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Abstract—Simulations are useful to study the heart’s ability
to generate flow and the interaction between contractility and
loading conditions. The left ventricular pressure–volume
(PV) relation has been shown to be nonlinear, but it is
unknown whether a linear model is accurate enough for
simulations. Six models were fitted to the PV-data measured
in five sheep and the estimated parameters were used to
simulate PV-loops. Simulated and measured PV-loops were
compared with the Akaike information criterion (AIC) and
the Hamming distance, a measure for geometric shape
similarity. The compared models were: a time-varying
elastance model with fixed volume intercept (LinFix); a
time-varying elastance model with varying volume intercept
(LinFree); a Langewouter’s pressure-dependent elasticity
model (Langew); a sigmoidal model (Sigm); a time-varying
elastance model with a systolic flow-dependent resistance
(Shroff) and a model with a linear systolic and an exponential
diastolic relation (Burkh). Overall, the best model is LinFree
(lowest AIC), closely followed by Langew. The remaining
models rank: Sigm, Shroff, LinFix and Burkh. If only the
shape of the PV-loops is important, all models perform
nearly identically (Hamming distance between 20 and 23%).
For realistic simulation of the instantaneous PV-relation a
linear model suffices.

Keywords—Time-varying elastance, Simulationmodel,Wind-

kessel model, Isochrones.

INTRODUCTION

The function of the left ventricle (LV) is the result of
the complex interaction between contractility, heart
rate and pre- and afterload. How these factors interact,

can be understood by simulation of the relation
between pressure and volume of the LV.5,43 Further-
more, simulation can support the decision as to what
variables and parameters are vital in the description of
the pressure and volume of the LV. This may, for
example, be of use in integrative physiological model-
ing.

If pressure of a number of beats is plotted against
volume while pre- or afterload of the heart is varied,
points of different cardiac cycles that occur at the same
time in the cardiac cycle can be connected to form
isochrones. In the classical time-varying elastance
model of Suga et al.,33 these isochrones are considered
straight lines that intersect the volume axis in a single
point. The slope of the isochrones, time-varying elas-
tance, reflects the contractile behavior of the heart.

Since the work of Suga et al.,33 several studies have
shown that isochrones are nonlinear and that the vol-
ume intercept varies substantially. Especially the end-
diastolic and end-systolic pressure–volume relation
(EDPVR and ESPVR, respectively) have been studied
extensively. The ESPVR is considered to be a good
load-independent measure of contractility.43 In the
early 1970s, it was shown that the EDPVR of isolated
canine hearts fitted well to an exponential model.10,13,15

It was even shown that in subphysiological volume
ranges, increasingly negative pressures are required to
reduce volume.5,34 Studies of the ESPVR, although not
necessarily coinciding with an isochrone, revealed that
it was concave or convex toward the volume
axis.6,9,16,39 If the slope of the ESPVR is not constant,
contractility varies with the end-systolic volume, and
therefore nonlinear isochrones result in a load-depen-
dent measure of contractility. That the volume inter-
cept shows considerable variation, has been shown
more recently.9,39
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Although the time-varying elastance defines an
elastance for each moment in the cardiac cycle, line-
arity of the isochrones has not been studied very often.
Funai and Thames12 studied the isochronal behavior in
left ventricular pressure-wall thickness relations,
assuming that the latter relation is closely related to
time-varying elastance. In the basal state and during
modest inotropic alterations, isochrones were linear
near end-systole, but parabolic during early systole.
Claessens et al.9 focused on the isochrones in the
pressure–volume relation during the entire cardiac
cycle. Using several models, they systematically studied
the linearity of the isochrones and the variation in the
volume intercept in data measured in mice. They
observed that the volume intercept varied considerably
and that isochrones are better described by parabolic
or logarithmic than by linear isochrones. Furthermore,
they observed sigmoidal behavior of the isochrones
during the isovolumic phases.

This study focuses on simulation of the instanta-
neous LV pressure–volume relation. Given the actual
nonlinearity of the isochrones, is the assumption of
linear isochrones accurate enough for realistic simula-
tion of the instantaneous pressure–volume relation or
should a nonlinear model be used? To answer this
question, six different isochrone models were fitted to
isochrones measured in five sheep and these fitted
models were used as input to a simulation model of the
isochronic behavior of the heart. The model is used to
simulate pressure and volume in the presence of a
realistic arterial system. The fit of simulated pressure
and volume were compared to the measured data using
a statistical criterion to weigh the goodness of fit
against the number of parameters in the model.

MATERIALS AND METHODS

Isochrone Models

Linear Model with Fixed Intercept (LinFix)

The classical time-varying elastance model of Suga
et al.33 relates left-ventricular pressure P(t) and volume
V(t) according to

PðtÞ ¼ EðtÞ VðtÞ � V0½ � ð1Þ

with E(t) elastance, a time-dependent slope, and V0 the
fixed volume-axis intercept. As noted, this model
results in a linear pressure–volume (PV) relation for
each moment in time (i.e., isochrones are straight lines,
Fig. 1). E(t) was estimated by constrained linear
regression of all isochrones of the cardiac cycle with
volume-axis intercept V0 as constraint. V0 was deter-
mined by linear regression to the ESPVR. The ESPVR
is defined by the upper-left corner points of the

PV-loops, which are identified by an automatic algo-
rithm (see Appendix). Note that the ESPVR does not
necessarily coincide with an isochrone.

Linear Model with Free Intercept (LinFree)

The linear model with free intercept is identical to
the LinFix model except for the intercept V0 which is
allowed to vary with time. The model thus relates P(t)
and V(t) according to

PðtÞ ¼ EðtÞ VðtÞ � V0ðtÞ½ � ð2Þ

This model also results in linear PV-relationships
for each moment in time (Fig. 1). E(t) and V0(t) were
estimated by unconstrained linear regression of all
isochrones of the cardiac cycle.

