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The recent increase in the pathogenesis of autoimmune diseases revealed the

critical role of T cells. Investigation into immunometabolism has drawn

attention to metabolic processes other than glycometabolism. In rapidly

dividing immune cells, including T lymphocytes, the consumption of

glutamine is similar to or higher than that of glucose even though glucose is

abundant. In addition to contributing to many processes critical for cellular

integrity and function, glutamine, as the most abundant amino acid, was

recently regarded as an immunomodulatory nutrient. A better understanding

of the biological regulation of glutaminolysis in T cells will provide a new

perspective for the treatment of autoimmune diseases. In this review, we

summarized the current knowledge of glutamine catabolism in CD4+ T-cell

subsets of autoimmunity. We also focused on potential treatments targeting

glutaminolysis in patients with autoimmune diseases. Knowledge of

immunometabolism is constantly evolving, and glutamine metabolism may

be a potential therapeutic target for autoimmune disease therapy.

KEYWORDS
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1 Introduction

Autoimmune diseases are chronic immune conditions caused by dysfunctional

lymphocytes and excessive autoantibodies. The aberrant immune system is not able to

distinguish its own components from non-self components, leading to dysfunction of

tissues and organs (1, 2). Even though the pathogenesis of autoimmune diseases has not

been fully illuminated, qualitative or quantitative defects of T cells are undisputedly a

central part of the process (3).
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Recent investigations into immunometabolism have drawn

attention to metabolic processes other than glycometabolism

that are involved in the regulation of the immune system (4). As

the most abundant amino acid in human blood, glutamine (Gln)

serves as a substrate in many critical biosynthetic processes (5).

In addition to contributing to many processes critical for cellular

integrity and function, Gln was recently identified as an

immunomodulatory nutrient (6, 7). In rapidly dividing

immune cells, including lymphocytes, the consumption of Gln

is similar to or higher than that of glucose even when glucose is

abundant (8). Glutaminolysis has been clearly revealed to be an

energy supplier for T cells (9). Even though previous studies

have revealed increased Gln catabolism during the

di fferent ia t ion of severa l T-ce l l subsets (10) , the

immunopathogenesis of metabolic enzymes remains poorly

understood. Thus, a better understanding of the biological

regulation of glutaminolysis in T cells, especially CD4+ T cells,

will provide a new perspective for the treatment of

autoimmune diseases.

In the present study, we will summarize the current

understanding of glutamine catabolism in CD4+ T-cell subsets

of autoimmunity, and we will also discuss potential treatments

targeting glutaminolysis in patients with autoimmune diseases.
2 Glutamine metabolism

Gln is the most abundant amino acid in the human body

(11). The concentration of Gln is from 10 to 100 times higher

than that of other amino acids and it accounts for approximately

40% to 60% of the total amino acids in plasma and tissues (11).

Gln is mainly concentrated in the liver and skeletal muscle tissue

(11). In a healthy body, Gln levels in plasma and tissues are

stable, and the maintenance of the Gln concentration depends

on the balance between the supply and its consumption by

organs and tissues (11). In the catabolic state, Gln is deficient,

and immune function is impaired with a decreased proliferation

capacity of immune cells. Then, Gln in muscle will be mobilized

and turn into a conditionally essential amino acid to provide

energy for the organism (12, 13).

Gln is implicated in a variety of roles in cellular metabolism.

Generally, Gln is transported into the cytoplasm or out of cells

with the help of membrane transporters such as SLC1A5,

SLC38A1, and SLC38A2 (Figure 1) (14). Intracellular Gln can

also be imported by exchange with essential amino acids (EAA)

via the surface transporter protein SLC7A5 (Figure 1) (15).

Intracellular Gln supports the synthesis of molecular organisms

such as hexosamine, nucleotides, and asparagine in the

cytoplasm (Figure 1) (14). Cytoplasmic Gln is transported into

the mitochondria via the SLC1A5 variant (Figure 1) (14). Next,

glutaminases (GLSs), including glutaminase 1 (GLS1),

glutaminase 2 (GLS2) and GAC (a splicing isoform of GLS1),

convert Gln to glutamate (Glu) in the mitochondria, releasing
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ammonium ions (Figure 1) (14). Most of the Glu in the

mitochondria is later transformed to alpha-ketoglutarate (a-
KG) by the action of glutamate dehydrogenase 1 (GLUD1) or

glutamic-pyruvic transaminase 2 (GPT2) and glutamic-

oxaloacetic transaminase 2 (GOT2) (Figure 1) (14). Then, a-
KG in mitochondria is involved in the oxidative phosphorylation

pathway or the reductive carboxylation pathway in the TCA

cycle (Figure 1) (14). Part of Glu is exported out of the

mitochondria via the transporter protein SLC25A18, and then

the Glu in the cytosol is involved in the biosynthesis of

glutathione and nonessential amino acids (NEAAs) (Figure 1)

