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Catalytic enantioselective reductive domino alkyl
arylation of acrylates via nickel/photoredox
catalysis
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Nonsteroidal anti-inflammatory drug derivatives (NSAIDs) are an important class of medi-

cations. Here we show a visible-light-promoted photoredox/nickel catalyzed approach to

construct enantioenriched NSAIDs via a three-component alkyl arylation of acrylates. This

reductive cross-electrophile coupling avoids preformed organometallic reagents and replaces

stoichiometric metal reductants by an organic reductant (Hantzsch ester). A broad range of

functional groups are well-tolerated under mild conditions with high enantioselectivities (up

to 93% ee) and good yields (up to 90%). A study of the reaction mechanism, as well as

literature precedence, enabled a working reaction mechanism to be presented. Key steps

include a reduction of the alkyl bromide to the radical, Giese addition of the alkyl radical to

the acrylate and capture of the α-carbonyl radical by the enantioenriched nickel catalyst.

Reductive elimination from the proposed Ni(III) intermediate generates the product and

forms Ni(I).
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Enantioenriched α-aryl propionic acids are an important class
of nonsteroidal anti-inflammatory medications (NSAIDs)1,2

and are also key building blocks for further elaboration. As a
result, significant effort has been devoted to the asymmetric synthesis
of α-aryl carboxylic acid derivatives. Among enantioselective meth-
ods to prepare these structural motifs, asymmetric hydrogenation3,4

and hydrocarboxylation5 stand out. A more efficient approach to
access such tertiary stereocenters, however, would be the transition
metal catalyzed asymmetric α-arylation of esters.

The asymmetric cross-coupling between α-halo esters and orga-
nometallic reagents (e.g., Grignard, organozinc, organoboron, and
organosilicon) (Fig. 1a) was developed and driven mainly by G.C. Fu
and coworkers6–9. A complementary approach was reported by
Zhou10 and Gaunt11 involving asymmetric arylation of enol silane
derivatives with aryl sulfonates or iodonium salts under enantiose-
lective transition metal catalysis (Fig. 1b). Motivated by a desire to
broaden the scope of coupling partners while also avoiding moisture-
and air-sensitive organometallic reagents, Reisman12–16, Doyle17,
Weix18, and their groups developed nickel catalyzed asymmetric
reductive cross-electrophile coupling reactions using stoichiometric
metal reductants (Zn or Mn). Inspired by their elegant studies, we
disclosed an example of highly enantioselective nickel-photoredox
catalyzed reductive cross-coupling of racemic α-chloro esters with

aryl iodides (Fig. 1c) to construct enantioenriched NSAID
derivatives19. Building on this work, we envisioned intercepting
intermediates along the enantioselective cross-electrophile coupling
reaction pathway with an olefin insertion step. Such a strategy could
potentially lead to valuable enantioenriched olefin difunctionalization
products.

Recently, nickel-catalyzed reductive alkene difunctionalization
reactions have gained notoriety as one of the most efficient strategies
to install vicinal bonds in a single operation. Relevant examples were
reported by Nevado20,21, Chu22,23, Martin24, Yuan25 and
Molander26,27, among others. Impressive enantioselective three-
component reactions were developed by Diao28, Chu29,30, Nevado31

as well as others32–38. In the final stages of preparing this manuscript,
a complementary enantioselective three-component carboarylation of
alkenes with alkyltrifluoroborates and aryl bromides was disclosed by
Gutierrez and Chu29 (Fig. 1d). The redox-neutrality of this method is
counterbalanced by the use of alkyltrifluoroborates, which must be
prepared separately.