Langewouters Model (Langew)

The Langewouters model has originally been
derived to describe pressure–area relations of arter-
ies.17 Here it is translated to the PV-relation of the
ventricle. The model then reads

PðtÞ ¼ P0ðtÞ þ P1ðtÞ tan p VðtÞ � 1
2Vm

� �
=Vm ð3Þ

with P0(t) and P1(t) two time-varying parameters and
Vm a fixed maximum physiological volume. In the
high-volume range, high pressures are required to
increase volume to its maximum value Vm, while in the
low-volume range large negative pressures are required
to reduce volume to negligible values.34 In the physi-
ological range of volumes, pressure is nonlinearly
related to volume. For each isochrone pressure equals
P0(t) at V = Vm/2, while the slope is proportional to
P1(t). For all sheep Vm was fixed to a value of 125 mL.
With Vm time-independent, the model is linear in
parameters P0(t) and P1(t), which were therefore esti-
mated with a linear least-squares method.37 The model
results in the tangentially curved isochrones shown in
Fig. 1.

Sigmoidal Model (Sigm)

Especially for modeling of the observed sigmoidal
shape of isochrones,9 we formulated a sigmoidal
model. The model reads

PðtÞ ¼ AðtÞ ½VðtÞ=VrefðtÞ�aðtÞ

1þ ½VðtÞ=VrefðtÞ�aðtÞ
þ BðtÞ ð4Þ

with A(t) an amplitude and B(t) a vertical offset. For a
given time t, the sigmoid function is an S-shaped curve
(Fig. 1) that is enclosed by two horizontal asymptotes,
at B and A+B. The bending point of the isochrone is
located at V = Vref and P = B+A/2. At the bending
point, the slope is proportional to a. To reduce the

Modeling the Instantaneous Pressure–Volume Relation 1711



degrees of freedom in the model, B(t) was set equal to
the pressure of the loop with the lowest filling pressure.
The remaining model parameters where estimated by
fitting each isochrone to the model with a nonlinear
least-squares method based on the interior-reflective
Newton method.37

Shroff Model (Shroff)

Since numerous studies8,14,27,32,38 have shown that
the instantaneous PV-relation of the LV is also a
function of flow (resistive behavior), we also included a
model with a systolic resistance as proposed by Shroff
et al.27 The model reads

PðtÞ ¼ EðtÞ VðtÞ � V0½ � 1� q _VðtÞ
� �

ð5Þ

with E(t) time-varying elastance, V0 a fixed volume-
axis intercept, _VðtÞ ventricular outflow and q a fixed
resistance proportionality factor. Note that this model
is identical to LinFix if flow is zero. The presence of

ventricular outflow in this model complicates matters
in that it is not a purely instantaneous description of
the PV-relation (i.e., time can no longer be regarded as
a parameter). Because we did not measure aortic flow,
we used the derivative of the volume signal during the
ejection phase (defined by the corner points of the
PV-loops) as a measure of ventricular outflow and we
assumed flow to be zero outside the ejection phase.
Since sheep and dog are comparable in terms of ven-
tricular pressure and peak flow, we followed Shroff
et al.27 in their use of a fixed value of 0.0015 s/mL for
q. Then, because the second bracketed factor of Eq. (5)
is known, after division of pressure by this factor, E(t)
and V0 can be estimated in the same way as in LinFix.

Burkhoff Model (Burkh)

In their analysis of heart-arterial interaction,
Burkhoff et al.3 combine a linear elastance systolic
model with an exponential diastolic model. Because of

FIGURE 1. The isochrone models compared in this study with the meaning of their parameters. PV-loops representing three
different preload-conditions are shown. Open circles denote corresponding (isochronal) points in the cardiac cycles. An isochrone
(dashed line) is shown for each of the four cardiac phases. The dots within the open circles in the Sigm model denote the pressure
of the loop at the lowest filling pressure to which parameter B is set. For clarity, the loops in the Langew and Sigm model are
shifted along the volume axis. Shroff is not shown, since it is the same as the LinFix model apart from ejection where its
isochrones, due to flow dependence, do not have such a clearly prescribed shape as the other models have. See text for abbre-
viations and details.
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its relatively small number of parameters, the model
may be of interest for simulation purposes. The model
assumes a linear ESPVR, an exponential EDPVR and
a smooth transition between both for the remaining
isochrones (Fig. 1). The ESPVR reads

PesðV Þ ¼ EmaxðV� V0Þ ð6Þ

with Pes(V) end-systolic pressure, Emax maximum
elastance and V0 the volume-axis intercept. The
EDPVR reads

PedðV Þ ¼ A eBðV�V0Þ � 1
h i

ð7Þ

with Ped(V) end-diastolic pressure, A and B constant
parameters and V0 the same value as in Eq. (6). The
isochrones in between the end-diastolic and end-sys-
tolic isochrone are modeled with a weighted sum of the
ESPVR and EDPVR

P V; tð Þ ¼ aðtÞPesðV Þ þ 1� aðtÞ½ �PedðV Þ ð8Þ

with weighting factor a(t) that varies between 0 and 1.
Burkhoff et al.3 originally used a sinusoidal function
for a(t), but from a preliminary study we found that
this would yield unrealistic isochronal behavior.
Therefore, to make this model more realistic but at the
same time maintain its simplicity, we used a fifth order
polynomial for the systolic part of a(t)

aðtÞ ¼ a1t
5 þ a2t

4 þ � � � þ a5tþ a6 ð9Þ

with the constraints that a(t) reaches its maximum of 1
at Tmax, the time of maximum elastance, and that
a(t) = 0 at t = 0 and a(t) = 0 for t ‡ Tes, with Tes the
moment of end-systole. Note that the constraints limit
the degrees of freedom of the polynomial to three.
Therefore only three of the parameters a1 through a6
have to be estimated.

