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Abstract: Background: Depression or Major depressive disorder (MDD) is a prolonged condition
of sadness. MDD is the most common mental disorder that affects more than 264 million people
worldwide. According to the monoamine hypothesis, serotonin (5-hydroxy tryptamine, 5-HT), do-
pamine (DA) and norepinephrine (NE) are the major neurotransmitters (NTs) involved in depres-
sion.

Methods: The methodology adopted for writing this review article is essentially based on the se-
condary literature search through a systematic literature review. This review mainly focussed on
the role of 5-HT3 receptor antagonists (5-HT3RA) in depression and comorbid disorders like anxie-
ty.

Results: Out of three major NTs mentioned above, serotonin has a predominant role in the patho-
physiology of depression. The serotonin type-3 receptors (5-HT3R) are well renowned to be ex-
pressed in the central nervous system (CNS) in regions which have significance in the vomiting re-
flex, perception of pain, the reward system, cognition, depression and anxiety control. 5-HT3R are
the receptors of serotonergic family that belong to ligand-gated ion channel. 5-HT3RA inhibit the
binding of serotonin to postsynaptic 5-HT3R and increases its availability to other receptors like 5-
HT1A, 1B and 1D as well as 5-HT2 receptors and produces anti-depressant-like effect. 5-HT3RA also
have an important role in mood and stress disorders. Some of the studies have shown the effective-
ness of these agents in stress disorder.

Conclusion: The present article focussed on the role of 5-HT3R and their antagonists in the treat-
ment of depression and anxiety. Further studies are warranted to prove their efficacy with respect
to other standard anti-depressants.
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1. INTRODUCTION
According to the latest report from the World Health Or-

ganization (WHO), MDD is the most common mental disor-
der that affects more than 264 million people worldwide [1].
The diagnostic and statistical manual for mental disorder-IV
(DSM-IV) has given nine symptoms for assessment of de-
pression. Out of these nine symptoms, if any five are present
for  more  than  2  weeks,  then  the  patient  is  said  to  be  de-
pressed, however, warrants further confirmation [2, 3]. The
hormones like estrogen and progesterone may modulate the
functioning of 5HT3R as women are more susceptible to be
affected with depression as compared to men [4-6].
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According  to  this  monoamine,  the  hypothesis  level  of
three NTs, namely 5-HT, NE and DA, is decreased in depres-
sion [7, 8]. In addition, γ-amino butyric acid (GABA) and
glutamate also have an important role in the pathophysiolo-
gy of depression [9]. Moreover, recent studies also relate de-
pression with alterations in the physiology of the brain, neu-
ronal plasticity and reduced volume of the frontal cortex and
the hippocampus [10]. Now, genetic involvement in the de-
velopment  of  depression  has  also  been  identified.  Genes
such as SLC6A4 (previously known as SERT), DRDR4, SL-
C6A4 or 5-HTT and TPH2 are also found to have a predomi-
nant role in the pathological progression of depression [11].
Various important causes of depression have are in (Fig. 1).
Moreover, dysregulation of the hypothalamic-pituitary-adre-
nal (HPA)-axis and increased oxidative stress also has a pre-
dominant role in the development of MDD [12, 13]. Imbal-
ance in antioxidant and oxidant enzyme levels in the brain
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and plasma levels of the depressed patient has also been fre-
quently  observed  [13,  14].  Various  studies  indicated  that
MDD demonstrates increased levels of various peripheral in-
flammatory biomarkers when compared with non-depressed
individuals. Increased levels of C-reactive protein, TNF- α,
Interferon-α have been observed in depressed patients [15].

Fig. (1). Causes of depression. (A higher resolution / colour ver-
sion of this figure is available in the electronic copy of the article).

Various pharmacological therapies are available for the
treatment of depression and anxiety, including selective sero-
tonin reuptake inhibitors (SSRI), noradrenaline dopamine re-
uptake  inhibitors  (NDRI),  dopamine  reuptake  inhibitors
(DARI), etc. [16]. However, these treatment approaches are
successful to treat the symptoms of depression to some ex-
tent, but they have the drawback of ineffectiveness against
treatment-resistant depression. In addition, most of the an-
tidepressants show their effect after 1-2 months of treatment
as they act through modification of the receptors [17].

Serotonin is an important neurotransmitter having a role
in  many  physiological  processes  such  as  platelet  aggrega-
tion, pain, sleep, appetite, muscle contraction, emotions and
obsessions and compulsions. Targeting serotonin is an inter-
esting strategy for the development of newer potential  an-
ti-depressants.  5-  HT  and  its  receptors  are  distributed  in
CNS, peripheral nervous system (PNS), as well as in a num-
ber of non-neuronal tissues in the gut, cardiovascular system
and blood. Based on the signal transduction and amino acid
sequence, now the serotonin receptors are classified into sev-
en major types (5-HT1-7) [18, 19]. All the serotonin receptors
belong to the superfamily of G-protein coupled receptor (G-
PCR), except 5-HT3R, which is a superfamily of ligand- gat-
ed  cation  channel  receptor.  The  structure  of  5-HT3R  is
shown  in  (Fig.  2).

 

Fig.  (2).  Structure  of  the  5-HT3  receptor.  (A  higher  resolution  /
colour version of this figure is available in the electronic copy of
the article).

