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Abstract

Knowledge of the nature and magnitude of gene effects, as well as their contribution to the control of metric traits, is
important in formulating efficient breeding programs for the improvement of plant genetics. Information concerning a
genetic parameter such as the additive-by-additive epistatic effect can be useful in traditional breeding. This report
describes the results obtained by applying weighted multiple linear regression to estimate the parameter connected
with an additive-by-additive epistatic interaction. Three weight variants were used: (1) standard weights based on es-
timated variances, (2) different weights for minimal, maximal and other lines, and (3) different weights for extreme
and other lines. The approach described here combines two methods of estimation, one based on phenotypic obser-
vations and the other using molecular marker data. The comparison was done using Monte Carlo simulations. The
results show that the application of weighted regression to the marker data yielded estimates similar to those ob-
tained by phenotypic methods.
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Introduction

Knowledge of the nature and magnitude of gene ef-
fects, as well as their contribution to the control of metric
traits, is important in formulating efficient breeding pro-
grams for plant genetic improvement. The inheritance of
quantitative traits has been described as a “moving target”
since these traits are affected not only by the actions of mul-
tiple individual genes but also by the interaction between
genes (Lukens and Doebley, 1999). In this context, infor-
mation on additive-by-additive interaction epistatic effects
can be useful in traditional breeding programs (Sharmila et

al., 2007; Bnejdi and El Gazzah, 2010; Bnejdi et al., 2010;
da Silva Guimarães et al., 2010; Lau and Muniandy, 2012).

Epistasis is a phenomenon in which the effects of one
gene are modified by one or several other genes. The gene
whose phenotype is expressed is referred to as epistatic
whereas the phenotype that is altered or suppressed is re-
ferred to as hypostatic. Epistasis can be contrasted with dom-
inance, which involves an interaction between alleles at the
same gene locus, or with an additive effect, which involves
an interaction between alleles at the other gene locus.

The term epistasis was first described by Bateson
(1907) to denote the suppression of gene expression at one

locus by a gene at another locus. Fisher (1918) used the
term epistacy to refer to a statistical interaction in the sense
of a deviation from additive effects in the statistical linear
model. Cordell (2002, 2009) has argued that the statistical
tests that are often used to assess interactions (Hahn et al.,
2003; Moore, 2004; Chung et al., 2007; Zhang and Liu,
2007; Gayán et al., 2008) are of limited use in elucidating
the type of biological interaction that Bateson had origi-
nally conceived. Phillips (2008) discussed the ambiguity in
the term epistasis and distinguished what he considered to
be three forms of epistasis, i.e., 1) statistical epistasis,
which describes a departure from additive effects in a sta-
tistical model, 2) compositional epistasis, which corre-
sponds to epistasis in Bateson’s original sense of the term,
i.e., the masking of the effect of an allele at one locus by an
allele at another locus, and 3) functional epistasis, which
describes physical molecular interactions between various
proteins (and other genetic elements). Jannink and Jansen
(2001) described a contrast approach for building linear
models and a likelihood method to test for the presence of
epistasis.

Previous reports (Bocianowski, 2008, 2012a,b) de-
scribed results obtained for analytical, numerical and simu-
lation comparisons of two methods for estimating the pa-
rameter connected with the additive-by-additive interaction
effect (epistasis), namely, the phenotypic method, based on
extreme groups of homozygous lines, and the genotypic
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method, based on marker observations. One of the conclu-
sions of these studies was that the estimate of the total addi-
tive-by-additive interaction effect based on the marker data
was in most cases smaller than that based on the phenotype.

The explanation of this phenomenon may be simple.
Phenotypic data can be used to estimate only the total
epistatic effect of all hypothetical gene pairs that determine
the trait. By using marker data, which can be more or less
precisely mapped in the genome, we can estimate individ-
ual effects of gene-by-gene interactions while keeping the
number of QTL-by-QTL interactions intentionally low for
practical reasons. The sum of the obtained effects is lower
than the phenotypic estimate and this difference may be en-
hanced by the absence of markers in the regions where
genes are located.

In addition to the above explanation, other possible
sources of the differences between calculated estimates
should be considered. The results mentioned above relate to
QTL-by-QTL interaction effects obtained by the simplest
possible methods, i.e., by multiple linear regression on the
marker data. In the present paper, modification of this re-
gression by using empirical weights is shown to provide
better agreement between the phenotypic and genotypic es-
timates.