(14). Part of the Glu in the cytoplasm is used to exchange for

extracellular cysteine with the help of the cell membrane

transporter protein SLC7A11 (Figure 1) (14, 15).
3 The key role of glutaminolysis in
the immune system and T cells

Gln has been reported to be essential for the biological

process of proliferation and differentiation and survival of

immune cells, protecting from various pathogens (13). Under

catabolic conditions, the demands for Gln of immune cells

increase dramatically. In fact, a high rate of Gln utilization by

immune cells was discovered starting in the early/mid 1980s

(13). Since then, the importance of Gln metabolism for immune

cell function has become apparent (13).
3.1 Innate immune system

The immune system is made up of the innate immune

system and the acquired immune system (16). As an initial

line of defense to defend against pathogenic bacteria, the innate

immune system is consist of antimicrobial peptides, the

complement system, and immune cells such as macrophages

and dendritic cells (16). When the innate immune system

encounters a pathogen, it reacts immediately to kill the

pathogen or remove it from the host, without pre-adaptation

from the environment (16).

3.1.1 Glutamine and skin
As the first line of defense of the organism, intact skin is a

primary physical barrier against the invasion of harmful

organisms (17). It has been found that large amounts of

glutamine synthetase (GS) are stored in epidermal keratin-

forming cells in human and rat skin sections. GS acts as a

precursor for the synthesis of several biologically active

compounds, such as purines, pyrimidines, and amino sugars,

in rapidly dividing cells (18). The regulation of the immune state

of the skin is strongly dependent on epidermal keratin-forming

cells (19). Several studies have found that GLS1-mediated Gln

catabolism promotes excessive proliferation and chemotaxis of
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psoriatic keratin-forming cells (19). With these findings, it is

clear that the skin immune system is closely linked to

Gln catabolism.

3.1.2 Glutamine and intestinal immunity
As a complex, multicellular organ, the intestine performs

numerous physiological functions that are critical in enteral

nutrition (20). The intestinal mucosa contains a variety of

immune cells in addition to enterocytes with absorptive

functions. The intestinal innate immune system serves as the

host’s initial line of defense against intestinal pathogens and is

currently considered the largest immune organ in the body (21).

Recent studies suggest that Gln might be a dietary component

necessary to maintain intestinal mucosal metabolism, structure,

and function during injury or stress (22). The ability of the
Frontiers in Immunology 03
intestinal mucosa to metabolize Gln probably acquires greater

prominence in catabolic disease states when Gln depletion might

be severe and oral nutrition might be interrupted by the severity

of the disease (22). The administration of Gln via the rectal route

in a rat colitis model downregulated the expression of regulatory

inflammatory transcription factors (STAT1 and STAT5) and

inflammatory factors, which alleviated the inflammatory effects

of colitis (23). Clinically low plasma and intracellular Gln

concentrations and decreased mucosal glutaminase activity in

Crohn’s disease patients indicated that Gln metabolism was

impaired therein, from which it was hypothesized that Gln

supplementation would improve the clinical manifestations of

Crohn’s disease (24). The application of Gln in a mouse model of

sepsis prevented apoptosis and the intestinal inflammatory

response of intestinal intraepithelial lymphocyte (IEL) gdT
FIGURE 1

The biological process of glutamine metabolism in cells. Glutamine enters the cytoplasm with the help of several membrane transport proteins
and is used for the synthesis of other biomolecules, such as hexosamine, nucleotides, and asparagine. Part of intracellular glutamine (Gln) is
transported into the mitochondrial matrix via the SLC1A5 variant and subsequently converted to glutamate (Glu) with the help of GLS. Then, by
catalysis of GLUD1 or several aminotransferases, Glu was converted to a-KG, which is involved in the TCA cycle. Glu was also transported out of
mitochondria for the synthesis of glutathione and NEAAs via the transporter protein SLC25A18. The cytoplasmic Gln and Glu can be exchanged
with extracellular EAAs and cystine, respectively, via transporter proteins.
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cells and downregulated inflammation-related mediator genes

expressed by IEL gdT cells, thereby reducing the extent of sepsis-

induced intestinal epithelial injury (25, 26). Parenteral

supplementation with Gln combined with enteral nutrition

was found to improve intestinal immune function by reducing

apoptosis of Peyer’s patches (PPs), one of the lymphoid tissues

associated with the gut (GALT), and to increase the number of

PPs and IgA plasma cells in the lamina propria of the gut (27).
3.2 Acquired immune system:
T cell implication