Certain drugs and research molecules also target other 5-
HT receptors. The blockade of 5-HT2A receptors also seems
to improve the clinical effects of SSRIs. These receptors are
located postsynaptically to 5-HT axons, mainly in the neo-
cortex. Moreover, antidepressant drugs like nefazodone, tra-
zodone, mirtazapine are antagonists of 5-HT2A or α2-adreno-
ceptors [20]. Some preclinical studies have demonstrated 5-
HT1A receptor mediated hippocampal transmission after the
chronic treatment with SSRIs as well as other antidepressant
drugs [21]. However, 5HT1A receptor agonists failed to de-
monstrate clinical significance in depression despite preclini-
cal evidence. Even the effectiveness of buspirone, a 5-HT1A

partial agonist, is far behind as compared to standard antide-
pressants  [22].  The other receptor is  5-HT1B  that  may also
act as a potential target for antidepressant drugs and a key de-
terminant of stress activity. Administration of SSRIs in mice
lacking 5-HT1B autoreceptors exhibits increases in 5-HT lev-
els  in  the  ventral  hippocampus  (vHPC) and leads  to  a  de-
crease in anxiety like behavior [23].

The expression of 5-HT3R has been confirmed in regions
having a role in the vomiting reflex, perception of pain, the
reward system, memory and control of anxiety. This under-
lines their relevance in emesis, migraine, drug addiction, neu-
rodegenerative and psychiatric disorders. Various behavioral
and biochemical preclinical studies have reported the effec-
tiveness of 5-HT3R modulators in comorbid models of de-
pression and anxiety. In addition, few clinical evidence have
also shown the significance of 5-HT3RA in CNS disorders.
The effect comes in acute dose levels as well as showed inhi-
bition of treatment resistance [24, 25]. Hence in this review,
we discussed the role of 5-HT3RA in depression comorbid
with anxiety.

2. CHEMISTRY OF 5-HT3RA

5-HT3RA are  classified  into  two  types  on  the  basis  of
binding pattern towards serotonin type 3 receptors, namely
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competitive and non-competitive 5-HT3RA. The antagonists
which compete with the serotonin sites are called competi-
tive antagonists and compounds which target allosteric sites
are called non-competitive antagonists [26].

3. COMPETITIVE ANTAGONISTS
The chemical structures of competitive antagonists have

similarities with serotonin. The chemical structures of sero-
tonin and competitive 5-HT3RA are shown in (Fig. 3). The
clinically available 5-HT3 receptor antagonists are highly se-
lective  towards  5-HT3  receptors  than  other  receptors  [27].
Most of the currently available competitive antagonists are
in the form of salts as most of these drugs contain basic nitro-
gen  atom(s).  For  example,  granisetron,  ramosetron,  on-
dansetron, and palonosetron are available in the form of hy-
drochloride salt, while dolasetron is available in the mesy-
late salt form.

In old literature, as well as in recent literature, the com-
petitive  antagonists  are  classified  into  two  types,  namely
first  generation  and  second  generation  5-HT3RA.  On-
dansetron, dolasetron, tropisetron, and granisetron are classi-
fied  as  first-generation  5-HT3RA,  while  palonosetron  was
categorized in second-generation 5-HT3RA [26, 27]. In the

first generation antagonists, heterocyclic systems are mostly
indole or indole-like derivative, while palonosetron consists
of a benzoisoquinoline (tricyclic) system.

Most of the competitive antagonists are metabolized to
form the hydroxyl derivative. These metabolites are formed
as the result of hydroxylation on the aryl/alicyclic system or
by  the  reduction  of  the  carbonyl  group.  For  example,  on-
dansetron, alosetron, tropisetron, granisetron, palonosetron
follow hydroxylation at the aryl/alicyclic system while the
dolasetron afforded hydroxyl derivative by the reduction of
the  ketone  carbonyl  group  [28-32].  The  formed  hydroxyl
metabolites are active or inactive or more active than the par-
ent  molecule.  Another  common  pathway  involved  in  the
metabolism  of  competitive  antagonists  is  demethylation,
which means the removal of the methyl group from the par-
ent molecule [32].

4. PHARMACOPHORE OF COMPETITIVE 5-HT3RA

The pharmacophore of clinically available 5-HT3RA and
the reported molecules possesses three necessary elements
[33, 34], which consists of an aromatic ring, carbonyl link-
ing group, and a nitrogen atom. The basic pharmacophore is
depicted in (Fig. 4).

Fig. (3). Chemical structures of serotonin and competitive 5-HT3 receptor antagonists.
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Fig. (4). Basic pharmacophore of 5-HT3 receptor antagonists.

Several investigators have explored the role of the car-
bonyl group (as hydrogen bond acceptor) and the nitrogen
atom (as basic nitrogen atom) in 5-HT3RA for their interac-
tion with 5-HT3R [34-39]. Though a wide range of aromatic
systems have been studied as 5-HT3 receptor antagonists viz.
benzothiazole,  benzoxazole  [40],isoquinoline  [41],  qui-
nolone [42], quinoxaline [43], and indole [41], unfortunate-
ly, none of the researchers explored the role of an aromatic
group in 5-HT3RA for interaction with the receptor. In our
previous study, we proposed that the possible interaction be-
tween the aromatic group and 5-HT3R takes place through
hydrophobic interaction.

Hibert et al. (1990) [36] proposed pharmacophoric dis-
tances between the elements: the distance between the cen-
troid of aromatic to carbonyl oxygen ~ 3.3 Å, between the
centroid of aromatic to basic nitrogen ~ 6.7 Å and the dis-
tance between carbonyl oxygen to basic nitrogen ~ 5.2 Å. In
a few studies [38, 44, 45], compounds displayed potent 5-
HT3  receptor  antagonism  even  though  they  deviated  from
the model proposed by Hibert et al. (1990) [36]. Similarly,
in  our  previous  study  [46],  many  of  the  synthesized  com-
pounds  displayed  good  antagonism  even  though  the  dis-
tances between the pharmacophoric elements have deviated
from the model proposed by Hibert et al. (1990) [36].