In the approach described here, estimation of the pa-
rameter connected with the additive-by-additive epistatic
interaction effect was based on extreme groups of homozy-
gous lines and on data for genotypic markers. Weighted
multiple linear regression was used to estimate the
QTL-by-QTL epistatic effects by employing: (1) standard
weighted regression with weights based on estimated vari-
ances, (2) different weights for minimal, maximal and other
lines, and (3) different weights for extreme lines and differ-
ent weights for other lines. The effectiveness of the pro-
posed method was investigated by using Monte Carlo
simulations.

Methods

Estimation of the effect of additive-by-additive
interactions on gene action

As a starting point, consider a population of n signifi-
cantly different homozygous (doubled haploid - DH or re-
combinant inbred - RI) plant lines from a cross between two
homozygous parents, as is currently practiced in the breed-
ing of selfing species. For this population, an n-vector of
phenotypic mean observations y = [y1 y2 ... yn]’ and q n-vec-
tors of marker genotype observations ml, where l = 1, 2, ...,
q, are obtained. The i-th element (i = 1, 2, ..., n) of vector ml

is equal to -1 or 1, depending on the parental genotype ex-
hibited by the i-th line.

Estimation based on the phenotype

Estimation of the additive-by-additive interaction of
homozygous loci aa (epistasis) (Kearsey and Pooni, 1996)

based on phenotypic observations y requires the identifica-
tion of groups of extreme lines, i.e., lines with minimal and
maximal expression of the observed trait (Choo and
Reinbergs, 1982). The group of minimal lines consists of
lines that theoretically contain only alleles that reduce the
value of the trait. Analogously, the group of maximal lines
contains lines connected only with alleles that increase the
trait value. In this report, the groups of extreme lines are
identified by using the quantile method (Bocianowski et

al., 1999) in which lines with mean values � 0.03 or � 0.97
of the quantile corresponding to the empirical distribution
of means were assumed to represent minimal and maximal
lines, respectively. The total additive-by-additive interac-
tion effect of aa may be estimated by the following formula
(Surma et al., 1984)

� �aa L L Lf

^

max min� � �
1

2
(1)

where Lmax and Lmin denote the means for the groups of
maximal and minimal lines, respectively, and L denotes the
mean for all lines.

Estimation based on the genotype

The estimation of aa was based on the assumption
that genes responsible for the trait were marked perfectly as
observed molecular markers. By choosing from all the ob-
served markers p the variability of the trait and model ob-
servations for the lines can be defined as

y 1 X Z e� � � �	 
 � (2)

where 1 is the n-dimensional vector of ones, 	 is the general

mean, X is the (n�p)-dimensional matrix of the form

� X m m m� l l l p1 2
� , l1, l2, ..., lp �{1, 2, ..., q}, � is

the p-dimensional vector of unknown parameters of the
form � � �
 a a al l l p1 2

� , Z is a matrix in which the

columns are the products of some columns of matrix X, � is
the vector of unknown parameters of the form

� � �
�

� aa aa aal l l l l lp p1 2 1 3 1
� and e is the n-dimensio-

nal vector of random variables such that E(ei) = 0,

Var(ei) = �2 and Cov(ei, ej) = 0 for i � j with i, j = 1, 2, ..., n.
The parameters a a al l l p1 2

, , ,� are the additive effects of the
genes controlling the trait and parameters
aa aa aal l l l l lp p1 2 1 3 1

, , ,�
�

are the additive-by-additive interac-
tion effects. The epistatic interaction effects are assumed to
show only loci with significant additive gene action effects.
This assumption significantly reduces the number of poten-
tial significant effects and improves the usefulness of the
regression model.

Defining � � � � �� 	 
 � and � G 1 X Z� yields
the model

y G e� �� (3)

Bocianowski 803



If G is of full rank, the estimate of � is given by
(Searle, 1982):

� ��� � � �� � �
G W G G W y

1 1 1 (4)

where W
-1 is a diagonal matrix of unknown variances of

observations that may be found empirically by estimation.
The total additive-by-additive epistatic effect of genes that
influence the trait is defined as:

aa aaf l l

k
k k

p

k

p

k k

^ ^

'
'

'�
�
�

�

�

��
21

1

(5)