The acquired immune system is the most important

component of the immune system, removing specific

pathogens that infect the body, which is mainly mediated by T

cells (16). T cells are the primary component of the acquired

immune system. They convey specific antigen recognition

receptors and function as highly specialized effectors capable

of forming long-term immune memory. Naïve T cells are

reorganized in primary immune organs. Then, maturation at

the primary site is stimulated by pathogens, and the T-cell

antigen receptor (TCR) is expressed. After maturing at the

primary site, T cells are transported to secondary immune

organs, such as lymph nodes, spleen, appendix, tonsils, and

adenoids, where T cells activate and differentiate into

subpopulations of cells that perform immune functions (28). T

lymphocytes can be divided functionally into two main subsets:

CD4+ T helper cells (Th) and CD8+ cytotoxic T lymphocytes

(CTL) (29). CD4+ T cells are indirectly involved in the clearance

of infections by regulating the activity of other immune cells

such as macrophages, neutrophils, B cells and CTL. Although

the CD4+ T cells is essential for clearance of infections,

dysregulation may also lead to pathological conditions such as

autoimmune diseases (30).Current investigations have revealed

that the activation of T cells requires Gln and/or Gln

metabolism, and the activation of T cells may also promote

the uptake and metabolism of Gln. Gln is irreplaceable for the

immune system because of its important function in the different

stages of differentiation of immune cells and the high utilization

of Gln throughout the immune system (31).

3.2.1 Glutamine and thymus
As the principal lymphoid organ, thymus is critical for the

production and maturation of T cells (32). Rat thymocytes

showed high efficiency of Gln utilization during both resting

and proliferation, and the maximal activities of glutaminase,

Glu dehydrogenase, and aspartate aminotransferase were

significantly increased in proliferating thymic cells (33).

The utilization rate of Gln increased and the carbon

and nitrogen contents of glutaminolysis completely

recycled (34). Intestinal supplementation with a-KG may
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ameliorate thymic degeneration induced by endotoxemia

in rats and restore muscle Gln levels with improved

immune function (35). Parenteral Gln supplementation

combined with enteral nutrition increased plasma and tissue

Gln concentrations by upregulating the expression of heat shock

protein 90 (Hsp90) and attenuated apoptosis in the lymphoid

organ spleen and circulating lymphocytes, ultimately enhancing

immune function and improving survival in severely burned

rats (36).

3.2.2 Glutamine and spleen
The spleen, which combines the immune dynamic balance

of the innate and acquired immune systems, is a vital organ and

is primarily responsible for the immune surveillance of the blood

(37, 38). T lymphocytes are present throughout the spleen as key

effectors of the acquired immune system, where their

localization varies with their activation status and organization

by the expression of cell surface receptors and chemotactic

gradients (39). Whether rat, mouse, and human splenic

lymphocytes were resting or following mitogenic stimulation,

Gln was essential for lymphocyte proliferation and provided the

essential signals required for cell proliferation (40). Parenteral

supplementation with Gln combined with enteral nutrition

reduced the release of inflammatory cytokines, attenuated

apoptosis in the lymphoid organ spleen, enhanced immune

function, and improved survival in septic rats (41). The

percentage of blood T-lymphocyte and CD4+ T-cell

populations was maintained in mice pretreated with Gln in

the sepsis group, and the expression of the antiapoptotic Bcl-2

gene was more pronounced and increased in splenic CD4+ T

cells. In sepsis mouse models pretreated with Gln, the activation

of CD4+ T cells was in equilibrium, and the expression of the

anti-apoptotic protein Bcl-2 was more pronounced (42). Gln

administration significantly inhibited acute graft-versus-host

disease (aGVHD)-induced inflammation and tissue damage in

the spleen (43).

3.2.3 The biological functions of glutaminolysis
in CD4+ T cells

T lymphocytes are a vital population of immune cells

involved in immune regulation and are a key component of

the adaptive immune system (44). Presently, most studies

focused on the differentiation of CD4+ T cells, especially the

differentiation of subsets of CD4+ lymphocytes. In a specific

cytokine environment, CD4+ T cells stimulated by antigens

activate and differentiate into different subsets of helper T (Th)

cells, including Th1, Th2, Th9, Th17, Th22, T regulatory (Treg),

and T follicular helper (Tfh) cells. These subpopulations are

determined by the signaling patterns they receive during their

initial interaction with the antigen (45).