In this work, we present an example of enantioselective domino
alky arylation of acrylates with alkyl- and aryl- bromides via coop-
erative nickel and photoredox catalysis (Fig. 1e). The organic pho-
toredox 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN)
acts as “pseudoreductant” with Hantzsch ester (HEH) as the terminal

Fig. 1 Transition-metal-catalyzed asymmetric coupling reactions to synthesize NSAID derivatives. a The classical asymmetric cross-coupling with
organometallic reagents. b Transition metal catalyzed asymmetric arylation of enol silane derivatives. c Nickel-photoredox co-catalyzed asymmetric
reductive arylation of racemic α-chloro esters. d A complementary photoredox/nickel catalyzed enantioselective carboarylation of alkenes. e This work:
Nickel/photoredox catalyzed reductive asymmetric alky arylation of acrylates.
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electron donor. The products of this cascade process are NSAID
derivatives of potential use in medicinal chemistry.

Results and discussion
Reaction development and optimization. We began our investi-
gation into the three-component olefin difunctionalization reaction
by choosing tert-butyl acrylate (1a), tert-butyl bromide (2a) and 1-(4-
bromophenyl)ethan-1-one (3a) as model substrates (Table 1). After a
systematic study of reaction conditions (see Table S1 in the Sup-
porting Information for details), we were please to find that
employing 4CzIPN (10mol%), NiBr2 (10mol%), L6 (11mol%),
Cy2NMe (3.0 equiv.) and HEH (3.0 equiv.) in N,N-dimethylaceta-
mide (DMA, 0.33M) under blue LED irradiation at room tem-
perature for 24 h furnished the α-aryl ester (4a) in 82% assay yield
(AY, determined by GC integration of the unpurified reaction mix-
ture against an internal standard). Gratifyingly, the ee value of 4a was
92%. The (R) configuration of 4a was confirmed by comparison of its
optical rotation with the literature value30 (see the Supporting
Information for details). Based on our previous work19, enantioen-
riched bioxazoline (BiOX) frameworks were considered promising
ligands for the three component coupling, giving up to 86% ee.
(Table 1. entry 2–3). Further optimization, however, indicated the

more electron-donating39 chiral biimidazoline (BiIM) ligands were
better both in yield and enantioselectivity. Control experiments
indicated that nickel salts, 4CzIPN, Cy2NMe and blue LEDs are all
crucial for the success of this transformation (Table 1. entry 7–10).
Additionally, HEH played a key role in the reaction yields. Only 32%
AY of 4a was detected in the absence of HEH (Table 1. entry 11),
although, the enantioselectivity remained 92%. In this case, it is
possible that the Cy2NMe40–42 plays the role of reducing agent, albeit
with much reduced efficiency. When other reductants, such as Mn,
Zn and tetrakis(dimethylamino)ethylene (TDAE) were employed,
however, only trace products were detected. The diminished reac-
tivity with Mn, Zn and TDAE highlight the advantage of HEH under
blue light in this process.

Substrate scope. With the optimized reaction conditions in hand,
we next focused on the scope of the aryl bromide coupling partners
using tert-butyl acrylate (1a) and 4-tert-butyl bromide 2a (Table 2).
We were pleased to find that aryl bromides with functional groups in
the 4-position, including electron-withdrawing groups (Ac, COOEt,
CN, CHO, CF3, OCF3), halogens (F, Cl), neutral groups (H, Ph), and
electron-donating groups (tBu, OMe, SMe, NMe2) all exhibited high
to excellent ee values (83–93%) and moderate to good yields

Table 1 Optimization of reaction conditions [a].

entry
Variations from standard

conditions

Assay yield 

(%)
b ee (%)

c

1 none 82(79)
d

92

2 L1 instead of L6 trace --

3 L2 instead of L6 45 86

4 L3 instead of L6 38 85

5 L4 instead of L6 73 82

6 L5 instead of L6 77 89

7 No nickel salts 0 --

8 No 4CzIPN 0 --

9 No blue light 0 --

10 No Cy2NMe trace --

11 No HEH 32 92

12 Zn, Mn or TDAE instead of 4CzIPN/HEH trace --

[a] Reactions conducted under Ar on 0.1 mmol scale. [b] Determined by GC using tetradecane as an internal standard. [c] Determined by chiral HPLC on a CHIRALPAK IA column. [d] Isolated yield.
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(45–90%). It is noteworthy that in prior studies, aryl bromides with
electron-donating groups were poor substrates in reductive cross-
coupling reactions43. Additionally, the 4-bromo phenyl BPin, which
can be used for further transformations, was also well tolerated (71%
yield, 86% ee).