The ESPVR was determined from the corner points
of the PV-loops. Unconstrained linear regression was
applied to the ESPVR to find Emax and V0. Tmax was
determined from the isochrone that best fitted the
ESPVR in the orthogonal sense (i.e., least-squares of
deviations in both P and V direction). The first iso-
chrone of the cardiac cycle was regarded as the
EDPVR. The parameters A and B of Eq. (7) were
estimated with a nonlinear least-squares method37 and,
subsequently, the parameters of a(t) were estimated
using constrained linear regression.37

Experimental Protocol

We analyzed data analyzed earlier in the study of
Staal et al.,29 for which ventricular volume and pres-
sure were measured simultaneously in five closed-chest
sheep (35.0–46.0 kg). We only used data measured

during baseline conditions. For the measurements, the
chest could remain closed. The surgical and experi-
mental procedures were reviewed and approved by the
animal research committee of the Leiden University
Medical Center. The animals were treated following
guidelines published by the U.S. National Institutes of
Health.21 Pressure and volume were measured while
preload was gradually reduced by balloon occlusion of
the vena cava inferior. During the procedure, the right
atrium was paced at a fixed heart rate. Volume was
calibrated by thermodilution in the pulmonary artery
and parallel conductance was assessed by the hyper-
tonic saline method.1,2 LV volume and pressure, aortic
pressure and an ECG lead were sampled at a frequency
of 250 Hz using a Leycom Sigma 5 signal processor
(CDLeycom, Zoetermeer, the Netherlands). The ECG
was recorded for the identification of the onset of
individual cardiac cycles.

Isochronal Fitting

The sampled P(t) and V(t) of each sheep were
transformed to isochrones by defining t = 0 at the
moment of the R-wave in the ECG and collecting data
of different cycles that occurred at the same time after
t = 0. The cycle with the smallest number of samples
determined the number of isochrones in a sheep that
was analyzed. Because of cardiac pacing, cycle lengths
differed only by a few samples (about four samples at a
total cycle length of 188). In the analyses, the data was
represented in matrix form with isochrones in rows and
cycles in columns. Note that the EDPVR (i.e., the
isochrone corresponding to t = 0) is an isochrone by
definition, while the ESPVR (defined by the upper left
corner points of the PV-loops) is not an isochrone.

Arterial Model

In our simulation model, the arterial system of the
ventricle was modeled with a three-element windkessel
model.42 Since aortic flow was not measured, we esti-
mated the parameters of the windkessel model from
the aortic pressure waveform and stroke volume only.
We adopted the same method as Westerhof et al.,40 by
assuming a triangular flow waveform. Ejection was
supposed to start at the moment of end-diastole and
end at the moment of the incisura of the aortic pressure
waveform. The peak height of the triangle was chosen
such that the area of the triangle equaled stroke vol-
ume and the moment of peak flow was set at one-sixth
of the ejection period. After rewriting the equations of
the windkessel model into state-space representation
(flow as input, pressure as output), the parameters
were estimated by the prediction error method of
MATLAB’s system identification toolbox.20 The
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windkessel parameters were estimated for each cardiac
cycle separately.

Simulations

Simulation Model

To assess how the different isochrone models
behave, all were incorporated in a simulation model of
a ventricle with an arterial system. A diagram of the
computational protocol is shown in Fig. 2. We used a
model that has often been used for the study of heart-
arterial interaction.3,25,30,41 The LV is modeled by each
of the isochrone models. Filling volumes are set equal
to the measured end-diastolic volume, and mitral and

aortic valves are modeled as purely unidirectional
valves. The arterial load is the windkessel model with
parameters estimated per beat, as described above.

Model Implementation

The models were incorporated in an existing simu-
lation model of the ventricle and the arterial sys-
tem,18,30 shown in Fig. 2. For each combination of the
mitral and aortic valve positions (open/closed), the
governing differential equations were identified and
rewritten into state-space representation. This resulted
in a system with two state variables: ventricular volume
and peripheral pressure. For each moment of the car-
diac cycle, the valve positions were identified. Subse-
quently, state-space matrices corresponding to these
valve positions were passed to the differential equation
solver. Solving was repeated with a different value for
the initial peripheral pressure until aortic pressure was
periodic (i.e., pressure at the end equals pressure at the
beginning of the cycle).

Implementation Issues

Two specific implementation issues had to be dealt
with. First, instead of varying the filling pressure for
simulating vena cava occlusion, LV end-diastolic vol-
ume was varied. Although lowering the filling pressure
in the model would seem to be a more obvious choice,
this would yield unrealistic results in the LinFix model.
Since the EDPVR is nonlinear and since V0 of the
LinFix model is estimated from the ESPVR, the model
fits to the EDPVR rather poorly. This is illustrated in
Fig. 1. Due to the small slope of the fitted isochrone,
end-diastolic volume is extremely sensitive to changes
in filling pressure. As a consequence, evaluating the
isochrone at the measured filling pressure would result
in an unrealistic end-diastolic volume in most cases.
Therefore, for all models the simulated end-diastolic
volume was set at the measured value and the filling
pressure was evaluated from the fitted instead of the
measured end-diastolic isochrone. Second, for each
ventricular model and each cardiac cycle, a separate
value for the source resistance Rv (Fig. 2) was used.
Since Rv strongly influences the filling rate, we esti-
mated the value of this resistance during simulation by
assuming that volume is a linear function of time
during diastolic filling (i.e., filling rate is constant).
Given an isochrone model, stroke volume and end-
diastolic volume, Rv can be calculated with Ohm’s law.