Gln deficiency completely eliminated the proliferation of

human CD4+ T cells, and inhibition of GLS reduced the
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proliferation index of human CD4+ T cells during the process of

CD3/CD28 signaling activation (46). A previous study reported

that a-KG, the metabolite of Glu, is more abundant in Th17 cells

than in Treg cells, suggesting that glutaminolysis may be more

active in Th17 cells (47).Further mechanistic findings revealed

that 2-hydroxyglutarate (2-HG), a direct product of error-

prone dehydrogenase activity on a-KG, could trigger

hypermethylation of the Foxp3 gene and inhibit Foxp3

transcription, thereby inhibiting the differentiation of Treg

cells and regulating Th17/Treg homeostasis through epigenetic

mechanisms (Figure 2) (48). The differentiation of activated

naïve CD4+ T cells into Th17 cells is severely impaired in

glutamine-free medium, but Treg cell formation is normal and

even appears to be enhanced in expression (10). Both Th17 and
Frontiers in Immunology 05
Th1 cells in cultures supplemented with Gln exhibit a dose-

dependent induction, but the addition of Gln has only a mild

effect on the production of Treg cells (49). The addition of excess

Gln reversed the defective differentiation of SLC1A5-/- T cells

into Th17 cells (49). Gln can also promote the production of IL-

17A from gd T cells via nucleotide synthesis and the nitrogen-

derived action of a-KG (Figure 2) (50). Treatment of gd T cells

with the GLS inhibitor 6-diazo-5-oxo-L-norleucine (DON)

resulted in a significant decrease in the percentage of IL-17A+

gd Th cells and led to a reduction in IL-17A expression in gd T

cells by more than half (50). Peroxisome proliferator-activated

receptor gamma (PPARg) agonists inhibit Th17-cell production
by eliminating GLS1, reducing the levels of the downstream

metabolite of a-KG, 2-HG, and downregulating the levels of the
FIGURE 2

The biological functions of glutaminolysis in differentiations of different subsets of CD4+ T cells. 2-HG triggers hypermethylation and represses
transcription of the Foxp3 gene to regulate Th17/Treg homeostasis. The expression of IL-17A was reduced in GLS inhibitor DON-treated gd T
cells. Direct binding of ICER to GLS1 promotes GLS1 expression and increases the oxygen consumption rate (OCR) of Th17 cells. PPARg agonists
inhibit Th17 responses by eliminating GLS1 through two pathways. Inhibition of mTORC1 and IL-2 signaling by GLS1 with CB839 attenuates Th1
differentiation.
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activating histone marker of H3K4 methylation (H3K4me3) in

the promoter and CNS2 regions of the IL-17 gene (Figure 2) (51,

52). PPARg agonists also downregulate glutathione (GSH) levels,

increasing reactive oxygen species (ROS) levels, and

downregulating retinoic acid receptor-related orphan receptor

gt (RORgt) expression, which facilitates amelioration of Th17-

cell-associated immune dysregulation (Figure 2) (52). In

addition to Gln facilitating the differentiation of Th17 cells,

the differentiation of Th17 cells may also promote Gln uptake

and Gln metabolism (53). Inducible cAMP early repressor

(ICER), transcriptional factor of Th17 cells, promote the

expression of GLS1 and the differentiation of Th17 cells by

binding with the promoter of GLS1(Figure 2) (47). The

activation of human CD4+ T cells that depend on CD3/CD28

signaling promote GLS expression (46). The stimulation of CD3/

CD28 promotes mRNA expression of SLC38A1 and SLC38A2,

amino acid transporters that allow Gln to enter cells, as well as

relocalizing SLC38A2 from the intracellular reservoirs to the cell

surface (53). The activity of GLS and GDH is higher in activated

than resting T cells in the mouse spleen, which can be blocked by

inhibiting the ERK signal pathway, the downstream of TCR/

CD28 signaling (53). Under stimulation of CD3/CD28, Gln

deprivation decrease the proliferation and activity of CD4+ T

cells in both of normoxia and hypoxia (54). Meanwhile, both

GLS1 inhibitors BPTES and 968 reduce the secretion of

cytokines Th1 and Th17 from CD4+ T cells under this

conditions (46). Endogenous synthesis of Gln under hypoxic

conditions was rate-limiting relative to normoxia where only

maximal oxygen consumption rate (OCR) was sensitive to GLS

inhibition, and inhibition of GLS or glutamine synthetase (GS)

reduced basal and maximal OCR (54). In summary, endogenous

synthesis of Gln, closed related with oxygen content, is the key

regulatory process in proliferation and glycolysis of CD4+ T

cells (54).

Inhibition of GLS leads to increased intracellular Gln,

decreased Glu, and decreased intracellular levels of a-KG (10).

After administration of CB839, an inhibitor of GLS1, Th1 cells

showed increased histone methylation, which resulted in

decreased expression of PIK3IP1, a regulator of mammalian

target of rapamycin complex 1 (mTORC1) signaling, and

sensitivity to IL-2 signaling in Th1 cells, activating mTORC1

to promote the differentiation of effector Th1 cells (Figure 2)

(10). The combination of naïve T-cell activation and rapid Gln

uptake depends on SLC1A5 (also known as ASCT2), a deficiency

of which reduces the differentiation of Th1 cells in vivo, impairs

Th1 induction, and attenuates inflammatory T-cell responses

(49). The GLS1 splice variant GAC is the major isoform

overexpressed in many proliferating lymphocytes (55).