Aryl bromides bearing functional groups in the 3-position (Ac
and OMe) were fine substrates, furnishing the products 4p (60%
yield, 88% ee) and 4q (77% yield, 88% ee), respectively.
Disubstituted aryl bromides were good cross-coupling partners,
affording products 4r with 89% ee and 75% yield. It is noteworthy

Table 2 Scope of aryl and (hetero)aryl bromides.[a].

[a] All reactions conducted under Ar on 0.1 mmol scale. Yield is that of the isolated product. The ee values were determined by chiral-phase HPLC.
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that Flurbiprofen analog 4s and Naproxen analog 4t were
obtained in good yields (83–84%) with excellent enantioselec-
tivities (88–89%). Unfortunately, sterically hindered 2-substituted
aryl bromides were not tolerated in this three-component
asymmetric reductive cross-coupling (see Supporting Information
for details).

Aryl bromides with extended π-systems, such as 2-bromonaphthy-
lene, provided product 4u (80% yield, 90% ee). Heterocycles are
important structural motifs in medicinal chemistry. Several aryl

bromides containing heterocycles were, therefore, examined. 2-
Bromodibenzo[b,d]furan, 5-bromo-2,3-dihydrobenzofuran, 5-bro-
mobenzo[d][1,3]dioxole, 5-bromobenzofuran, 5-bromobenzo[b]thio-
phene, 5-bromo-1-methyl-1H-indole and 3-bromo-9-phenyl-9H-
carbazole all exhibited good to excellent enantioselectivities
(83–89%) with good yields (75–86%). To put the utility of this
method to the test, ibuprofen and geraniol derivatives were subjected
to the 3-component reaction. The desired products (4ac, 4ad) were
generated in 79–82% yields and 87% de, 91% ee.

Table 3 Scope of 3°-alkyl bromides.[a].

[a] All reactions conducted under Ar on 0.1 mmol scale. Yield is that of the isolated product. The ee values were determined by chiral-phase HPLC.
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To further explore the applications of this three-component
asymmetric reductive cross-coupling method, we next examined
the scope of the alkyl bromides (Table 3). Initially, acyclic tertiary
alkyl bromides were examined. We were pleased to find that
tertiary alkyl centers containing primary alkyl bromides, aryl,
esters and ketone functional groups were compatible with the
reaction conditions and afforded their corresponding products
(5a–5k) in good to excellent yields (60–84%) and good to
excellent enantioselectivities (72–92%). Another sterically hin-
dered 3o alkyl bromide, 1-bromo-1-methylcyclohexane, was also
well-tolerated, furnishing the product l (42% yield, 88% ee). Use
of 1o- or 2o-alkylbromides gave rise to two-component aryl-alkyl
cross coupling under these conditions44, because reactions of
radicals derived from these species at the nickel center are
competitive with radical addition to the unsaturated ester.

To push the system beyond 3°-alkylhalides, additional
optimization (see Table S2 in the Supporting Information for
details) was conducted. Gratifyingly, moderate changes (aryl and

alkyl iodides instead of their corresponding bromides, NiCl2·-
glyme replacing NiBr2 and a mix solvent acetone/DMA= 2:1
replacing DMA) under otherwise standard conditions enabled
coupling of less substituted alkyl radicals (Table 4). Not only 1°-
alkyl halides (1-iodobutane) but also 2°-alkyl halides (2-
iodopropane, iodocyclopentane, iodocyclohexane, iodocyclohep-
tane, iodocyclooctane) were tolerated, giving their corresponding
products (6a–6f) in 15–75% yield and 76–92% ee. Other electron-
deficient alkenes, such as N-phenylacrylamide, was tested under
the standard conditions and afforded the product 6g (40% yield,
33% ee). It is noteworthy that the electron-rich vinyl benzoate
was also tolerated, albeit with diminished yield and ee (6h, 45%
yield, 50% ee).