Replacing the carbonyl group with suitable bioisotere is
well tolerated; Rosen et al. (1990) demonstrated thiazole as
hydrogen bond acceptor instead of the carbonyl group [39].
The obtained compounds maintained the 5-HT3 antagonism,
some compounds displayed antagonism greater than the stan-
dard drugs. A similar kind of results was observed when ni-
trogen was used as a source of hydrogen bond acceptor [47,
48].

5. NON-COMPETITIVE ANTAGONISTS
Most of the non-competitive 5-HT3RA are obtained from

natural sources [49]. The chemical structures of non-compet-
itive 5-HT3RA are shown in (Figs. 5A and 5B). The chemi-
cal  structures  of  the  non-competitive  antagonists  lack  the
similarity with serotonin.

6.  PHARMACOPHORE  OF  NON-COMPETITIVE  5-
HT3RA

To  the  best  of  our  knowledge,  there  is  no  pharma-
cophore model proposed/developed for the non-competitive
5-HT3RA.  Based  on  our  observation,  we  identified  a  few
common features present in non-competitive 5-HT3RA. The

common features are aliphatic residue (except vanillin) and
the presence of  at  least  one oxygen atom in the molecule.
The  oxygen  atom  may  exist  in  the  form  of  alcohol,  alde-
hyde,  ester,  ether,  amide,  ketone,  or  phenolic  functional
groups. Furthermore, a set of common features is observed
while comparing the phenolic derivatives. Most of the com-
pounds except quinine contain an alkoxy or alkyl substituent
present at ortho to a phenolic hydroxyl group and alkyl (ex-
cept vanillin) substituent is located at para or meta position
with respect to the phenolic hydroxyl group.

Based on this  observation,  we may consider  these ele-
ments are necessary components (pharmacophoric elements)
of non-competitive 5-HT3RA. However, to make a conclu-
sive  statement  on  the  pharmacophore  model,  an  extensive
study with a wide range of non-competitive 5-HT3RA is re-
quired.

7.  STRUCTURE,  EXPRESSION  AND  PRIMARY
FUNCTIONS OF 5-HT3R

Serotonin exerts its effect through seven subfamilies of
receptors, i.e., 5-HT1 to 5-HT7 [50]. Out of these seven sub-
types, only the 5-HT3R subtype is a pentameric ion channel
belonging  to  the  superfamily  of  Cys-loop  receptors.  Long
back  before  50  years,  ‘5-HT3R’  was  described  as  the  so-
called ‘M receptor’ in the guinea-pig gut as 5-HT stimulated
contractions  could  be  blocked by the  antagonist  morphine
[51]. It is made up of five monomer subtypes, the 5-HT3A–E

subunits,  which  exhibit  differences  in  the  amino-terminal
and the transmembrane region. Architecture is more or less
similar for 5-HT3A, 3B, 3C, 3E subunits, whereas the 5-HT3D subu-
nit lacks most of the N-terminal domain, including the Cys-
loop  [52].  The  functional  relevance  of  different  receptor
compositions  is  still  not  clarified.  These  receptors  work
through fast synaptic transmission. Using different methods
such as autoradiography, immunohistochemistry and in situ
hybridization, the distribution of 5-HT3R has been largely ex-
plained with some variance between species [53]. They are
expressed in many brain regions,  including the hippocam-
pus, entorhinal cortex, frontal cortex, cingulate cortex, amyg-
dala, nucleus accumbens (NAc), substantia nigra, and ven-
tral tegmental area (VTA), with the highest densities in the
area postrema and the nucleus tractus solitaries, regions re-
sponsible  for  the  vomiting  reflex  [54-57].  The  animal
studies conducted to determine the expression of 5-HT3R re-
vealed that around 70-80% of these receptors are mainly are
located  in  presynaptic  nerve  endings  [58].  5-HT3R  found
within the PNS in location that includes vagal afferents from
the heart and GI tract are also of physiological importance
[59].

In CNS, 5-HT3R are located in the regions involved in
vomiting, pain perception, rewarding, memory and regula-
tion of anxiety, while in the peripheral system, they are ex-
pressed on various nerve and immune cells [59, 60]. In the
CNS, the density of 5-HT3R appeared to be lower as com-
pared to other 5-HT receptors. These receptors have their im-
portant role in emesis, particularly cancer chemotherapy in-
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Fig. (5A). Chemical structures of non-competitive antagonists.

Fig. (5B). Chemical structures of non-competitive antagonists.
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duced  nausea  and  vomiting,  pain  sensation,  addiction,
psychiatric  and  gastrointestinal  disorders  [61,  62].  More-
over, the preferential localization on nerve endings is consis-
tent with a functional role of 5-HT3R in the control of the re-
lease of NTs such as DA, cholecystokinin, glutamate, acetyl-
choline, GABA, substance P, or 5-HT itself [63].

A typical subunit exhibits a large extracellular N-termi-
nus, four TMs and a short extracellular C-terminus. Further
characteristics are the large intracellular domain (ICD) be-
tween TM 3 and 4 and the Cys-loop in the N-terminus [64,
65,  66].  The transmembrane region of  the  channel  pore  is
formed by the TM 2 domains of the five subunits [67]. The
five  subunits  of  5-HT3R  cover  central  cation  permeable
pore, which facilitates the influx of Na+/K+/Ca+2 ions via the
opening of ion channel followed by fast desensitization [68].
These 5-HT3R have a predominant role in the stimulation of
nausea and vomiting and 5-HT3RA are well recognized for
their role in the reduction of cancer chemotherapy induced
nausea and vomiting (CINV) and post-operative nausea and
vomiting  (PONV)  [69].  Ondansetron,  granistetron,
tropisetron, dolasetron, palonosetron, etc. are the important
examples  in  this  category  [70].  Binding  of  three  agonist
molecules to homomeric 5-HT3R leads to a fully activated
ion channel [71, 72].