Previous studies have demonstrated that GAC is expressed in

activated human T cells and that Gln deprivation and GAC

inhibition attenuate T cell activation and clonal expansion (46).

As a novel GLS1 inhibitor, the recent reported compound 19
Frontiers in Immunology 06
(C19) is thought to have a similar or greater ability to inhibit

anti-CD3/CD28-induced CD4+ T cell proliferation and cytokine

production by directly binding to the GAC outside the active site

compared to BPTES (55).

It is increasingly evident that Gln is an immunomodulatory

nutrient with multiple biological capabilities and metabolic

pathways that are crucial in determining the function of

different immune subgroups, especially Th17 cells. These

studies suggest that Th17 cells are more dependent on Gln

metabolism and that Gln metabolism is higher in Th17 cells than

in Treg cells. Recently, glutamine-related metabolic pathways,

such as the glutamine-glutamate-GSH pathway, glutamine-

glutamate-a-KG-2-HG pathway, and glutamine-mTOR

signaling, which participate in regulating Th17/Treg cell

differentiation, have been identified (56). The discovery of

these pathways has made it possible to affect Th17/Treg cell-

associated diseases by manipulating or targeting the regulation

of Gln metabolism (56). Overall, the metabolism of T cells and

Gln catabolism are interdependent and inseparable from

each other.
4 Glutaminolysis in
autoimmune diseases

Under normal conditions, the activity of T cells is controlled

by immune tolerance mechanisms that distinguish between

autologous and nonautologous components and specifically

recognize and react against pathogens (28). When the immune

tolerance mechanism is imbalanced, T cells mistakenly generate

an immune response against components of the organism itself

through the TCR (28). If this response is strong enough to cause

inflammation, the function of the tissues may be disrupted.

Dysfunction of the body’s tissues caused by autoreactive T cells

is called an autoimmune disease (28). As an immunomodulatory

nutrient essential for the proliferation and activation of T cells,

Gln can also participate in the development of many

autoimmune diseases.
4.1 Systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is defined as a chronic,

recurrent autoimmune disease with recurrent episodes of tissue

inflammation and severe multiorgan damage mediated by the

body’s autoimmunity (57–59). The pathogenesis of SLE has not

been completely understood until now. An imbalance of helper

T cells (Th17) and regulatory T cells (Tregs) was proposed to be

the underlying pathogenesis of SLE (47). T-cell differentiation

and function are regulated by cellular metabolism and Gln

catabolism as one of the metabolic features of SLE T cells.

Th17 cells in SLE patients are believed to contribute to an
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inflammatory state in the organs (60–62). Hypoxia-inducible

factor 1a (HIF1a) serves as a critical metabolic sensor in Th17

cells, and GLS1 is essential for Th17 differentiation and

glycolysis promotion. The inhibition of GLS1 inhibits

glycolysis by decreasing HIF1a protein, indicating that the

suppression or lack of GLS1 decreases Th17 differentiation

and glycolysis via the reduction of HIF1a. Lupus in MRL/lpr

mice was improved by GLS1 inhibition or deficiency. At the

translational level, GLS1 inhibition reduced Th17 differentiation

of CD4+ T cells in SLE patients in vitro (9). Studies have shown

that the pathogenesis of SLE is closely linked to inadequate IL-2

production by effector CD4+ T cells (63). In lupus-prone mice

and SLE patients, GLS2 expression is reduced in CD4+ T cells,

and GLS2 reduces ROS levels and promotes the ability of CD4+

T cells to produce IL-2 by demethylating the IL-2 gene (64).

Moreover, overexpression of GLS2 corrected ROS levels and

restored IL-2 production by lupus CD4+ T cells (64). Tfh cells

expanded in SLE, may produce both pathogenic antibodies, and

protective antibodies against viral and bacterial pathogens (55).

Inhibition of glutaminolysis with the glutamine analogue 6-

Diazo-5-oxo-L-norleucine (DON) reduces immune-induced

and autoimmune Tfh cellular and humoral responses,

selectively targeting pathogenic auto-reactive immune cells

while preserving the ability of Tfh to generate protective

responses against pathogens (55).
4.2 Psoriasis

Psoriasis occurs as a result of a complex interaction between

genetic and environmental factors causing DC activation to

produce related cytokines such as IFN-a, IFN-b, IL-12, IL-23,
IL-6, and TNF-a. These cytokines activate and polarize

autoaggressive T-cell subsets, leading to metabolic disorders

and serious inflammation-related diseases following immune

imbalance of T cells (65–68).