Mechanistic Studies. We desired to gain insight into the reaction
pathway. Based on our previous work19, a detail analysis of the
model reaction was conducted (Fig. 2a). The product 4a was
isolated in 79% yield with 92% ee. The fate of the HEH was the

Table 4 Scope of 1 o and 2 o-alkyl iodides and alkenes.[a].

[a] All reactions conducted under Ar on 0.1 mmol scale. Yield is that of the isolated product. The ee values were determined by chiral-phase HPLC.
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expected pyridine (isolated in 100% yield relative to HEH),
derived from donation of 2 electrons and two protons. In the
presence of HEH, Cy2NMe most likely acted as a base, as
determined by the isolation of Cy2NMe·HBr (8, 56% yield). Only
about 6% of the demethylated product, Cy2NH, was detected after
workup. The demethylated amine (9) likely arises from oxidation
of the amine by *4CzIPN to the amine radical cation, loss of H• to
generate the iminium ion, and hydrolysis by advantageous water
during the reaction or upon workup40.

Additional experiments were then carried out to probe the
reaction pathway. To explore the possibility of radical inter-
mediates, the reaction was conducted under the standard
conditions with the addition of the radical trap TEMPO. The
presence of TEMPO shut down the formation of 4a, consistent
with the involvement of radicals (Fig. 2b).

Stoichiometric studies, wherein NiBr2 was replaced by 1.0 equiv
Ni(COD)2 in the presence of 1.1 equiv L6 but in the absence of
4CzIPN, HEH and Cy2NMe were carried out. This experiment was
conducted both with and without blue light irradiation. With the
light on 1 reacted with 2a and 3a to form cross-coupled product 4a
(74% yield, 92% ee) (Fig. 2c). Likewise, when the reaction was
conducted without irradiation, the cross-coupled product 4a was
observed (73% yield, 92% ee). It is noteworthy that the ee of these

stoichiometric reactions are identical to that observed under the
standard catalytic conditions (Table 1, entry 1). These observations
suggest that 1) the enantiodetermining step in the catalytic and
stoichiometric reactions (Fig. 2b) are identical, and do not involve
the photoredox cycle and 2) tert-butyl radical could be formed via
SET reduction from the nickel catalyst (either Ni0 or NiI).

To probe the function of the photoredox cycle in this system,
we performed the model reaction without Ni/L6 and bromo-
benzene (Fig. 2d). The radical addition/HAT quenching product
(10) was obtained in 70% AY. This result indicates that in
addition to reducing the Ni catalyst, the photoredox catalyst can
undergo SET to the tert-butyl bromide to generate the tert-butyl
radical. The radical then undergoes the Giese-type addition to the
acrylate followed by abstraction of H• from HEH. Given that the
olefin difunctionalization also proceeds via an α-carbonyl radical,
it must be that the α-carbonyl radicals add to L*Ni(Ar)Br faster
than they undergo HAT from HEH.

On the basis of related studies45, and the mechanistic
experiments above, we present a proposed dual catalytic pathway
for the enantioselective reductive three-component alkyl arylation
reaction of alkenes with tertiary alkyl- and aryl-bromides (Fig. 3).
The active (BiIM)Ni0 [E1/2red (NiII/Ni0) = −1.2 V vs. SCE] is
generated in situ in two SET steps by the reduced photocatalyst