The markers for model (2) may be selected by a step-
wise regression procedure (Charcosset et al., 2001). For
this, a two-stage algorithm was used in which: (i) selection
was done by using a forward-backward stepwise, multiple
linear regression with a probability into and out of the
model of 0.01 independently within all linkage groups, and
(ii) markers selected in this way were placed in one group
and subjected to the second backward selection (see Jansen
and Stam, 1994). The final genetic model incorporated sig-
nificant additive and epistatic effects. A QTL was declared
if the phenotype was associated with a marker locus at
p < 0.001. For the weights, three forms of matrix W were
proposed, as follows:

Proposal 1 - Ordinary weighted multiple linear re-
gression, with weights based on the estimated variance.
The matrix W is defined as:

W = (wi) (6)

where wi is the estimated variance for the i-th line, i = 1,2,
..., n.

Proposal 2 - Weighted regression with different
weights for minimal, maximal and other lines. The ele-
ments of matrix W are:

w

w

w

w

i �
min

max

,

,

for minimal lines,

for maximal lines,

other for other lines,,

�

�
�

�
�

(7)

where wmin is the estimated average of variances for mini-
mal lines, wmax is the average of variances for maximal lines
and wother is the average of variances for other lines.

Proposal 3 - Weighted multiple linear regression with
different weights for extreme lines and other lines. The ele-
ments of matrix W are:

w

c

i �
�

�
�

��

1

1

,

,

for extreme lines,

for other lines,
(8)

where

c
w w

w
�

�

�
min max

2 other

(9)

In the case of unweighted regression all the elements
of matrix W are equal to 1.

Simulation studies

In the Monte Carlo simulations that compared the
phenotypic and genotypic (unweighted and three forms of
weighted) estimates of the additive-by-additive interaction
of QTL effects the following variants of the selected pa-
rameters were adopted. The true value of the parameter was
assumed to be equal to five (aa = 5) and the total mean
value of the trait to 100. The number of QTLs affecting the
trait was five (each with an additive effect of two). A QTL
was marked perfectly so that the marker and QTLs were in
complete linkage disequilibrium with no recombination. At
least two markers without additive effects were located be-
tween two QTLs. In all, 200 homozygous lines and 210
markers were analyzed. Markers were located in five,
seven or 10 linkage groups (LG) that contained 42, 30 or 21
markers, respectively. Distances between markers were all
equal (10 cM) or unequal (for five LG: 8, 9, 10, 11 and
12 cM; for seven LG: 8, 9, 9.5, 10, 10.5, 11 and 12 cM; for
10 LG: 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12 and 12.5 cM).
The number of QTL-QTL pairs with additive-by-additive
epistatic effects that affected the trait was assumed to be
one, two or five. The QTLs with additive-by-additive
epistatic effects were located in one LG or distributed over
the whole genome (each QTL was in a different LG). The
effects of particular pairs of genes were assumed to be
equal for all pairs or one QTL-QTL pair effect was much
larger than the other (for two pairs: 4 and 1; for five pairs: 2,
1, 1, 0.5 and 0.5). The variance for lines was assumed to in-
clude four variants: V1 - equal for all lines (10), V2 -
greater for extreme lines (10) than for other lines (5), V3 -
smaller for extreme lines (5) than for other lines (10) and
V4 - different for minimal lines (10), maximal lines (20)
and other lines (30). The error variance was equal to five for
all generated observations. For each combination of param-
eters, 5000 random generations were obtained for the data
set containing the vector of phenotypic observations and
vectors of marker genotype observations. For each data set
the line variances were estimated and the total additive-by-
additive interaction effect was estimated by the phenotypic

method (aa f

^

) and by unweighted (aa g

^

0 ) and weighted

( , , )
^ ^ ^

aa aa aag g g1 2 3 versions of the genotypic method. The

results were summarized as mean values for a series of sim-
ulations and mean squared errors.

Results

Different experimental situations were examined in
this large-scale simulation. Tables 1, 2, 3 and 4 show the re-
sults of simulations done to compare the estimates of addi-
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tive-by-additive epistatic interactions obtained by the five
methods: the phenotypic method and four genotypic meth-
ods (one unweighted and three forms of weighted) in which
the distances between markers were the same (10 cM) and
the number of linkage groups was five.