It has been demonstrated that the main IL-17-producing

cells in the skin in psoriasis are dermal gd T cells, which are

significantly increased and contribute to disease progression (69,

70). Subcutaneous injection of IL-23 causes psoriasis-like

inflammation (71). In contrast, psoriatic mice treated with

DON showed reduced keratinocyte overproliferation and

leukocyte infiltration, the dorsal skin lesions had reduced

epidermal and dermal thickness, and the splenomegaly almost

disappeared (50). With the administration of Gln blockade, IL-

23-induced gd T-cell activation can be reversed in vivo, and the

psoriasis was therefore rescued (50). The expression of genes

downstream of IL-17 was suppressed after Gln blockade, and the

downregulated genes were enriched in the STAT3-related

pathway (50). Previous studies demonstrated that IL-23

induced RORgt (RORC) expression and IL-17 production
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through activation of STAT3 (72). Therefore, it can be

speculated that Gln deprivation may inhibit IL-17 production

by suppressing the IL-23-STAT3 pathway (50).

Earlier studies demonstrated that serum a-KG and Glu were

abnormally elevated in patients with psoriasis (73–75). In this

regard, glutaminolysis may be pivotal in the pathogenesis of

psoriasis. More importantly, IL-17A transcription was induced

by RORgt (RORC) in Th17 cells (76), which could be enhanced

by acetylation of histone H3K9Ac and H3K27Ac (77). The

mucosa-associated lymphoid tissue lymphoma translocator

protein 1 (MALT1) protease has been shown to play an

irreplaceable role in the regulation of GLS1 expression in B-

cell lymphomas (78). Consequently, a link between

glutaminolysis processes and T cells in psoriasis can be

identified. With elevated production of IL-17A by gd T cells in

the serum of psoriasis patients, GLS1-mediated glutaminolysis

could promote psoriasis by inducing differentiation of Th17

and gd Th17 cells (79). MALT1 hydrolase, located upstream

of the Gln degradation pathway promoting GLS1-

mediated Gln catabolism via c-Jun1, promoted epigenetic

modification of H3K9Ac and H3K27Ac of the IL17A gene

promoter, enhancing the chromatin accessibility of RORgt
(RORC), thus exacerbating IL-17A expression and ultimately

causing immune peripheral blood imbalance and psoriatic

lesions (79).
4.3 Multiple sclerosis

Multiple sclerosis (MS) occurs as an autoimmune response

to autoantigens mediated by autoreactive T cells secondary to

environmentally triggered genetically susceptible hosts (80). The

interaction between multiple immunopathological and

neuropathological mechanisms in mice with experimental

autoimmune encephalomyelitis (EAE), an animal model of

MS, results in key pathological features that approximate MS:

inflammation, demyelination, axonal loss, and gliosis (81). The

CD4+ T-cell-specific deletion of ASCT2 significantly suppressed

the immune response of Th1 and Th17 cells in a mouse EAE

model (81). Activated Th1 and Th17 cells produce inflammatory

products and cytokines that disrupt myelin and axons and

activate retained microglia, which in turn generate

inflammatory cells that attract more inflammatory cells to the

central nervous system (CNS) and perpetuate the inflammatory

cascade (47). It has been demonstrated that the cAMP response

element regulator (CREM) could induce the ICER isoform to

promote Th17-cell differentiation, which also enhanced the

expression of GLS1, the first enzyme in the Gln catabolic

pathway, so that inhibition of GLS1 could improve Th17

differentiation in vitro and in mouse EAE (47). Damaged

axons in MS lesions are concentrated around the perivascular
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cuffs of infiltrating cells and macrophages, and axonal injury is

strongly connected to glutamate-producing macrophages and

microglia (82). Treatment of EAE mice with the Glu antagonist

NBQX reduced the extent of axonal damage in active EAE

lesions (82). These results suggest that lesion activity and

axonal damage in active MS lesions are likely to be caused by

Glu excitotoxicity (82).
4.4 Systemic sclerosis

As a consequence of dysfunctional differentiation of

fibroblasts to myofibroblasts and excessive deposition of

extracellular matrix, systemic sclerosis (SSC) is a rare fibrotic

autoimmune disease that leads to skin fibrosis (83).

Transforming growth factor-b1 (TGF-b1) is an activator that

induces the conversion of fibroblasts into myofibroblasts (84).