Simulations

For each ventricular model studied, the parameters
were set at the values found by fitting the isochrones.
Subsequently, for each cardiac cycle, the windkessel

FIGURE 2. Flow chart of the procedure followed for com-
parison of measured and simulated data. PLV 5 fx(VLV) rep-
resents one of the six isochrone models with parameters
x 5 {ai}. The procedure is followed for each sheep and each
isochrone model. PLV, VLV 5 left-ventricular pressure and
volume; PAO 5 aortic pressure; SV 5 stroke volume; Pv 5
venous pressure; Rv 5 venous resistance; RWK3, CWK3, and
ZWK3 5 peripheral resistance, arterial compliance, and char-
acteristic impedance of the windkessel model; sim 5 simu-
lated.
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parameters were set at the values estimated with the
above described procedure. Each cardiac cycle was
simulated separately.

Model Comparison

Simulated pressure and volume as a function of time
were compared with measured pressure and volume
using the Akaike information criterion AIC.7 For each
sample in the cardiac cycle of all loops of a sheep, the
deviation d(ti) of the simulated from measured pressure
and volume was calculated as

dðtiÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PsimðtiÞ � PmeasðtiÞ

DP

� �2

þ VsimðtiÞ � VmeasðtiÞ
DV

� �2
s

ð10Þ

with Psim and Vsim the simulated pressure and volume,
Pmeas and Vmeas the measured pressure and volume. DP
and DV were added for reasons of dimensionality. DP
was defined as the difference between maximum and
minimum pressure measured in a sheep, and DV like-
wise as the difference between maximum and minimum
volume. AIC was calculated according to

AIC ¼ �2 ln Jþ 2K ð11Þ

with J the sum of squared residuals
P

d2(ti) and K the
number of parameters in the model. Since all models
contain time-varying parameters, the value of K not
only depends on the model but also on the number of
isochrones, which may vary between sheep due to
differences in cycle length. Table 1 shows the values of
K used for each model and each sheep. Note that each
time-varying parameter is regarded as a set of N
independent parameters. Finally, the value of K is
increased by one to account for the estimation of J.7

Since Eq. (10) depends on time, the goodness of fit
of a model depends on the parameterization in the
PV-plane. Then, the shape of a simulated PV-loop may
approximate the shape of its measured counterpart
closely, but the d(ti) may still be considerable. For

some applications one might be interested solely in the
shape of the PV-loops. Therefore, we also compared
the shape of the PV-loops independent of the param-
eterization. A simple measure of geometric shape
similarity is the Hamming distance,28 which measures
the area of the regions lying within one of the two
shapes but not within both. We calculated the Ham-
ming distance between the measured and simulated
loops by converting the coordinates (divided by DP
and DV and multiplied by 100) of the loops to bitmaps
and counting the number of nonzero pixels in the logic
exclusive-OR image of both bitmaps. The Hamming
distance was expressed as a percentage of the area of
the measured loop.

Besides AIC and Hamming distance, we also cal-
culated the average difference between several hemo-
dynamic indices derived from measured and simulated
data. These parameters are: end-systolic LV pressure
and volume, end-diastolic LV pressure, stroke volume,
ejection fraction, maximum and minimum LV dP/dt
and peak filling rate. End-diastolic and end-systolic
points were defined by the corners of the PV-loops and
derivatives were calculated after applying a Savitzky–
Golay filter in the same way as described by Segers
et al.24

Data Analysis

All parameter estimations, simulations and data
analyses were conducted with MATLAB (version
7.0.0.19920, R14; The MathWorks, Natick, MA).
There were no considerable differences in computa-
tional speed of the various models (both in parameter
estimation and simulation). Parameter estimation and
simulation took in the order of seconds on a common
pc. All MATLAB code is provided as supplementary
material.

RESULTS

General Hemodynamics

Table 2 shows the general hemodynamic charac-
teristics of the sheep and their estimated windkessel
parameters. Preload was varied over a wide range in all
sheep. Except sheep 5, the range of filling (end-dia-
stolic) pressures was >11 mmHg. Therefore, we con-
sider the data to be appropriate for the study of load-
dependence of the isochrones. Also the hearts show a
variety of ejection fractions on average ranging from
0.43 in sheep 3 to 0.65 in sheep 1. The low range in
sheep 3 may be attributed to a depressed LV function
and an increased afterload. The LV was considerably
dilated (increased end-diastolic VLV) in comparison

TABLE 1. Number of parameters accounted for in the cal-
culation of Akaike’s information criterion.

Model Fixed parameters Time-varying parameters K

LinFix 1 1 N + 2

LinFree 0 2 2N+1

Langew 1 2 2N+2

Sigm 0 4 4N+1

Shroff 1 1 N + 2

Burkh 8 0 8

N = number of samples per cardiac cycle. K = number of

parameters used for AIC calculation.
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with the other sheep and it showed a lower contrac-
tility (lower maximum dPLV/dt). Furthermore, the
increased afterload (higher RWK and lower CWK) may
have further depressed stroke volume. The windkessel
parameter estimation method resulted in a good fit in
steady state as well as in non-steady state. The average
RMS error of the fitted pressure was £1.2 mmHg in all
sheep. In general, we found little variation in afterload
during vena cava occlusion.

Isochrone Models

Figure 3 shows an example of the representative
isochrones to the measured isochrones of all models.
The best fitting model is Sigm (Fig. 4). Especially
during isovolumic relaxation, it is the only model that
reasonably fits the S-shaped isochrones (Fig. 3). The
ESPVR is clearly nonlinear. Both the Sigm and Lan-
gew model therefore fit better to it than the other
models. Figure 4 also reveals that all models, except
Shroff, fit better in systole than in diastole. This may
be due to the negative pressures encountered in dias-
tole (Burkh) or an unrealistic filling pattern due to the
source resistance Rv (all models). Despite the differ-
ences between systole and diastole, the models rank
almost identically regardless of the cardiac phase. The
Shroff model fits worst (Fig. 4), which must be solely
attributed to the ejection phase, since during the
remainder of the cardiac cycle the model is identical to
LinFix. In the LinFix model, the slope of the fitted
EDPVR is almost horizontal, resulting in unreliable
predictions of the filling pressure. The LinFix and the
LinFree models result in slightly different fitted end-
systolic isochrones, since the intercept in the LinFix
model depends on the ESPVR and not on the shown
isochrone-systole, while in the LinFree model it solely
depends on the shown isochrone.