Fig. 2 Mechanistic experiments. a Detail analysis of the model reaction. b Radical trapping reaction via TEMPO. c Stoichiometric studies. d Intermediate
verification reaction.
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4CzIPN•− (E1/2red=−1.21 V vs. SCE)46–49. The resulting
(BiIM)Ni0 catalyst oxidatively adds the aryl bromide to give the
(BiIM)Ni(Ar)Br complex50. The alkyl bromide undergoes SET by
either the Ni or reduced 4CzIPN•− (as described above45) to
generate the alkyl halide radical anion, which looses bromide to
generate the tertiary radical. Addition of the tertiary radical to the
acrylate forms the α-carbonyl radical that is trapped by the
(BiIM)Ni(Ar)Br complex to form the reactive NiIII species. The
resulting NiIII intermediate51 then undergoes rapid reductive
elimination to give the product 4a. In the photoredox cycle,
photoexcited *4CzIPN (τ= 5.1 ± 0.5 μs)52 reacts with HEH to
afford 4CzIPN•−. The resulting 4CzIPN•− is oxidized by the
nickel catalyst (NiII/NiI) and/or 2a to regenerate 4CzIPN.

In conclusion, we have developed an example of dual nickel/
organic photoredox catalyzed asymmetric reductive difunctionaliza-
tion of acrylates with alkyl- and aryl-bromides to generate NSAID
derivatives. The advantages of this reductive protocol are that it uses
two bench stable and commercially available electrophiles and it is
broadly tolerant of functional groups, avoids preformed moisture-
and/or air-sensitive organometallic reagents, and uses an organic
reductant rather than the metal reductants used in most cross-
electrophile coupling reactions.

Methods
General procedure 1. To an oven-dried vial equipped with a stir bar was added
NiBr2 (2.2 mg, 0.01 mmol), L6 (5.4 mg, 0.011 mmol) and DMA (3.0 mL) under an
argon atmosphere inside a glove box at RT to give a light green solution. After
30 min at RT, olefin (0.1 mmol, 1.0 equiv.), 3°-alkyl bromide (0.4 mmol, 4.0 equiv.)
and aryl bromide (0.2 mmol, 2.0 equiv.) were added. Next, Cy2NMe (58.5 mg,
64 μL, 0.3 mmol, 3.0 equiv.), HEH (75.9 mg, 0.3 mmol, 3.0 equiv.) and 4CzIPN
(8.0 mg, 0.01 mmol) were added. Once HEH and 4CzIPN were added, the solution
turned from light green to yellow. The vial was sealed with a cap and removed from
the glove box. The reaction mixture was stirred at RT under blue light. After 24 h,
the color of the reaction mixture changed back to light green. The vial was opened
to air and EtOAc (10 mL) was added. The resulting solution was then washed with
brine (5 mL × 5) and the organic layer separated and dried over anhydrous Na2SO4,
filtered and concentrated to give the crude product. The crude residue was purified
by flash column chromatography to afford the corresponding product.

General procedure 2. To an oven-dried vial equipped with a stir bar was added
NiCl2•glyme (2.2mg, 0.01mmol), L6 (5.4mg, 0.011mmol) and acetone/DMA (2.0/1.0,
v/v, 3.0mL) under an argon atmosphere inside a glove box at RT, giving a light green
solution. After 30min at RT, tert-butyl acrylate (0.1mmol, 1.0 equiv.), 1° or 2°-alkyl
iodides (0.4mmol, 4.0 equiv.), 1-(4-iodophenyl)ethan-1-one (0.2mmol, 2.0 equiv.),
Cy2NMe (58.5mg, 64 μL, 0.3mmol, 3.0 equiv.), HEH (75.9mg, 0.3mmol, 3.0 equiv.)
and 4CzIPN (8.0mg, 0.01mmol) were added. Once HEH and 4CzIPN were added, the

solution turned from light green to yellow. The vial was sealed with a cap and removed
from the glove box. The reaction mixture was stirred at RT under blue light. After 24 h,
the color of the solution changed back to light green. The vial was opened to air and
EtOAc (10mL) was added to the solution, which was then washed with brine
(5mL × 5). The organic layer was dried over anhydrous Na2SO4, filtered and con-
centrated to give the crude product. The crude residue was purified by flash column
chromatography to afford the corresponding product.

Data availability
The detailed experimental procedures and characterization of compounds data generated in
this study are provided in Supplementary Information. The authors declare that all other
data supporting the findings of this study are available within the article and Supplementary
Information files, and also are available from the corresponding author upon request.
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