8. PHARMACOLOGY AND PHYSIOLOGY OF
5-HT3R

5-HT3R is selective for permeation of Na+, K+ and Ca2+

ions [68]. Activation of these receptors leads to the opening
of ion channels and the influx of these cations, followed by
depolarization  of  the  membrane.  The  5-HT3R  activation
leads to the fast synaptic transmission of various NTs like 5-
HT, DA or GABA [60, 73]. This activation is dependent on
the location of these receptors, i.e., presynaptic or postsynap-
tic. In particular, presynaptic 5-HT3R displays a high permea-
bility to Ca2+, whereas postsynaptic receptors display a low-
er permeability to Ca2+ compared to Na+ and K+ [74, 75].

Homomeric 5-HT3A receptors are permeable to monova-
lent and divalent ions equally, while heteromeric receptors
have  lower  permeability  to  Ca+2  [60,  76].  In  addition,
heteromeric receptors display faster activation and deactiva-
tion as compared to homomeric receptors. 5-HT3RA give bel-
l-shaped dose-response curve in case of both preclinical and
clinical studies. Generally, the maximum effect is typically
observed at a very low dose, in the microgram range, while
higher doses are ineffective [53]. The ineffectiveness of th-
ese antagonists seen may be due to the desensitization of re-
ceptors by internalization.

9.  PROBABLE  MECHANISM  OF  5-HT3RA  IN  DE-
PRESSION AND COMORBID ANXIETY

In various preclinical studies, encouraging results have
been obtained from the use of 5-HT3RA in depression and
comorbid anxiety models [77, 78]. These results validate the
significance of 5-HT3R in the progression of these CNS dis-

orders. 5-HT3RA mainly work through modulation of main-
ly serotonergic neurotransmission. However, it also modu-
lates the release of DA, NE, and GABA neurotransmitter [7,
9].  Various  studies  conducted  on  5-HT3RA  give  an  idea
about  the  probable  mechanism  of  5-HT3RA  in  depression
and comorbid anxiety disorders. 5-HT3RA, i] reduce the du-
ration of immobility in various preclinical rodent models of
depression and anxiety like forced swim test (FST), tail sus-
pension test (TST), elevated plus maze (EPM) test and light
and dark  (L/D)  test;  ii]  in  a  mechanistic  model  of  depres-
sion, such as reserpine induced hypothermia, these antagon-
ists reduce the hypothermic effect induced by reserpine due
to reduction in vesicular  uptake of NTs,  and in 5-hydroxy
tryptophan (5-HTP) induced head twitches in mice, they re-
duce the number of  head twitches in a  specified period of
time;  iii]  In  rodent  models  like  olfactory  bulbectomy  and
traumatic brain injury, 5-HT3RA also showed their potential
as  a  promising  anti-depressant.  These  mechanisms  reveal
that 5-HT3 antagonism facilitates signaling of 5-HT neuro-
transmission [24, 25, 68].

At  a  lesser  concentration  range,  5-HT3RA  inhibit  the
postsynaptic 5-HT3R, which are involved in fast excitatory
synaptic transmission in the limbic brain regions [79]. Bind-
ing of 5-HT3R to postsynaptic receptors leads to an increase
in  the  availability  of  5-HT to  other  postsynaptic  receptors
such as 5-HT1B [80], 5-HT2A and 5-HT2C, thereby aiding in
signaling associated with serotonergic transmission and stim-
ulating  adenylyl  cyclase  followed  by  the  initiation  of  the
transformation of ATP to cAMP, that functions as a second
messenger. cAMP further stimulates the phosphorylation en-
zyme protein kinase-A (PKA) [68]. Once PKA gets activat-
ed, phosphorylation of other intracellular protein molecules
is initiated, thereby modifying the expression of CREB and
BDNF in the nucleus [unpublished data]. This leads to an-
ti-depressant-like  effects  by  improving  synaptic  plasticity,
neuronal  survival  and  neurogenesis.  However,  at  higher
dose levels, the presynaptic and somatodendritic 5-HT3 re-
ceptor blockade inhibits 5-HT release, eventually reducing
the synaptic 5-HT levels that predispose to depression-like
effects [81]. In addition to 5-HT, the 5-HT3 (hetero) recep-
tors located on nerve terminals modulate the release of other
NTs  such  as  NE,  DA,  Ach  and  GABA [68].  Various  evi-
dences gathered from previous studies suggested that inhibi-
tion of this receptor has a differential effect on the release of
these NTs in the synapse. However, according to some re-
ports, 5-HT3RA did not show a uniform effect with respect
to antidepressant action. Several studies showed that the an-
tagonism of 5-HT3R leads to the enhancement of dopaminer-
gic  activity  in  mesolimbic,  mesocortical  and  nigrostriatal
pathways [27]. These pathways have importance in psychos-
es and Parkinson’s disease, respectively. Antagonism of 5-
HT3R in presynaptic neurons tends to suppress dopaminerg-
ic transmission and an increase in depression-like symptoms
[53]. Similarly, activation of presynaptic 5-HT3R results in
the facilitation of GABA release, while the same effect is in-
hibited by 5-HT3RA. Hence inhibition of presynaptic recep-
tors tends to produce depression-like effects [68]. The modu-
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latory effect of 5-HT3RA on the cholinergic system emerges
from the co-localization of 5-HT3 and nicotinic receptors in
striatal nerve terminals of the rat brain [82].

In  addition,  presynaptic  5-HT3R  stimulation  inhibits
ACh release, mainly in the cortex [83]. There are various evi-
dences available to demonstrate the effect  of 5-HT3RA on
NTs release or inhibition, however further studies are war-
ranted to establish their role in various CNS disorders due to
their  distribution  pattern  and  complex  signaling  transduc-
tion.

