenesis. Especially the activation of TLR in RPE cells, namely,
TLR2, -3, and -4 induces a profound pro-inflammatory response that may contribute to
(long-term) inflammation by induction of pro-inflammatory cytokines and by causing RPE
cell degeneration, constantly providing new TLR ligands and thereby perpetuating and, in
the long run, exacerbating the inflammatory response.
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