The time–course of the model parameters of all
models is summarized in Fig. 5. The figure shows the
average of four sheep, averaged after normalization to
the duration of the cardiac cycle. Data of sheep 5 was
excluded from the averaging because it quantitatively
was out of range (e.g., 1–2 orders of magnitude for
V0(t) of the LinFree model) compared with the other
sheep. Qualitatively the time–course in this sheep was
similar to the other sheep.

Simulation and Model Comparison

Using the estimated ventricular and arterial
parameters, ventricular pressure and volume were
simulated. For each measured loop a corresponding
loop was simulated. Figure 6 shows three simulated
PV-loops and the corresponding measured loops for
each simulation model. The three loops represent the
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highest, middle and lowest filling pressures. Qualita-
tively the differences between the models are not very
large. Note that none of the models simulates the
behavior of the isovolumic phases that is observed in the
measured data. In the measured volume changes are
observed while in the simulated loops isovolumic phases
are truly isovolumic as a result of the ideal valves used in
the simulation. Furthermore, due to the critical depen-
dence on the chosen value for the source resistance Rv,
the simulated loops shows sometimes incomplete filling,
resulting in a too small end-diastolic volume.

When the simulated pressure and volume are plot-
ted as a function of time, the differences between the
models are more pronounced. Figure 7 shows the same
data as shown in Fig. 6 but plotted as a function of
time. In most of the models, simulated V(t) fits well to
the measured V(t), while the models differ in how well
they fit measured P(t). Due to its nearly horizontal

FIGURE 3. Examples of four fitted (thick lines) and measured (dots) isochrones of each model. Due to the poor fit of LinFix in
diastole, calculation of the filling pressure by evaluating the fitted isochrone for a given end-diastolic volume, would result in
nearly the same filling pressure for all loops. Apart from ejection, Shroff and LinFix are identical. Therefore, for Shroff only three
fitted isochrones during ejection are shown. (Note the different pressure scale.) In contrast with the other models, during ejection,
Shroff does not result in smooth isochrones of a predictable shape due to the dependence on ventricular outflow. Note that the
isochrones in isovolumic contraction and relaxation in Burkh partly overlap as a result of an equal a value.

FIGURE 4. Average RMS error of the isochrone fits
(mean 6 SD). Black bars represent the RMS error when the
complete cardiac cycle is taken into account, gray and white
bars when only systole and diastole are taken into account.
The Shroff model resulted in the values 27.6 6 15.7 mmHg
(total) and 42.9 6 24.5 mmHg (systole).

Modeling the Instantaneous Pressure–Volume Relation 1717



diastolic isochrones, the LinFix model results in a
virtually identical diastolic pressure waveform regard-
less of the filling pressure. LinFix, Shroff and Burkh
model have a fixed duration of the ejection period
regardless of the preload.

Figure 8 shows the AIC scores of each model per
sheep (left vertical axis) and the average rank (right
vertical axis). Note that AIC scores cannot be averaged
per model (average over all sheep), because AIC scores
are only comparable within a data set, not between
data sets. Of the six models tested, the most likely
model for the given data is LinFree. On average,

LinFree had the lowest (i.e., best) total AIC score
(Fig. 8, lower left). However, the differences with
Langew are small. In systole, Langew performs better
(upper left). In most sheep, the LinFix and Sigm
models had a higher AIC score than the LinFree and
Langew models, while the Burkh model had the
highest score in almost all cases. As may be expected,
the systolic resistance provides the Shroff model a
small advantage above the LinFix model, although the
overall effect is small. Burkh is the least likely model in
systole, while it ranks about equal to LinFix, Sigm and
Shroff in diastole.

FIGURE 5. Time–course of the estimated model parameters. Values are averaged for four sheep, averaged after normalization to
the duration of the cardiac cycle. Error bars show standard error of mean. Note the similarity between E(t) of LinFree and P1(t) of
Langew. Note the small variation in a(t) in Burkh.
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Roughly the same picture arises from a comparison
of hemodynamic indices derived from the simulated
and measured data (Table 3). Again LinFree and
Langew are the best performing model (lowest RMS
error). Note that none of the models is able to model
filling accurately (SDs of peak filling rate >50%),
while the end-diastolic LV pressures of LinFix, Shroff
and Burkh clearly suffer from a poor fit to the
EDPVR.

When the simulated and measured PV-loops are
compared on shape only, regardless of parameteriza-
tion, results are slightly different (Fig. 8, lower right):
all models show nearly identical performance (average
Hamming distance between 20 and 23%). Sigm
resulted in the smallest Hamming distance (20.2 ±

4.5%), LinFix in the largest (22.9 ± 3.6%). Remark-
ably, as to the shape of the loops the Burkh model is

clearly a reasonable alternative (Hamming distance
21.7 ± 4.6%).