10. CLINICAL EVIDENCE
5-HT3R agonist  or  antagonist  responses  are  associated

with a bell-shaped dose-response curve in both preclinical
and clinical studies. Generally, they show good activity in
the low dose range and activity decreases with an increase in
dose [27]. Some clinical studies have suggested that 5-HT3

receptors may be a relevant target in the treatment of affec-
tive disorders [53]. Evidence for the importance of 5-HT3RA
in the treatment of depression stems from clinical trials in
which patients suffering from complex disorders such as fi-
bromyalgia and bulimia showed improvement of the comor-
bid depression [84, 85]. A few clinical trials have exhibited
the effectiveness of 5-HT3RA monotherapy or its combina-
tion with antipsychotics in patients with psychosis and schi-
zophrenia.  Ondansetron  (4  mg/day)  treatment  has  been
shown to improve the mental state and social behaviour of a
schizophrenic patient [68].

11. TREATMENT RESISTANT DEPRESSION (TRD)
Despite an increase in the number of antidepressants, the

pharmacotherapy  of  depression  remains  inadequate  1.  At
least 40% of patients do not respond well to antidepressant
therapy. In general, antidepressant drugs take 8-12 weeks to
show their effect as they are working through the modifica-
tion of receptors, as well as the synthesis of neurotransmitter
requires some time. The antidepressant drugs change the sen-
sitivity of the receptor that, in turn, may cause externaliza-
tion or internalization, change in expression of genes which
involve neurogenesis and synaptic remodeling [86, 87].TRD
is a complicated clinical problem caused by various risk fac-
tors. The complexities of TRD are addressed with combina-
tion  strategies,  which  include  medication  optimization,  a
combination of antidepressant treatments, switching of thera-
py and augmentation with non-antidepressants, psychologi-
cal  therapies  and  non-pharmacological  treatments  such  as
deep brain stimulation, vagal nerve stimulation and trans cra-
nial magnetic stimulation [88].

Long term treatment with classic antidepressants like SS-
RI, TCA, MAO inhibitors leads to the development of resis-
tance against these drugs over a time period. In this regard,
the 5-HT3 receptor antagonists work through the fast recep-
tors that are ligand-gated ion channel and the activation of
postsynaptic 5-HT3R is involved in fast synaptic transmis-
sion [79, 89]. These antagonists can be used in combination
with classic antidepressants and antianxiety drugs [53]. Vari-

ous interaction studies conducted by Bhatt et al., 2014, also
demonstrated the effectiveness of these antagonists in vari-
ous animal models of depression and comorbid anxiety mod-
els. In addition, a study conducted by Bhatt et al., 2013, has
also demonstrated that 5-HT3R antagonists also potentiated
the  effects  of  various  standard  drugs  such  as  fluoxetine,
bupropion, etc.  The effect may also suggest that 5-HT3RA
may be used as an effective therapy against treatment resis-
tant  depression.  5-HT3RA showed beneficial  effect  after  a
single dose in models like FST, TST, EPM and other models
[24, 78, 90].

12.  ROLE  OF  5-HT3RA  IN  THE  REDUCTION  OF
OXIDATIVE STRESS

Oxidative stress plays a major role in the progression of
various  neuropsychiatric  disorders,  including  depression.
The brain has high metabolic activities, higher oxygen con-
sumption,  higher  lipid  contents,  weaker  antioxidative  de-
fense and more demand for glucose compared to other or-
gans [13]. Oxidative stress or reactive oxygen species (ROS)
is the main cause of neurodegeneration and its involvement
in  the  pathogenesis  of  MDD  is  unequivocally  established
[91]. The imbalance between ROS and antioxidative defense
leads to the deregulation of the physiology of the brain and
abnormalities  in  nerve  signaling.  In  depression,  an  imbal-
ance in antioxidant enzymes such as SOD, catalase and re-
duced glutathione (GSH) and oxidant markers like peroxides
and nitrates has been observed. This imbalance leads to an
increase  in  activity  of  proinflammatory  pathways  such  as
TNF-α and IL-1β stimulation and other apoptotic mediators
such as Caspase-3, ultimately leading to neuronal death [13,
92]. According to a study conducted by Bhatt et al., 2014,
compound '6g', a 5-HT3RA, exerted antidepressant-like ef-
fects in behavioral despair paradigm in chronically stressed
mice by restoring antioxidant mechanisms. The compound
significantly  reversed  the  CUMS-induced  behavioral  (in-
creased immobility period, reduced sucrose preference and
decreased  locomotor  activity)  and  biochemical  (increased
lipid peroxidation; decreased glutathione levels, superoxide
dismutase and catalase activities) in mice [93]. Similarly, ac-
cording to a study conducted by Gupta et al., 2015, 4i, a 5-
HT3RA and fluoxetine treatment reversed the corticosterone
(CORT)  induced  depressive-like  deficits.  Furthermore,  4i
and fluoxetine  reduced CORT induced oxidative  brain  in-
sults, which may plausibly demonstrate one of the key mech-
anisms  for  antidepressant-like  effects  of  the  compounds
[94]. 5-HT3RA show neuroprotection in in vitro and in vivo
studies. In fact, oxidative stress–induced injury in rat corti-
cal neurons was counteracted through curtailing caspase-3
activation, calcium influx, reactive oxygen species genera-
tion,  and  excitotoxicity.  The  protective  effect  is  mediated
through blockade of 5-HT3R by means of employing selec-
tive  5-HT3RA  [95].  Moreover,  5-HT3RA  tropisetron  also
acts as a partial agonist of α7 nicotinic acetylcholine receptor
(α7nAChR). The activation of α7nAChR leads to inhibition
of  inflammatory  conditions  and  apoptotic  signaling  path-
ways in conditions associated with oxidative stress [96].
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13. IMPORTANCE OF 5-HT3RA IN HPA AXIS DYS-
FUNCTION