Smad family proteins mediate the signaling of TGF-b family

members, and TGF-b1 was recently described to cause

upregulation of glutaminase 1 in these cells via Smad-

dependent pathways and nonclassical pathways (85). The a-
KG produced by Gln metabolism serves as an essential

substituent for type I collagen and is involved in the

composition of the most abundantly expressed extracellular

matrix components in fibrosis. Smad activation-mediated

TGF-b1 inhibited Gln catabolism in dermal fibroblasts,

thereby attenuating the expression of profibrotic markers in

SSCs (86).
4.5 Crohn’s disease

Crohn’s disease (CD) is an inflammatory bowel disease in

which immune imbalance and intestinal mucosal barrier

disruption are the main causative factors leading to immune

disorders and defective intestinal epithelial barrier function (87).

The enhancement of Th1 and Th17 immune responses has

critical effects in the pathogenesis of CD (88). The balance of

local immunity in intestinal tissues is maintained by regulatory T

cells (Tregs) in the gut by suppressing the proliferation and

response of other Th cells (89). Treatment with Gln enhanced

the integrity of the intestinal barrier in experimental colitis (90).

The GLS1-specific inhibitor BPTES significantly inhibited GLS1

expression and increased Gln levels in intestinal tissues (47, 91).

Suppressing GLS1 expression could alleviate chronic colitis by

maintaining the integrity of the intestinal barrier and Th/Treg

homeostasis, improving CD-like colitis (92). Treatment with

BPTES downregulated the phosphorylation of the downstream

substrates p70S6K and 4E-BP1 of mTORC1 in the intestine of

IL-10-/- mice and improved intestinal barrier function and Th/

Treg balance to reduce the symptoms of chronic colitis in

mice (92).
Frontiers in Immunology 08
4.6 Rheumatoid arthritis

Rheumatoid arthritis (RA) is a systemic autoimmune disease

that results in progressive joint destruction due to the infiltration

and proliferation of immune cells in the synovium (93). Under

glutamine-containing conditions, the proliferation of RA-FLSs

increases after stimulation with the rheumatoid arthritis

fibroblast-like synoviocyte (RA-FLS) growth factor PDGF.

Administration of GLS1 inhibitors ameliorated inflammatory

arthritis in a mouse model of RA by inhibiting FLS proliferation,

suggesting the importance of Gln in RA-FLS proliferation (91).

In summary, glutaminolysis is not only a process that

generates energy but is a lso an essent ia l part of

immunometabolism that regulates the immune response. The

potential therapeutic effects of targeting this pathway are

attracting increasing attention.
5 Potential diagnostic and
therapeutic application
of glutaminolysis in
autoimmune diseases

Recent studies have shown that Gln catabolism is associated

with functions such as immune cell proliferation, cytokine

production, and superoxide production (94). Gln metabolism

has the potential to be a target for the treatment of autoimmune

diseases. The PPARg agonists rosiglitazone and pioglitazone

were recently found to reduce the levels of 2-HG and

H3K4me3 in the colon of mice with colitis and to regulate

GSH and ROS levels in lamina propria lymphocytes by

modulating GLS1/2-HG/H3K4me3 signaling in mouse models

of colitis and asthma (52) (Table 1). It improved Th17-cell-

associated inflammation and reduced IL-17A expression,

slowing the progression of colitis and ameliorating

autoimmune disease (52). The PPARg agonist bergenin

naturally prevents neutrophil aggregation (95). By modulating

the “CDK1(cyclin dependent kinase 1)-APC/C (ubiquitin

ligase)-Cdh1 (ubiquitin ligase activator)” signaling pathway

after PPARg activation, bergenin inhibited GLS1-dependent

Gln catabolism, thereby inhibiting Th17 differentiation and

significantly reducing the number of neutrophils in the BALF

of neutrophilic asthmatic mice and the infiltration of

inflammatory cells around bronchi in the lungs of mice with

neutrophilic asthma (95) (Table 1). In contrast, the PPARg
antagonists GW9662 and siPPARg abolished the inhibitory

effects of bergenin on Gln catabolism and Th17 differentiation

(95). In addition, the formation of psoriatic lesions can be

promoted by GLS1, a downstream target of MALT1 protease,

mediating glutaminolysis to promote acetyl coenzyme A-

induced differentiation of Th17 and gd Th17 cells by activating
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the Il17a promoters histone 3 at the lysine 9 and 27 residues

(H3K9Ac and H3K27Ac) (79) (Table 1). Additionally, enhanced

proliferation of keratin-forming cells and the secretion of trend

factors can be further promoted by GLS1-mediated

glutaminolysis induced by the IL-17A/MALT1/c-Jun axis to

promote lesion formation. Administration of the GLS1-specific

inhibitors BPTES and CB-839 reduced keratinocyte proliferation

and chemokine production, decreased Th17 and gd Th17-cell

differentiation and epidermal proliferation, and improved the

splenomegaly and skin lesions in a psoriasis-like mouse

model (79).