DISCUSSION

In this study, we focused on six models, both linear
and nonlinear, to describe instantaneous pressure–
volume relations of the left ventricle in terms of
isochrones. We fitted these isochrone models to data
measured in five sheep and used them to simulate
PV-loops. These simulated loops were compared to the
PV-loops measured originally. The isochrone models
can be used for simulation of the interaction between
heart and arterial system. Accounting for the root
mean square error and different number of parameters,
the models do not differ much in quality in the

FIGURE 6. Examples of three simulated (thick lines) and measured (gray lines) PV-loops. Loops at the highest, middle and lowest
filling pressure are shown for each model. Since end-diastolic volume in the simulation model was fixed to the measured value, the
simulated loops start at the same volume as the measured loops. Note that in the high preload loop of the sigmoid model, the
source resistance was too large resulting in incomplete filling.
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description of the PV-loops. For applications where
the exact course in time of ventricular pressure and
volume is not important (e.g., in ventricular energy
considerations where only the area circumscribed by
the PV-loop is of interest), a classical time-varying
elastance model (LinFix) or an even simpler model
(Burkh) may do.

Isochrones were found to be nonlinear. Especially
during the isovolumic relaxation, the isochrones
clearly exhibited an S-shape (Fig. 3) and therefore the
sigmoidal model fitted best to the data with a root
mean square error of <1 mmHg (Fig. 4). If, however,
the number of degrees of freedom is taken into
account, a linear model (LinFree) is overall the best
(highest likelihood that it best describes the data). In
addition, a linear model has the advantage that
parameters can be determined uniquely.22 The LinFree
model, on the other hand, differed little from the more
physiologically based Langew model, both in terms of
root mean square error, AIC score, hemodynamic
indices and Hamming distance. Therefore we conclude
that performance of both models is virtually equal.

Linearity of the Isochrones

In agreement with Claessens et al.,9 we observed
nonlinear isochrones and thus nonlinearity is not only
found in the mouse9 and the dog,6,9,16,39 but also in
sheep. To our knowledge, our study is the first to
report this for sheep. Nonlinearity of the isochrones is
not surprising when one considers the force–length
relations of cardiac muscle. It is the result of two
phenomena. First, the force–length relation of cardiac
muscle is not linear36 and geometrical factors that
translate this into PV-relations are unlikely to be able
to make them linear. Second, there is load-dependence
of the force–length relation. The first aspect of non-
linearity may be accounted for by nonlinear isochronal
models such as described in the current study, but the
second aspect implies violation of the basic assumption
that the instantaneous PV-relation are load-indepen-
dent. Load-dependence is most clearly observed in the
duration of the systole, which depends on the history
of contraction. This has been shown previ-
ously,4,11,19,35 but we also observe it in the present

FIGURE 7. Examples of three simulated (thick lines) and measured (gray lines) pairs of LV pressure and volume as a function of
time. Cycles at the highest, middle and lowest filling pressure are shown for each model.
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study. As a consequence, the heart will be in a different
contractile state for differently loaded cycles at a given
time after the onset of ejection and this aspect of
nonlinearity is a basic shortcoming of all these models.
Even the Shroff model that we tested in our study and
which takes load-dependence into account by includ-
ing a systolic flow-dependent resistance, does not
resolve this nonlinearity. Another parameterization
(other than time per se) that accounts for this phase
dispersion might resolve it.

Given the dependence on load and history of ejec-
tion, it is also not surprising that nonlinearity is most
prominently observed after ejection (i.e., during iso-
volumic relaxation), when all effects have cumulated.
Indeed, this is the phase where the typical sigmoidal
shape is observed. This shape has been reported first by
Claessens et al. for the mouse,9 but in general isoch-
rones during isovolumic relaxation have gained little or
no attention. Even Funai and Thames12 who studied
isochrones using pressure-wall thickness measurements

FIGURE 8. Upper left: Akaike’s information criterion (AIC) score of each sheep for each model during systole. The score is based
on the sum of squared residuals and the number of parameters in the model (Eqs. 10 and 11). The model with the lowest score is
the most likely model for the given data. Since AIC values are only comparable within a data set (i.e., within the data of individual
sheep), the average ranks (right axis) are shown as black squares (mean 6 SEM). Upper right: AIC scores for diastole. Lower left:
AIC scores for the complete cardiac cycle. Lower right: Hamming distance between measured and simulated PV-loops for each
sheep. A zero Hamming distance means that the shapes are identical. Black squares denote mean 6 SEM.

TABLE 3. Average difference between hemodynamic indices derived from measured and simulated data, expressed as a per-
centage of the indices derived from measured data (%).

Parameter Measured value LinFix LinFree Langew Sigm Shroff Burkh

End-systolic VLV 31.2 ± 13.1 mL 4.3 ± 6.5 1.0 ± 5.1 1.3 ± 5.9 0.9 ± 6.0 2.3 ± 6.7 2.7 ± 5.5

End-systolic PLV 76 ± 15 mmHg –0.7 ± 2.8 0.4 ± 3.5 0.3 ± 2.2 0.2 ± 2.0 1.1 ± 4.4 0.2 ± 2.6

End-diastolic PLV 3.9 ± 2.2 mmHg –20.2 ± 25.1 –3.2 ± 8.2 –1.2 ± 7.8 –6.1 ± 6.4 –20.4 ± 24.9 92.3 ± 68.8

Stroke volume 58.4 ± 14.4 mL 0.2 ± 4.6 1.4 ± 4.4 1.1 ± 4.7 1.4 ± 4.8 0.5 ± 5.7 0.6 ± 4.2

Ejection fraction 65.4 ± 12.6% –1.2 ± 3.3 –0.1 ± 3.0 –0.3 ± 3.5 –0.1 ± 3.7 –1.0 ± 4.2 –0.8 ± 3.1

Maximum dPLV/dt (14.1 ± 4.1) 9 102 mmHg s�1 1.8 ± 12.3 2.8 ± 3.0 3.0 ± 2.8 2.5 ± 2.4 –6.2 ± 9.1 –19 ± 11.1

Minimum dPLV/dt (10.1 ± 2.5) 9 102 mmHg s�1 –15.3 ± 11.8 5.7 ± 22.8 7.2 ± 31.2 13.0 ± 20.0 –14.7 ± 11.4 –32.1 ± 9.9