HPA axis dysregulation is one of the main predisposing
factors for the pathogenesis of depression and other comor-
bid disorders like anxiety. The HPA axis is involved in the
release of cortisol via the involvement of the hypothalamus,
pituitary and adrenal gland [12]. This axis works on a nega-
tive feedback mechanism where increased cortisol level in
the blood conveys signals to the hypothalamus to reduce the
release of a cortisol release factor. In case of depression and
anxiety, the negative feedback mechanism of the HPA axis
fails and increases the cortisol levels in blood [97]. Howev-
er, in a normal individual, the HPA axis works perfectly fine
with normal levels of cortisol. 5-HT3RA are helpful in reduc-
ing the levels of cortisol in animal models. According to a
study conducted by Kurhe et al., 2015, QCM-4, a 5-HT3RA,
ameliorates the plasma HPA axis hyperactivity, leptin resis-
tance and brain oxidative stress in depression and anxiety-
like behavior in obese mice [98]. 5-HT3R antagonism on the
HPA axis, mice lacking 5HT3A exhibited dampened adreno-
corticotropic hormone responses to acute stressors, includ-
ing lipopolysaccharide and restraint, with no change in pitui-
tary  sensitivity  to  corticotropin-releasing  hormone  (CRH)
[99]. According to Gupta et al., 2014, Ondansetron and flu-
oxetine treatments significantly increased the percentage of
serotonin  levels  in  certain  brain  regions  and  attenuated
HPA-axis hyperactivity, as evidenced by the low percentage
of  plasma  CORT  levels  in  chronic  unpredictable  stress
(CUS) mice. These findings indicate the potential role of on-
dansetron  (a  5-HT3RA) in  reversing  CUS-induced  depres-
sive behaviour, which is possibly mediated by its modulat-
ing effects on the HPA-axis and serotonergic system [100].

14. THERAPEUTIC USE
5-HT3RA have a variety of roles in different disorders.

Various studies performed in laboratory animals suggested
the  important  role  of  these  antagonists  in  emotion,  cogni-
tion, pain perception and memory process, neurodegenera-
tive diseases and GI signaling. The role of 5-HT3 receptor
antagonists in various disorders is shown in (Fig. 5A). Due
to their availability in various locations in CNS and GIT and
their role in the control of emotions and memory, one can
see their role in pathophysiological regulation of neurologi-
cal and gastrointestinal disorders.

As discussed earlier, these 5-HT3RA are well known for
their role in CINV and PONV. In this section, we are going
to  discuss  the  role  of  5-HT3RA  in  schizophrenia,  irritable
bowel syndrome (IBS), cognitive dysfunction and substance
abuse and dysfunction.

15. COGNITION AND MEMORY
5-HT3RA play a significant role in cognition and memo-

ry. Cortex and dorsal hippocampus are the important regions
associated  with  memory  function,  and  antagonism  of  5-
HT3R at these locations inhibits the 5-HT modulated release
of acetylcholine without affecting steady state release [101,

102]. 5-HT3RA have been shown to inhibit 5-HT3 agonist-in-
duced ACh release in the entorhinal cortex of rats and the
neocortex of guinea pigs, which are important structures for
memory function [103]. A negative influence of 5-HT3R acti-
vation on ACh release in the neocortex has also been report-
ed in humans. Tropisetron enhances memory by activation
of α7 nAChR [104]. 5-HT3R have a substantial role in the
progression of Alzheimer’s disease and Schizophrenia. Over-
expression of 5-HT3R in mice has been involved in the en-
hancement of learning and memory as well as attention [59].
Ondansetron has been found to improve memory in patients
over 50 years of age. Administration of 5-HT2A/2C or 5-HT4

receptor agonists or 5-HT1A or 5-HT3 and 5-HT1B receptor an-
tagonists retards impairment in normal memory function and
promotes learning in tasks that require a high cognition de-
mand [105]. Moreover, polymorphism in the regulatory por-
tion of 5-HT3A receptor subunit has been associated with low-
er activity of amygdala and dorsal and medial frontal  cor-
tices, and was linked with reduced reaction time at the recog-
nition of face [106].

16. PAIN
Serotonin  causes  activation  of  presynaptic  5-HT3R  on

the central terminal of spinal afferents which are involved in
the  perception  of  pain  via  sensory  and  nociceptive  inputs
from the periphery to CNS [107]. Chronic pain in rats has
been removed by ondansetron via antagonism at 5-HT3R. Be-
havioral studies have confirmed the involvement of 5-HT3R
in  pain  and  traumatic  injury.  5-HT3  knockout  mice  con-
firmed the involvement of antagonists in nociception after in-
jury [107, 108]. In humans, the role of 5-HT3RA has been
confirmed in migraine and rheumatoid arthritis. The benefi-
cial  effects  of  5-HT3RA  tropisetron  in  rheumatic  diseases
such as rheumatoid arthritis, tendinopathies and fibromyal-
gia  seem  promising  [27,  109].  However,  the  role  of  5-
HT3RA in  chronic  pain  still  needs  to  be  studied  in  detail.
Moreover, alosetron, a 5-HT3RA, has shown its role in ab-
dominal  discomfort  and pain  in  both  male  and female  pa-
tients by improving stool consistency [110].