The results of this simulation showed that in all the
four variants of variance for lines [equal for all lines (Ta-
ble 1), greater for extreme lines than for other lines (Ta-
ble 2), smaller for extreme lines than for other lines (Ta-
ble 3) and different for minimal lines, maximal lines and
other lines (Table 4)] the mean phenotypic estimate was al-
ways greater than the genotypic estimates (regardless of the
method used). Genotypic estimates based on weighted re-
gression were always greater than the unweighted esti-

mates. The mean values for aa g

^

2 and aa g

^

3 were always

slightly larger than aa g

^

0 , whereas the mean values for aa g

^

1

were much larger than aa g

^

0 and closest (among aa g

^

) to

aa f

^

. The relationship aa f

^

> aa g

^

1 > aa g

^

2 > aa g

^

3 > aa g

^

0 was

generally observed, except when five QTL-QTL epistatic
pairs were assumed to be present in many linkage groups, in

which case aa g

^

1 > aa f

^

. The weighted estimates were al-

ways closer to the phenotypic estimates than the unweight-
ed estimates.

The last five columns of Tables 1-4 show that a de-
crease in the estimates was accompanied by an increase in
their mean squared error. Simulations were also done for
the groups containing seven and ten LG, and for unequal
distances between markers. The results of these analyses
(not shown) were similar to those described above.

Discussion

Most plant traits are quantitative in nature and are in-
fluenced by many genes of quantitative trait loci (QTL).
Quantitative traits are also influenced by the environment

and tend to show varying degrees of genotype � environ-
ment interaction. Epistasis, or interaction between non-
allelic genes, is an important factor that affects the pheno-
typic expression of genes and the genetic variation in popu-
lations (Li et al., 1997). An increasing body of knowledge
on biological pathways and gene networks implies that
gene-gene interactions (epistasis) are important and several
reports have recently argued that much genetic variance in
populations is due to such interactions (Carlborg and Ha-
ley, 2004; Marchini et al., 2005; Nadeem and Azhar, 2005;
Bhatti et al., 2006a,b; Evans et al., 2006; Lin et al., 2008;
Ullah et al., 2010; Shakoor et al., 2010). Mapping and esti-
mating epistatic quantitative trait loci is a difficult and seri-
ous challenge and most of the existing methods for the de-
tection of epistasis use a higher dimensional search (Chase
et al., 1997; Holland, 1998; Kao et al., 1999; Zeng et al.,
1999; Carlborg et al., 2000; Sen and Churchill, 2001).
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The present report is the first to compare a phenotypic
estimator of additive-by-additive epistatic interaction ef-
fect with genotypic estimators obtained using weighted
multiple linear regression based on a simulation study. The
combination of parameters adopted in the Monte Carlo
simulation study corresponded to cases often encountered
in real studies.

Quantitative geneticists have long recognized the im-
portance of gene-by-gene interactions and these have been
documented for numerous crops and for various traits. In-
formation on epistasis related to additive effects will be
useful in traditional breeding. In breeding programs the use
of a superior genotype in various environments when this
superiority has been predicted based on QTL information
obtained only in one environment (Lin et al., 2008). Epis-
tasis is a challenge to plant breeders and can reduce the
progress of quantitative traits from selection. Hence, in ge-
netic and breeding studies, it is very important to consider
the non-allelic interaction effect as well as the precision of
their estimation.

This paper describes the use of weighted multiple lin-
ear regression to estimate QTL-by-QTL epistatic effects,
with three forms of weighting being proposed. The effec-
tiveness of the proposed methods was validated by a series
of simulations. The results confirmed the universality and
stability of additive-by-additive epistatic interaction effects
assessed by the weighted regression method. Similar rela-
tionships between phenotypic and genotypic estimators
were obtained, irrespective of the number of linkage groups
(number of chromosomes), distance between markers, the
number and location of QTL-QTL epistatic pairs and the
different variants of line variances.

Conclusion

Multiple linear weighted regression is useful for esti-
mating additive-by-additive epistatic interactions. Irre-
spective of the variants of line variances, similar relation-

ships were obtained between aa f

^

, aa g

^

0 , aa g

^

1 , aa g

^

2 and

aa g

^

3 . This finding indicates that these methods of estima-

tion may be applied to different experimental situations.
The ordinary weighted multiple linear regression method,
with weights based on an estimated variance, is the pre-
ferred method because it provides results closer to the true
values. Overall, the results described here indicate that the
estimation of epistatic interaction effects by the weighted
regression method may be applied to different plant spe-
cies.
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