Peak filling rate 227 ± 96 mL s�1 21.5 ± 50.5 –8.9 ± 45.8 –8.6 ± 35.8 13.1 ± 62.4 23.4 ± 53.1 33.8 ± 62.2

RMS error 11.9 ± 14.6 4.1 ± 12.0 4.2 ± 11.7 7.0 ± 13.5 12.4 ± 15.0 37.2 ± 20.9

Values are mean ± SD, with the average across all cardiac cycles of all sheep. PLV, VLV = left-ventricular pressure and volume.
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did not show the isochrones during this phase, while
Suga et al.33 in their classical paper reported the largest
errors in time-varying elastance during isovolumic
relaxation (see Fig. 5 of their article). In addition it is
not very likely that it is a measurement artifact (e.g.,
due to deformation of the conductance catheter)
because it occurs during relaxation.

Model Comparison

A model that simply fits the data well is not neces-
sarily a good model. Generally, the more (time-vary-
ing) parameters a model contains, the more difficult its
interpretation and the less accurate the parameter
estimation will be.7 Thus, a simple model is in general
more attractive than a complicated model. In this
study we used the Akaike information criterion to
objectively weigh the goodness of fit (sum of squared
residuals) against the number of parameters in the
model. Since individual isochrones were fitted to the
data independently, a time-varying parameter was
counted as a set of (independent) parameters, the
number of which was equal to the number of isoch-
rones (Table 1). We thus neglected dependence
between the value of a parameter for different isoch-
rones. We did not study to which extent this may
influence our results, but since all models contained
one or more time-varying parameters, we assume that
it is at worst a systematic bias.

The AIC score was calculated on the basis of ‘rela-
tive’ orthogonal residues, meaning that the orthogonal
distance between measured and simulated points was
expressed in units relative to the dynamic range of
pressure and volume in the sheep under study. In
contrast to the usual least-squares methods where the
x-variable is assumed exact, use of orthogonal dis-
tances ensured that errors in both pressure and volume
were equally weighted. Furthermore, relative units
were used to ensure that the residual sum is indepen-
dent of the units in which pressure and volume are
expressed. A drawback of this application of AIC is
that it critically depends on the parameterization. In
fact, not the shape of the loop is evaluated but the
shape of volume and pressure as a function of time.
Therefore, we also included a model comparison on
the basis of a measure that solely evaluates the shape of
the PV-loops regardless of the parameterization. The
Hamming distance28 is a simple measure of shape
similarity that sums the area covered by one shape but
not by the other and the area covered by the other but
not by the one (i.e., the sum of the symmetric differ-
ence). For a proper calculation of this distance, the
shapes should be optimally aligned; a prerequisite that
is automatically fulfilled in our application since in the
simulations end-diastolic volume was fixed to the

measured value. Indeed the Hamming distance
resulted in a different rating of the models.

An important additional aspect that plays a role in
model selection is the purpose of the model. Generally,
models are either used to describe a phenomenon or to
both describe and provide insight into a phenomenon.
In the former case, the model parameters do not have
to be interpretable in physical terms (e.g., as in auto-
regressive models), while in the latter case the model
and its parameters are derived from first principles and
they are therefore interpretable in physical terms (e.g.,
as in a model that predicts the existence of a formerly
unknown particle). In the latter case, one model is
preferred over the other when it has more predictive
power. In this study, we focused on descriptive or
phenomenological modeling for simulation purposes
and therefore our models and their parameters do not
necessarily have a clear physical interpretation. This is
obviously the case for the Sigm model which has many
hardly interpretable parameters. The elastance-based
models of our study (LinFix, LinFree, Shroff and
Burkh) may be approximately derived from first prin-
ciples,23 while the Langew model exhibits general
biological features (large pressure and small volume
increases at high volume and vice versa) but also
unexplained variability (time variation of parameter
P0). The predictive power of the different models
should be the subject of further studies.

For ventricular modeling, LinFix is by far the most
classical model, which has been used formany purposes.
It is based on linear isochrones and it leads to a linear
ESPVR. Particularly for modeling the diastole, the
model is insufficient because changes in filling pressure
lead to unrealistic volume changes. The LinFree model
does not show this unrealistic diastolic behavior, and
still has a limited number of parameters. LinFree and
LinFix both are phenomenological descriptions based
on cardiac performance. Langew, on the other hand, is a
model based on muscle properties. It has the limitation
thatVm should be fixed in order to obtain amodel that is
linear in the parameters. As pointed out above, LinFree
can be viewed as a linearization of Langew. Theoreti-
cally the Shroff model should be an improvement over
LinFix because it incorporates a systolic resistance.
However, this improvement could not be shown in terms
of the simulated pressure–volume relationship (Fig. 4).
The Sigm model was studied to better describe the
isochrones in late systole and isovolumic relaxation.
However, since it has a large number of parameters with
unclear physiological meaning, this model turns out to
be of limited value. While it is the simplest model of all
six models, the Burkh model performs reasonably well.
If only the shape of the loops is of interest (e.g., for
educational purposes), the model behaves sufficiently
accurate.

LANKHAAR et al.1722



Isochrone Models

The classical linear time-varying elastance model
(LinFix) poorly fits the data in diastole and during
isovolumic relaxation. The first results in unrealisti-
cally flat diastolic portions of the simulated PV-loops
and different loops seem to be independent of preload
(Fig. 6). Also, this linear diastolic relation makes it
impossible to use diastolic pressure as the starting
point for the calculations: a very small increase in
diastolic pressure would result in an unrealistically
large increase in volume. Thus using this model,
changes in diastolic volume rather than diastolic
pressure should be implemented. Also the duration of
systole does not vary with preload (Fig. 7).