17. GASTROINTESTINAL DYSFUNCTION AND VIS-
CERAL PAIN

5-HT3RA  are  well  known  for  their  role  in  CINV  and
PONV. These antagonists block 5-HT peripherally as well
as centrally in GI vagal nerve terminals and chemoreceptor
trigger  zone  (CTZ),  respectively;  this  blockade  leads  to  a
powerful antiemetic effect [111]. They are involved in the
modulation  of  serotonergic  transmission  and regulation  of
GI function. In specific, they are involved in the regulation
of  GI  motility,  visceral  sensation,  secretion  processes  and
perception of visceral pain. 5-HT3RA prevent the activation
of  5-HT3R on  extrinsic  afferent  neurons  and  can  decrease
the visceral pain associated with IBS [112]. Activation of 5-
HT3R may modulate GI excitability and activity of gastroin-
testinal vagal afferents at various sites and may be involved
in  various  pathological  and functional  body processes,  in-
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cluding distention- and chemical-evoked vagal reflexes, nau-
sea,  and  vomiting,  as  well  as  visceral  hypersensitivity.  5-
HT3RA  relieve  painful  colonic  distention  caused  by  in-
creased cerebral blood flow in 5-HT3R rich areas such as the
hippocampus, amygdala and orbitofrontal cortex in IBS pa-
tients [113]. Walstab et al., 2014, reported that monoterpene
alcohol menthol and the aporphine alkaloid boldine combat
symptoms of functional gastrointestinal disorders and work
through ligand-gated ion channels [114]. In addition, they al-
so inhibited 5-HT receptors by the 5-HT-induced activation
of 5-HT3 receptors in the low and middle micromolar range,
respectively. Boldine was a competitive antagonist of both
receptors being 6.5- to 10-fold more potent at 5-HT3A- vs 5-
HT3AB receptors. Menthol non-competitively and stereoselec-
tively inhibited both 5-HT3A and 5-HT3AB receptors.

18.  SCHIZOPHRENIA  AND  NEURODEGENERA-
TIVE DISORDERS

The role of 5-HT3RA in psychoses is still not very clear
that not all the human trials with 5-HT3RA showed marked
effect and promising results. Serotonin has a modulatory ef-
fect on dopaminergic neurons of the mid-brain area via  5-
HT3R and 5-HT3RA that have been shown to decrease the
hyperactivity of dopaminergic neurons in rats [115]. In clin-
ics, 5-HT3RA also alleviate symptoms of schizophrenia, par-
ticularly tardive dyskinesia and psychosis [116].  Some re-
cent  studies  have  reported  the  predominant  role  of  on-
dansetron as a potential adjunctive therapy for the treatment
of negative symptoms of schizophrenia. However, 5-HT3RA
have  a  limited  role  in  the  effective  treatment  of  positive
symptoms of psychoses. Interestingly, several neuroleptics
and antidepressants have been shown to block 5-HT3R in a
non-competitive manner, possibly via interaction with the re-
ceptor–lipid interface [117]. In addition, various studies re-
ported  the  predominant  neuroprotective  properties  of  on-
dansetron and tropisetron, consistent with their capacity for
inhibiting the protein phosphatase calcineurin-involved neu-
rodegenerative cascades [26].

19. SATIETY CONTROL
Preclinical  studies  suggested  an  important  role  of  5-

HT3R in the regulation of intake of food. It has been shown
that the suppression of food intake by peripheral serotonin re-
lease is mediated via 5-HT3R. Cholecystokinin (CCK) and
peripheral  serotonin  suppress  food  intake  synergistically,
and  blockade  of  5-HT3R  attenuates  the  effect  of  CCK  on
food  intake  in  combination  with  gastric  distension  [118].
Blockade  of  5-HT3R antagonised  the  anorexia  induced  by
methamphetamine [119]. In addition, 5-HT3R located cen-
trally are involved in the regulation of blood glucose levels
[120]. The significance of these pharmacological activities
for the use of 5-HT3RA in humans has not yet been investi-
gated.

20. DRUG ADDICTION
5-HT3RA influences the ‘reward pathway’. In humans,

the administration of ondansetron leads to a reduction in al-

cohol intake and problems associated with the intake of alco-
hol.  5-HT3RA have been shown to reduce self-administra-
tion of ethanol in wild-type (WT) compared to 5-HT3A KO
mice [121] and of morphine in rats [122]. In addition, on-
dansetron potentiated the methamphetamine induced hyper-
activity in rats [119]. They have been involved in attenua-
tion of the effect of morphine and cocaine that leads to an in-
crease in dopaminergic activity in the mesolimbic area. Th-
ese antagonists also cause locomotor activation, aggression
stimulating effects and reduction in consumption of alcohol,
as well as self-administration of drugs [59]. In humans, 5-
HT3RA were particularly effective in reducing the self-ad-
ministration of ethanol and morphine, but a less marked ef-
fect was seen on self-administration of cocaine [123, 124].
The overall effect of 5-HT3RA on substance abuse is inhibi-
tory  and  also  reduces  the  self-administration  of  abusing
drugs.

Fig. (6). Involvement of 5-HT3 receptor antagonists in various dis-
orders.

21. IMMUNOMODULATION
5-HT3RA have anti-inflammatory and immunomodulato-

ry  properties,  which  are  demonstrated  by  various  in-vitro
and in vivo studies. According to a study conducted by Bhatt
et al., 2017, 5-HT3RA are able to reduce the inflammation
and anxiety induced by lipopolysaccharide in mice. In addi-
tion to the anxiolytic effect, 5-HT3RA are able to produce an
anti-oxidant  effect  as  well  via  enhancing the  levels  of  an-
ti-oxidant enzymes such as catalase and superoxide dismu-
tase [125]. Tropisetron found to inhibit lipopolysaccharide
induced increased levels of TNF-alpha and IL-1B in mono-
cytes and serotonin induced prostaglandin E2 release from
synovial  cells  [27].  It  is  also  involved  in  the  inhibition  of
calcineurin induced activation of T-cells as well as modula-
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tion of Th1 cytokines in patients with the musculoskeletal
disease [126]. 5-HT3RA are also being used as adjunct thera-
py with intra-articular glucocorticoids for their analgesic and
anti-inflammatory effects.