PD-1 deficiency increases the comparative levels of certain

intermediates and terminal metabolites, such as Glu, N-

methylglutamate, N-acetylglutamate (NAG) and ornithine, that

participate in Gln metabolism (97). PD-1 agonist treatment

improved airway hyperresponsiveness (AHR) in allergic asthma

and suppressed lung inflammation in a humanized mouse model

by controlling lung ILC2 transcriptional profiles and cytokine

production and limiting type 2 innate lymphocyte (ILC2)

proliferation through metabolic regulation and reducing ILC2-

mediated Th2 cytokine secretion (97).

Treatment of B6 mice with the GLS1 inhibitor BPTES

significantly reduced histological scores in the spinal cord of

affected animals, lowered the number of CD4+ T cells, IL-17A

and IFNg-producing CD4+ T cells in the spinal cord,

substantially decreased clinical scores and weight loss, and

ameliorated experimental autoimmune encephalomyelitis (47).

The mechanism is that ICER promotes Gln catabolism by

directly binding to the GLS1 promoter in Th17 cells to

increase GLS1 expression (47). Treatment with the selective

GLS1 inhibitor BPTES reduced glycolysis and ameliorated

lupus-like disease and EAE in MRL/lpr mice (9). BPTES

treatment of MRL/lpr mice reduced glycolysis and significantly

decreased double-negative T cells (CD3+CD4-CD8- cells), the

urinary albumin/creatinine ratio, glomerular nephropathy score,

and T-cell infiltration with IL-17A in the kidneys, relieving the

EAE disease activity (9). Moreover, BPTES inhibited Th17

differentiation in SLE patients (9). The mechanism is based on

a reduction of Th17 differentiation of CD4+ T cells by inhibiting

GLS1, glycolysis, and CD4+ T-cell differentiation in vitro by
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reducing the level of HIF1a protein, a key metabolic sensor in

Th17 cells (9) (Table 1). Both in vivo and in vitro experiments

have demonstrated that the GLS1 inhibitor BPTES normalized

the effector function of CD4+ T cells and effectively improved the

dysregulation of exocrine glands in Sjogren’s syndrome (SS)

(98). Inhibition of GLS1 by BPTES improves glycolysis and

oxidative phosphorylation (OXPHOS) in SS-like CD4+ T cells

and thus slows the progression of SS (98) (Table 1).

Therefore, the study of Gln metabolism and its derivatives

offers new opportunities for improving autoimmune diseases

(96). However, the majority of the subjects are currently limited

to animal models of mouse-related diseases with no evidence

directly linked to clinical and preclinical applications. Targeted

Gln metabolism therapy is still in the initial stage. Future clinical

trials evaluating Gln catabolism in human immune cell

responses will be useful in determining its function in

autoimmune diseases and may be a potential target for the

treatment of autoimmune diseases.
6 Conclusions and
future perspectives

Autoimmune diseases are chronic, recurrent and even fatal

conditions caused by deficiencies in the immune system. To

date, the etiology and pathogenesis of autoimmune diseases

remain elusive. Even though the pathogenesis of autoimmune

diseases is not yet fully elucidated, qualitative or quantitative

alterations of T cells are undoubtedly central to the regulation of

autoimmune diseases. As the most abundant amino acid in the

body, Gln is regarded as an immunomodulatory nutrient. The

role of Gln in the biological processes of T cells is irreplaceable.

To summarize, the link between Gln catabolism in the

pathogenesis of autoimmune diseases in terms of enzymatic

activity and inflammation, regulatory mechanisms, and

physiological significance in vivo remains to be investigated.

Breakthroughs in glutaminolysis for diagnostic and therapeutic

applications in autoimmune diseases are future research areas,

and glutaminolysis may be a new therapeutic strategy for

autoimmune diseases.
TABLE 1 Targets of glutamine metabolism in the regulation of autoimmune diseases.

Diseases Species Target Reference

Colitis Mice GLS1, 2-HG, H3K4me3 (52)

Neutrophilic asthma Mice GLS1, CDK1-APC/C-Cdh1 (95)

Psoriasis Human, mice GLS1, H3K9Ac, H3K27Ac (79)

Experimental autoimmune encephalomyelitis Mice GLS1, ICER (47)

Systemic lupus erythematosus Mice GLS1, HIF1a (9)

Sjogren’s syndrome Mice GLS1 (96)
fro
GLS1, Glutaminase 1; 2-HG, 2-hydroxyglutarate; H3K4me3, H3K4 methylation; ICER, inducible cAMP early repressor; CDK1 cyclin dependent kinase 1; APC/C, ubiquitin ligase; Cdh1,
ubiquitin ligase activator; H3K9Ac and H3K27Ac, histone 3 at the lysine 9 and 27 residues; HIF1a, Hypoxia-inducible factor 1a.
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