LinFree turns out to be a better model than LinFix,
both in terms of AIC and in accuracy of parameter
estimation. The physiological interpretation of its
parameters, however, needs clarification. The large
variation in time of the intercept volumeV0(t) is a direct
consequence of the linearization of a part of the obvi-
ously nonlinear isochronal relation, although it should
be noted that isolated cardiac muscle also shows a
varying intercept during contraction.11 The Langew
model exhibited about equal behavior in our study as
LinFree, but it allows a more physiological interpre-
tation of the isochrone description. The Langew model
may therefore be a valid alternative for LinFree.
Moreover, both models can be related to each other. In
first-order approximation (series development in V(t),
with time t a parameter), the Langew model reads

PðtÞ � P0ðtÞ þ
p
Vm

P1ðtÞ VðtÞ � Vm½ � ð12Þ

comparison of this with Eq. (2), shows that the models
share a term f(t) Æ V(t). The parameter P1(t) in Eq. (12)
should then be proportional to E(t) of LinFree. From
Fig. 5 it can be seen that both indeed share a similar
time course.

A drawback of the Langew model as we applied it,
is the arbitrary choice of Vm. A possible way may be to
calibrate Vm on an isochrone (e.g., the end-systolic or
end-diastolic isochrone) by using the relation with
LinFree (e.g., by setting P1(tes) of Langew equal to
E(tes) of LinFree). Furthermore, the model contains
another parameter that shows substantial variation in
time (P0). Thus it does not explain an important part
of the data. Since P0(t) is very much similar to a LV
pressure waveform, it may be fixed to the stationary
LV pressure (as a reference pressure). Then, the model
only models the preload dependent changes in the
normal PV-relation. These possible improvements
should be explored in further studies.

The Burkh model fits the data poorly. Describing
a(t) with a higher-order polynomial as we did here,

instead of a cosine function as in the original study3

does improve the fit (cosine data not shown), but still
the other models outperform this model. The Sigm
model was studied as a more or less ad hoc model in
order to especially describe the observed S-shaped
isochrones in relaxation. As can be expected with a
model with many degrees of freedom, the fit is superior
to that of the other models but interpretation of its
parameters is difficult. To improve the reliability of the
parameter fits, b(t) was, arbitrarily, fixed to the value
of the minimum pressure on the isochrone (i.e., the
loop at the lowest preload).

The LinFree model is the best choice for simulation
of pressure and volume as a function of time. If only
the shape of the PV-loops is of interest, the LinFix and
Burkh model are the best options. Thus, despite the
observed nonlinearity in the isochrones linear models
suffice for simulation of PV-loops. To improve the
usability of the models, the time-varying parameters
could be described by a Fourier series with a limited
number of terms as was done by Senzaki et al.26 This
was not investigated in the present study, but could be
subject of future studies.

Limitations

In several sheep, the PV-loops displayed volume
changes during the cardiac phases which would be
expected to be isovolumic. They may indicate valvular
insufficiencies, but we considered this unlikely. Pre-
sumably, these volume changes are artifacts of the
conductance catheter, caused by changes in the LV
long-axis not accounted for in the catheter-derived
volume measurements. Despite this the conductance
catheter is generally considered to measure instanta-
neous LV volume reliably and it is currently the gold
standard for measurement of PV-loops in vivo.5

We analyzed data of paced hearts. Although some
caution is recommended for the translation of the
results to unpaced hearts, it is unlikely that small
variations in heart rate would have altered the con-
clusions of our study. Since the vena cava occlusion
is a rapid intervention, heart rate variations would
presumably be small.

The sheep hearts studied were normal and without
signs of failure (end-diastolic pressures below
10 mmHg). Therefore, it might be questioned whether
the results are applicable to failing or pathological
hearts. Although we cannot exclude the possibility that
some phenomena will be more prominent in failing or
pathological hearts, we do conclude that even in the
normal state, nonlinearity of the isochrones is sub-
stantial. Furthermore, because we used variation of
end-diastolic volume instead of end-diastolic pressure
in the simulations, we expect that our results are more
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generally applicable than to low end-diastolic pressure
only, especially in dilated hearts.

We observed considerable negative pressures, even
at end-diastole (Table 2). Since the standard proce-
dures were followed during the measurement of the
pressure, we had no reason to doubt the validity of the
data and shift the pressure data to positive levels.
Negative pressures may indicate ventricular suction.31

The measured ESPVR, while not an isochrone, is
not linear. Whether the simulated ESPVR is linear or
not depends on the model chosen (Fig. 6). The LinFree
model predicts a rather convex relation and is in this
respect less preferable.

CONCLUSION

We have compared six models of the instantaneous
PV-relation of the left ventricle by assessing each
model’s performance when integrated into a simple
closed-loop windkessel-type circulatory model. We
studied all isochrones in the cardiac cycle. Using data
of five sheep, we simulated PV-loops and compared
these with measured loops. If time parameterization is
taken into account, the best fitting model is the time-
varying elastance model with a varying volume inter-
cept, closely followed by the Langewouter’s model for
pressure-dependent chamber compliance. If only the
shape of the loops is of importance, also a simple,
linear model will be sufficient.

APPENDIX

Automatic Corner Point Identification

We used the following algorithm for the detection of
the corner points of the pressure–volume loops. The
width w, height h and the center of the circumscribing
rectangle of the loop are determined. Subsequently, the
distance of each point of a given segment of the loop
(e.g., the upper left part for the upper left corner) to the
center of the rectangle is determined. The distance is
expressed in units of w and h. The segment of interest is
selected on the basis of the center of the rectangle (e.g.,
for the upper left corner only those points are con-
sidered with volume smaller than the center volume
and pressure larger than the center pressure). The point
with the maximal distance to the center is defined as
the corner point. The method is illustrated in Fig. 9.
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