22. STROKE
Stroke is a leading cause of disability and death world-

wide. There is a decrease in blood supply to the brain that
has been taken place due to thrombus formation in the cere-
bral  artery.  The  condition  requires  immediate  hospitaliza-
tion, and till date, no effective treatment requirement except
tissue plasminogen activator as the only agents is approved
by the U.S. Food and Drug Administration. 5-HT3RA dis-
play a potential neuroprotective effect in various in vitro and
in vivo activities. In fact, oxidative stress–induced injury in
rat cortical neurons was counteracted through curtailing cas-
pase-3 activation, calcium influx, ROS generation, and exci-
totoxicity [26]. A study conducted by Lee et al., 2005, also
observed the protection of neurons mediated through block-
ade of 5-HT3R. In in vivo models, tropisetron showed a ben-
eficial effect in the embolic stroke model [95].

23. AUTHOR’S INSIGHT
Based on the above discussed literature, we can confirm

that 5-HT3RA have well validated role in CINV and PONV.
The  5-HT3  receptor  antagonists  have  their  role  in  various
CNS and other disorders, including depression and comor-
bid disorders like anxiety. 5-HT3RA belong to the category
of ligand-gated ion channels. The ligand-gated ion channels
are the second most important targets for drug discovery on-
ly after G protein–coupled receptors. The role of these recep-
tors in these disorders is further confirmed by their expres-
sion in the CNS in regions involved in the vomiting reflex,
processing of pain, the reward system, cognition, depression
and anxiety control. The motivating outcomes from prelimi-
nary behavioral tests on 5-HT3RA, their good safety profile
further established the role of these drugs in depression and
comorbid  anxiety.  We  have  performed  some  preclinical
studies with 5-HT3RA in our group and found their efficacy
in both acute and chronic models of depression and anxiety.
In addition, they have shown effectiveness in various rodent
models of comorbidities, namely olfactory bulbectomy, trau-
matic  brain  injury,  lipopolysaccharide  induced  depression
and  chronic  unpredictable  mild  stress  models.  Moreover,
they  have  also  potentiated  the  effect  of  various  standard
drugs like fluoxetine, desipramine, bupropion as represented
by  various  studies  conducted  in  our  lab.  They  worked
through  fast  synaptic  transmission  effectively  in  very  less
time  as  compared  to  other  standard  drugs  which  work
through  some  different  mechanism.  On  the  basis  of  the
above mentioned literature, we may predict the role of these
antagonists in depression comorbid with anxiety. They may
also be useful  and work as effective therapy against  treat-
ment resistant depression cases. These agents are very effec-
tive in addressing the issue of comorbidity very effectively.
However,  some  detailed  studies  in  clinics  are  required  to
prove the efficacy and exact signaling mechanisms of these

5-HT3RA. The pharmacokinetic aspects of these drugs also
need to be addressed by conducting relevant studies.

CONCLUSION
Ligand-gated ion channels are important receptors after

GPCR via which most of the drugs showed their action. The
drugs acting through these receptors have a clear advantage
of fast synaptic transmission. 5-HT3RA showed a clear ad-
vantage of fast action as well as effectiveness against vari-
ous  neuropsychiatric  disorders  when  compared  to  other
members  of  the  serotonin  receptor  family.  Initially,  5-
HT3RA was established as a treatment for CINV and PONV.
Setrons  like  ondansetron,  tropisetron,  dolasetron,  etc.
emerged as a gold standard treatment for CINV. Nonethe-
less, other therapeutic effects of this class were neglected for
years until recent investigations demonstrated that these com-
pounds could alleviate the pathology of certain neurodegen-
erative  and  neuropsychiatric  disorders.  In  this  review,  we
have seen the role of 5-HT3RA in other conditions like pain,
addiction, eating disorders, inflammation, cognition or mem-
ory, gastrointestinal problem and schizophrenia. In addition,
5-HT3RA showed effectiveness in depression comorbid with
anxiety disorders. Various preclinical studies showed that 5-
HT3RA alleviate the symptoms of depression and anxiety in
rodent models. They act through modulation of the synaptic
transmission in various CNS areas. In addition, they are able
to  reduce  the  oxidative  stress,  cortisol  levels  in  the  plas-
ma/brain of mice. They enhance the availability of 5-HT on
5-HT1 and 5-HT2 receptors and showed an anti-depressant ef-
fect  via  increasing  the  levels  of  BDNF  and  CREB  in  the
brain  of  mice.  In  clinical  trials,  these  setrons  have  shown
their potential against the most intractable symptoms of schi-
zophrenia like negative and cognitive symptoms. Setrons al-
so have shown their effectiveness against early onset alcohol
dependence.  The  condition  is  presumably  associated  with
major serotonergic dysfunction, including overexpression of
postsynaptic 5-HT3R in the mesolimbic DA system. These
5-HT3RA can also be used in combination with other stan-
dard drugs and in this way, they are able to reduce the ad-
verse effects such as abuse liability, sedation, glucose intoler-
ance, weight gain, sexual disturbance and anticholinergic ef-
fects. In addition, the use of 5-HT3RA in combination may
also be an effective approach against treatment resistant de-
pression cases. Given the advantageous therapeutic profile
of 5-HT3RA combined with their broad therapeutic window,
more detailed studies on this class of drugs could open av-
enues  for  the  development  of  novel  pharmacophores  with
higher efficacy and better compliance for the management
of neurologic and neuropsychiatric disorders.
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